Employment of Mapping Technology in Antimicrobial Resistance Reporting in Saudi Arabia

  • Abdullah A. Alhifany | aahifany@uqu.edu.sa Clinical Pharmacy Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia. https://orcid.org/0000-0001-9492-9483
  • Abdullah F. Alqurashi Department of Geography, Umm Al-Qura University, Makkah, Saudi Arabia.
  • Mohamed H. Al-Agamy Microbiology and Immunology Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  • Nasser Alkhushaym Department of Clinical Pharmacy; Royal Commission Health Services Program; Jubail, Saudi Arabia.
  • Faten Alhomoud Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
  • Farah K. Alhomoud Pharmacy Practice Department, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
  • Thamer A. Almangour Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.


Although Antimicrobial Resistance (AMR) is a worldwide threat, local AMR databases do not exist. Unlike other health disasters, developing containment strategies for AMR cannot be started without a representative, local, updated AMR data. However, Geographical Information Systems (GIS) mapping technology is capable of visualizing AMR data integrated with geographical regions. Due to the absence of AMR databases in Saudi Arabia, we searched Medline and Embase databases from inception until May 28, 2018, including literature that reported AMR data on the most prevalent gram-negative bacterial strains in Saudi Arabia. These data were extracted into Microsoft Excel file and inserted into STATA software, version 13 and ArcMap 10.6 software platform for mapping. We found particularly high levels of AMR in Makkah (Mecca), possibly due to high antibiotic consumption because of the influx of pilgrims, with Pseudomonas aeruginosa isolates showing the highest resistance rate against amikacin, aztreonam, cefepime, ceftazidime, ciprolfloxacin, gentamicin, imipenem, meropenem and pipracillin/tazobactam, and Enterobacteriaceae isolates against cefuroxime, ciprofloxacin, ampicillin, imipenem and ertapenem. The cause is, however, multifactorial since Acinetobacter baumannii isolates showed a variable resistance rate throughout the country. The employment of mapping technology in displaying AMR data extracted from published literature is a practically useful approach, and advanced GIS analyses should help stakeholders create containment strategies and allocate resources to slow down the emergence of AMR.



PlumX Metrics


Download data is not yet available.


Al-Obeid S, Jabri L, Al-Agamy M, Al-Omari A, & Shibl A. 2015. Epidemiology of extensive drug resistant Acinetobacter baumannii (XDRAB) at Security Forces Hospital (SFH) in Kingdom of Saudi Arabia (KSA). J Chemother, 27(3), 156-162. doi:10.1179/1973947815y.0000000019 DOI: https://doi.org/10.1179/1973947815Y.0000000019

Al-Qadheeb NS, Althawadi S, Alkhalaf A, Hosaini S, & Alrajhi AA. 2010. Evolution of tigecycline resistance in Klebsiella pneumoniae in a single patient. Ann Saudi Med, 30(5), 404-407. doi:10.4103/0256-4947.67087 DOI: https://doi.org/10.4103/0256-4947.67087

Al Johani SM, Akhter J, Balkhy H, El-Saed A, Younan M, & Memish Z. 2010. Prevalence of antimicrobial resistance among gram-negative isolates in an adult intensive care unit at a tertiary care center in Saudi Arabia. Ann Saudi Med, 30(5), 364-369. doi:10.4103/0256-4947.67073 DOI: https://doi.org/10.4103/0256-4947.67073

Baadani AM, Thawadi SI, El-Khizzi NA, & Omrani AS. 2013. Prevalence of colistin and tigecycline resistance in Acinetobacter baumannii clinical isolates from 2 hospitals in Riyadh Region over a 2-year period. Saudi Med J, 34(3), 248-253.

Balkhy HH, El-Saed A, Al Johani SM, Francis C, Al-Qahtani AA, Al-Ahdal MN, . . . Sallah M. 2012. The epidemiology of the first described carbapenem-resistant Klebsiella pneumoniae outbreak in a tertiary care hospital in Saudi Arabia: how far do we go? Eur J Clin Microbiol Infect Dis, 31(8), 1901-1909. doi:10.1007/s10096-011-1519-0 DOI: https://doi.org/10.1007/s10096-011-1519-0

Hay SI, Rao PC, Dolecek C, Day NPJ, Stergachis A, Lopez AD, & Murray CJL. 2018. Measuring and mapping the global burden of antimicrobial resistance. BMC Med, 16(1), 78. doi:10.1186/s12916-018-1073-z DOI: https://doi.org/10.1186/s12916-018-1073-z

Jooma S. 2015. Executive action to combat the rise of drug-resistant bacteria: is agricultural antibiotic use sufficiently addressed? Journal of Law and the Biosciences, 2(1), 129-138. doi:10.1093/jlb/lsv005 DOI: https://doi.org/10.1093/jlb/lsv005

Kader AA, & Kumar AK. 2004. Prevalence of extended spectrum beta-lactamase among multidrug resistant gram-negative isolates from a general hospital in Saudi Arabia. Saudi Med J, 25(5), 570-574.

Khan MA, & Faiz A. 2016. Antimicrobial resistance patterns of Pseudomonas aeruginosa in tertiary care hospitals of Makkah and Jeddah. Ann Saudi Med, 36(1), 23-28. doi:10.5144/0256-4947.2016.23 DOI: https://doi.org/10.5144/0256-4947.2016.23

Kiffer CR, Camargo EC, Shimakura SE, Ribeiro PJ, Jr., Bailey TC, Pignatari AC, & Monteiro AM. 2011. A spatial approach for the epidemiology of antibiotic use and resistance in community-based studies: the emergence of urban clusters of Escherichia coli quinolone resistance in Sao Paulo, Brasil. Int J Health Geogr, 10, 17. doi:10.1186/1476-072X-10-17 DOI: https://doi.org/10.1186/1476-072X-10-17

Lobanovska M, & Pilla G. 2017. Penicillin's Discovery and Antibiotic Resistance: Lessons for the Future? Yale J Biol Med, 90(1), 135-145.

Memish ZA, Shibl AM, Kambal AM, Ohaly YA, Ishaq A, & Livermore DM. 2012. Antimicrobial resistance among non-fermenting Gram-negative bacteria in Saudi Arabia. J Antimicrob Chemother, 67(7), 1701-1705. doi:10.1093/jac/dks091 DOI: https://doi.org/10.1093/jac/dks091

Mouro AK, C.; Koga, P.C.; Monteiro, A.M.; Camargo, E.C.; Pignatari, A.C. 2011. Spatial exploration of Streptococcus pneumoniae clonal clustering in Sao Paulo, Brazil. Braz. J. Infect. Dis.(15), 462–466.

Noble D, Smith D, Mathur R, Robson J, & Greenhalgh T. 2012. Feasibility study of geospatial mapping of chronic disease risk to inform public health commissioning. BMJ Open, 2(1), e000711. doi:10.1136/bmjopen-2011-000711 DOI: https://doi.org/10.1136/bmjopen-2011-000711

Organization WH. (2016). National antimicrobial resistance surveillance systems and participation in the Global Antimicrobial Resistance Surveillance System (GLASS): a guide to planning, implementation, and monitoring and evaluation. Retrieved from

Organization WH, 2019. Global antimicrobial resistance surveillance system (GLASS) report-early implementation 2016-2017. 2018.

Rotimi VO, al-Sweih NA, & Feteih J. 1998. The prevalence and antibiotic susceptibility pattern of gram-negative bacterial isolates in two ICUs in Saudi Arabia and Kuwait. Diagn Microbiol Infect Dis, 30(1), 53-59.

Samarasundera E, Walsh T, Cheng T, Koenig A, Jattansingh K, Dawe A, & Soljak M. 2012. Methods and tools for geographical mapping and analysis in primary health care. Prim Health Care Res Dev, 13(1), 10-21. doi:10.1017/S1463423611000417 DOI: https://doi.org/10.1017/S1463423611000417

Shrivastava SR, Shrivastava PS, & Ramasamy J. 2018. World health organization releases global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. Journal of Medical Society, 32(1), 76.

Slayton RB, Toth D, Lee BY, Tanner W, Bartsch SM, Khader K, . . . Jernigan JA. 2015. Vital Signs: Estimated Effects of a Coordinated Approach for Action to Reduce Antibiotic-Resistant Infections in Health Care Facilities - United States. MMWR. Morbidity and mortality weekly report, 64(30), 826-831. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/26247436 DOI: https://doi.org/10.15585/mmwr.mm6430a4

Tawfik AF, Alswailem AM, Shibl AM, & Al-Agamy MH. 2011. Prevalence and genetic characteristics of TEM, SHV, and CTX-M in clinical Klebsiella pneumoniae isolates from Saudi Arabia. Microb Drug Resist, 17(3), 383-388. doi:10.1089/mdr.2011.0011 DOI: https://doi.org/10.1089/mdr.2011.0011

Tirabassi MV, Wadie G, Moriarty KP, Garb J, Konefal SH, Courtney RA, . . . Wait R. 2005. Geographic information system localization of community-acquired MRSA soft tissue abscesses. J Pediatr Surg, 40(6), 962-965; discussion 965-966. doi:10.1016/j.jpedsurg.2005.03.010 DOI: https://doi.org/10.1016/j.jpedsurg.2005.03.010

Weist K, & Högberg LD. 2016. ECDC publishes 2015 surveillance data on antimicrobial resistance and antimicrobial consumption in Europe. Eurosurveillance, 21(46). DOI: https://doi.org/10.2807/1560-7917.ES.2016.21.46.30399

Zowawi HM, Balkhy HH, Walsh TR, & Paterson DL. 2013. beta-Lactamase production in key gram-negative pathogen isolates from the Arabian Peninsula. Clin Microbiol Rev, 26(3), 361-380. doi:10.1128/cmr.00096-12 DOI: https://doi.org/10.1128/CMR.00096-12

Original Articles
Antimicrobial resistance, Geographical information system, Enterobacteriaceae, Pseudomonas aeruginosa, Acinetobacter baumannii, Saudi Arabia
  • Abstract views: 929

  • PDF: 385
  • HTML: 0
How to Cite
Alhifany, A. A., Alqurashi, A. F., Al-Agamy, M. H., Alkhushaym, N., Alhomoud, F., Alhomoud, F. K., & Almangour, T. A. (2020). Employment of Mapping Technology in Antimicrobial Resistance Reporting in Saudi Arabia. Geospatial Health, 15(1). https://doi.org/10.4081/gh.2020.868