Spatial statistical analysis of Coronavirus Disease 2019 (Covid-19) in China

Submitted: 23 February 2020
Accepted: 22 March 2020
Published: 15 June 2020
Abstract Views: 6272
PDF: 2631
HTML: 85
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The cluster of pneumonia cases linked to coronavirus disease 2019 (Covid-19), first reported in China in late December 2019 raised global concern, particularly as the cumulative number of cases reported between 10 January and 5 March 2020 reached 80,711. In order to better understand the spread of this new virus, we characterized the spatial patterns of Covid-19 cumulative cases using ArcGIS v.10.4.1 based on spatial autocorrelation and cluster analysis using Global Moran's I (Moran, 1950), Local Moran's I and Getis-Ord General G (Ord and Getis, 2001). Up to 5 March 2020, Hubei Province, the origin of the Covid-19 epidemic, had reported 67,592 Covid-19 cases, while the confirmed cases in the surrounding provinces Guangdong, Henan, Zhejiang and Hunan were 1351, 1272, 1215 and 1018, respectively. The top five regions with respect to incidence were the following provinces: Hubei (11.423/10,000), Zhejiang (0.212/10,000), Jiangxi (0.201/10,000), Beijing (0.196/10,000) and Chongqing (0.186/10,000). Global Moran's I analysis results showed that the incidence of Covid-19 is not negatively correlated in space (p=0.407413>0.05) and the High-Low cluster analysis demonstrated that there were no high-value incidence clusters (p=0.076098>0.05), while Local Moran's I analysis indicated that Hubei is the only province with High-Low aggregation (p<0.0001).

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Anselin L, 1995. Local Indicators of Spatial Association—LISA. Geogr Anal 27(2), 93-115. doi: 10.1111/j.1538-4632.1995.tb00338.x. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Chan JF, Kok KH, Zhu Z, et al., 2020a. Genomic characterization of the 2019 novel human-pathogenic coronavirus isolated from a patient with atypical pneumonia after visiting Wuhan. Emerg Microbes Infect 9(1), 221-36. doi:10.1080/22221751.2020.1719902. DOI: https://doi.org/10.1080/22221751.2020.1719902
Chan JF, Yuan S, Kok KH, et al. , 2020b. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family. Lancet cluster [published online ahead of print Jan 24]. doi:10.1016/S0140-6736(20)30154-9. DOI: https://doi.org/10.1016/S0140-6736(20)30154-9
Holshue ML, DeBolt C, Lindquist S, Lofy KH, Wiesman J, et al., 2020. First Case of 2019 Novel Coronavirus in the United States. N Engl J Med 382(10):929-36. doi:10.1056/NEJMoa2001191. DOI: https://doi.org/10.1056/NEJMoa2001191
Hosseiny M, Kooraki S, Gholamrezanezhad A, Reddy S, Myers L, 2020. Radiology Perspective of Coronavirus Disease 2019 (COVID-19): Lessons From Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. AJR Am J Roentgenol. 2020 Feb 28:1-5. doi: 10.2214/AJR.20.22969. [Epub ahead of print]. DOI: https://doi.org/10.2214/AJR.20.22969
Huo XN, Li H, Sun DF, Zhou LD, Li BG, 2012. Combining geostatistics with Moran's I analysis for mapping soil heavy metals in Beijing, China. Int J Environ Res Public Health 9(3), 995–1017. doi:10.3390/ijerph9030995. DOI: https://doi.org/10.3390/ijerph9030995
Huo XN, Zhang WW, Sun DF, Li H, Zhou LD, Li BG, 2011. Spatial pattern analysis of heavy metals in Beijing agricultural soils based on spatial autocorrelation statistics. Int J Environ Res Public Health 8(6), 2074–89. doi:10.3390/ijerph8062074. DOI: https://doi.org/10.3390/ijerph8062074
Li Q, Guan X, Wu P, Wang X, Zhou L, et al., 2020. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med [published online ahead of print, 2020 Jan 29]. doi:10.1056/NEJMoa2001316. DOI: https://doi.org/10.1056/NEJMoa2001316
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR, 2020. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges [published online ahead of print]. Int J Antimicrob Agents 105924. doi:10.1016/j.ijantimicag.2020.105924 DOI: https://doi.org/10.1016/j.ijantimicag.2020.105924
Liu W, Yang K, Qi X, Xu K, Ji H, et al. 2013. Spatial and temporal analysis of human infection with avian influenza A(H7N9) virus in China. Euro Surveill 18(47), 20640. doi:10.2807/1560-7917.es2013.18.47.20640 DOI: https://doi.org/10.2807/1560-7917.ES2013.18.47.20640
Mazzulla G, Forciniti C, 2012. Spatial association techniques for analysing trip distribution in an urban area. Eur Transp Res Rev 4(4), 217-33. doi:10.1007/s12544-012-0082-9. DOI: https://doi.org/10.1007/s12544-012-0082-9
Moran PAP, 1950. Notes on Continuous Stochastic Phenomena. Biometrika 371,17-23. doi:10.2307/2332142. JSTOR 2332142. DOI: https://doi.org/10.2307/2332142
National Health Commission of the People’s Republic of China, 2020. Latest update on outbreak prevention and control. Available at: http://www.nhc.gov.cn/xcs/yqtb/202003/b59dbcc84ed1498292714975039dcdc9.shtmlAccessed on 7 March 2020.
Nishiura H, Jung SM, Linton NM, Kinoshita R, Yang Y, Hayashi K, Kobayashi T, Yuan B, Akhmetzhanov AR, 2020. The Extent of Transmission of Novel Coronavirus in Wuhan, China, 2020. J Clin Med. Published Jan 24;9(2). pii: E330. doi:10.3390/jcm9020330. DOI: https://doi.org/10.3390/jcm9020330
Ord K, Getis A, 2001. Testing for Local Spatial Autocorrelation in the Presence of Global Spatial Autocorrelation. J Reg Sci 41(3), 411-32. doi:10.1111/0022-4146.00224. DOI: https://doi.org/10.1111/0022-4146.00224
Páez A, Scott DM; 2005, 2005. Spatial statistics for urban analysis: A review of techniques with examples. GeoJournal 61(1), 53-67. doi:10.1007/s10708-005-0877-5. DOI: https://doi.org/10.1007/s10708-005-0877-5
Paules CI, Marston HD, Fauci AS, 2020. Coronavirus Infections-More Than Just the Common Cold. JAMA [published online ahead of print, 2020 Jan 23]. doi:10.1001/jama.2020.0757. DOI: https://doi.org/10.1001/jama.2020.0757
Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, et al., 2020. Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. N Engl J Med. 2020:NEJMc2001468. doi.org/10.1056/NEJMc 2001468 DOI: https://doi.org/10.1056/NEJMc2001468
Samphutthanon R, Tripathi N, Ninsawat S, Duboz R, 2013. Spatio-temporal distribution and hotspots of hand, foot and mouth disease (HFMD) in northern Thailand. Int J Environ Res Public Health 11(12), 312-36. DOI: https://doi.org/10.3390/ijerph110100312
Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, Wang Y, Zhang W, Zhang HL, 2019. Viral infection increases the risk of idiopathic pulmonary fibrosis: a meta-analysis. Chest doi.org/10.1016/j.chest.2019.10.032 DOI: https://doi.org/10.1016/j.chest.2019.10.032
Sun SH, Gao ZD, Zhao F, et al. Zhonghua Liu Xing Bing Xue Za Zhi. 2018;39(6):816-820. doi:10.3760/cma.j.issn.0254-6450.2018.06.023
Sun P, Lu X, Xu C, Sun W, Pan B, 2020. Understanding of COVID-19 based on current evidence [published online ahead of print, 2020 Feb 25]. J Med Virol doi:10.1002/jmv.25722. DOI: https://doi.org/10.1002/jmv.25722
Velavan TP, Meyer CG, 2020. The COVID-19 epidemic [published online ahead of print, 2020 Feb 12]. Trop Med Int Health. doi:10.1111/tmi.13383 DOI: https://doi.org/10.1111/tmi.13383
Wang FS, Zhang C, 2020. What to do next to control the 2019-nCoV epidemic? Lancet 395(10222), 391-3. doi.org/10.1016/ S0140-6736(20)30300-7 DOI: https://doi.org/10.1016/S0140-6736(20)30300-7
Wang C, Horby PW, Hayden FG, Gao GF, 2020. A novel coronavirus outbreak of global health concern [published online ahead of print, 2020 Jan 24]. Lancet doi:10.1016/S0140-6736(20)30185-9. DOI: https://doi.org/10.1016/S0140-6736(20)30185-9
Weeberb JR Jr, Koutrakis P, Roig H L, 2015. Spatial distribution of vehicle emission inventories in the Federal District, Brazil. Atmos Environ 112, 32-9. DOI: https://doi.org/10.1016/j.atmosenv.2015.04.029
WHO, 2020. Situation report 'Coronavirus disease (COVID-19)', released on March 6, 2020. Available at: https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200306-sitrep-46-covid-19.pdf?sfvrsn=96b04adf_4 Accessed on 7 March 2020.
Yang Y, Shang W, Rao X, 2020. Facing the COVID-19 outbreak: What should we know and what could we do? [published online ahead of print, 2020 Feb 24]. J Med Virol doi:10.1002/jmv.25720 DOI: https://doi.org/10.1002/jmv.25720
Zhao S, Lin Q, Ran J, Musa SS, Yang G, Wang W, Lou Y, Gao D, Yang L, He D, Wang MH, 2020. Preliminary estimation of the basic reproduction number of novel coronavirus (2019-nCov) in China, from 2019 to 2020: A data-driven analysis in the early phase of the outbreak. Int J Infect Dis 92:214-7. doi:10.1016/j.ijid.2020.01.050. DOI: https://doi.org/10.1016/j.ijid.2020.01.050
Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, 2020. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J Med 382(8), 727-33. doi:10.1056/NEJMoa2001017. DOI: https://doi.org/10.1056/NEJMoa2001017

How to Cite

Li, H., Li, H., Ding, Z., Hu, Z., Chen, F., Wang, K., Peng, Z., & Shen, H. (2020). Spatial statistical analysis of Coronavirus Disease 2019 (Covid-19) in China. Geospatial Health, 15(1). https://doi.org/10.4081/gh.2020.867

Similar Articles

You may also start an advanced similarity search for this article.