Implementation of geographical information systems for the study of diseases caused by vector-borne arboviruses in Southeast Asia: A review based on the publication record

  • Ajib Diptyanusa | Department of Parasitology, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara, Indonesia.
  • Lutfan Lazuardi Department of Health Policy and Management, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Jalan Farmako, Sekip Utara, Indonesia.
  • Retnadi Heru Jatmiko Centre for Remote Sensing and Geographical Information System (PUSPICS), Universitas Gadjah Mada, Sekip Utara, Yogyakarta, Indonesia.


The spread of mosquito-borne diseases in Southeast Asia has dramatically increased in the latest decades. These infections include dengue, chikungunya and Japanese Encephalitis (JE), high-burden viruses sharing overlapping disease manifestation and vector distribution. The use of Geographical Information Systems (GIS) to monitor the dynamics of disease and vector distribution can assist in disease epidemic prediction and public health interventions, particularly in Southeast Asia where sustained high temperatures drive the epidemic spread of these mosquito-borne viruses. Due to lack of accurate data, the spatial and temporal dynamics of these mosquito-borne viral disease transmission countries are poorly understood, which has limited disease control effort. By following studies carried out on these three viruses across the region in a specific time period revealing general patterns of research activities and characteristics, this review finds the need to improve decision-support by disease mapping and management. The results presented, based on a publication search with respect to diseases due to arboviruses, specifically dengue, chikungunya and Japanese encephalitis, should improve opportunities for future studies on the implementation of GIS in the control of mosquito-borne viral diseases in Southeast Asia.



PlumX Metrics


Download data is not yet available.


Ajelli M, Gonçalves B, Balcan D, Colizza V, Hu H, Ramasco JJ, et al. Comparing large-scale computational approaches to epidemic modeling: Agent-based versus structured metapopulation models. BMC Infect Dis. 2010;10(1):190.
Anyamba A, Chretien J-P, Britch SC, Soebiyanto RP, Small JL, Jepsen R, et al. Global Disease Outbreaks Associated with the 2015-2016 El Niño Event. Sci Rep. 2019;9(1):1930-1930.
Astuti EP, Dhewantara PW, Prasetyowati H, Ipa M, Herawati C, Hendrayana K. Paediatric dengue infection in Cirebon, Indonesia: a temporal and spatial analysis of notified dengue incidence to inform surveillance. Parasit Vectors. 2019;12(1):186-186.
Auchincloss AH, Gebreab SY, Mair C, Diez Roux AV. A review of spatial methods in epidemiology, 2000-2010. Ann Rev Public Health. 2012;33:107-122.
Azami NAM, Salleh SA, Shah SA, Neoh H-m, Othman Z, Zakaria SZS, et al. Emergence of chikungunya seropositivity in healthy Malaysian adults residing in outbreak-free locations: chikungunya seroprevalence results from the Malaysian Cohort. BMC Infect Dis. 2013;13:67.
Aziz S, Ngui R, Lim YA, Sholehah I, Nur Farhana J, Azizan AS, et al. Spatial pattern of 2009 dengue distribution in Kuala Lumpur using GIS application. Trop Biomed. 2012;29(1):113-120.
Aziz S, Aidil RM, Nisfariza MN, Ngui R, Lim YA, Yusoff WS, et al. Spatial density of Aedes distribution in urban areas: a case study of breteau index in Kuala Lumpur, Malaysia. J Vector Borne Dis. 2014;51(2):91-96.
Banu S, Hu W, Guo Y, Naish S, Tong S. Dynamic spatiotemporal trends of dengue transmission in the Asia-Pacific region, 1955-2004. PLoS One. 2014;9(2):e89440-e89440.
Baylis M. Potential impact of climate change on emerging vector-borne and other infections in the UK. Environ Health. 2017;16(Suppl 1):112-112.
Barrios JM, Verstraeten WW, Maes P, Aerts J-M, Farifteh J, Coppin P. Using the gravity model to estimate the spatial spread of vector-borne diseases. Int J Environ Res Public Health. 2012;9(12):4346-4364.
Boonklong O, Bhumiratana A. Seasonal and Geographical Variation of Dengue Vectors in Narathiwat, South Thailand. Can J Infect Dis Med Microbiol. 2016;2016:8062360.
Bouzid M, Brainard J, Hooper L, Hunter PR. Public Health Interventions for Aedes Control in the Time of Zikavirus- A Meta-Review on Effectiveness of Vector Control Strategies. PLoS Negl Trop Dis. 2016;10(12):e0005176-e0005176.
Brian EM, Lawrence AW, Jr. Geographic Information Systems in Developing Countries: Issues in Data Collection, Implementation and Management. Journal of Global Information Management (JGIM). 2001;9(4):44-54.
Caballero-Anthony M, Cook A, Amul G, Sharma A. Health Governance and Dengue in Southeast Asia. Singapore: Centre for Non-Traditional Security Studies (NTS), Nanyang Technological University; 2015 May 2015.
Carabali M, Lim JK, Velez DC, Trujillo A, Egurrola J, Lee KS, et al. Dengue virus serological prevalence and seroconversion rates in children and adults in Medellin, Colombia: implications for vaccine introduction. Int J Infect Dis. 2017;58:27-36.
Chadsuthi S, Iamsirithaworn S, Triampo W, Cummings DAT. The impact of rainfall and temperature on the spatial progression of cases during the chikungunya re-emergence in Thailand in 2008-2009. Trans R Soc Trop Med Hyg. 2016;110(2):125-133.
Chadsuthi S, Althouse BM, Iamsirithaworn S, Triampo W, Grantz KH, Cummings DAT. Travel distance and human movement predict paths of emergence and spatial spread of chikungunya in Thailand. Epidemiol Infect. 2018;146(13):1654-1662.
Chansang C, Kittayapong P. Application of mosquito sampling count and geospatial methods to improve dengue vector surveillance. Am J Trop Med Hyg. 2007;77(5):897-902.
Cheah WL, Chang MS, Wang YC. Spatial, environmental and entomological risk factors analysis on a rural dengue outbreak in Lundu District in Sarawak, Malaysia. Trop Biomed. 2006;23(1):85-96.
Cheong YL, Leitão PJ, Lakes T. Assessment of land use factors associated with dengue cases in Malaysia using Boosted Regression Trees. Spat Spatiotemporal Epidemiol. 2014;10:75-84.
Christaki E. New technologies in predicting, preventing and controlling emerging infectious diseases. Virulence. 2015;6(6):558-565.
Cui L, Yan G, Sattabongkot J, Cao Y, Chen B, Chen X, et al. Malaria in the Greater Mekong Subregion: heterogeneity and complexity. Acta Trop. 2012;121(3):227-239.
Cuong HQ, Vu NT, Cazelles B, Boni MF, Thai KTD, Rabaa MA, et al. Spatiotemporal dynamics of dengue epidemics, southern Vietnam. Emerg Infect Dis. 2013;19(6):945-953.
Dickin SK, Schuster-Wallace CJ, Elliott SJ. Developing a vulnerability mapping methodology: applying the water-associated disease index to dengue in Malaysia. PLoS One. 2013;8(5):e63584-e63584.
Dom NC, Ahmad AH, Latif ZA, Ismail R. Measurement of dengue epidemic spreading pattern using density analysis method: retrospective spatial statistical study of dengue in Subang Jaya, Malaysia, 2006–2010. Trans R Soc Trop Med Hyg. 2013;107(11):715-722.
Erlanger TE, Weiss S, Keiser J, Utzinger J, Wiedenmayer K. Past, present, and future of Japanese encephalitis. Emerg Infect Dis. 2009;15(1):1-7.
Flasche S, Jit M, Rodriguez-Barraquer I, Coudeville L, Recker M, Koelle K, et al. The Long-Term Safety, Public Health Impact, and Cost-Effectiveness of Routine Vaccination with a Recombinant, Live-Attenuated Dengue Vaccine (Dengvaxia): A Model Comparison Study. PLoS Med. 2016;13(11):e1002181.
Ford TE, Colwell RR, Rose JB, Morse SS, Rogers DJ, Yates TL. Using satellite images of environmental changes to predict infectious disease outbreaks. Emerg Infect Dis. 2009;15(9):1341-1346.
Geng J, Malla P, Zhang J, Xu S, Li C, Zhao Y, et al. Increasing trends of malaria in a border area of the Greater Mekong Subregion. Malar J. 2019;18(1):309.
Guzzetta G, Marques-Toledo CA, Rosà R, Teixeira M, Merler S. Quantifying the spatial spread of dengue in a non-endemic Brazilian metropolis via transmission chain reconstruction. Nature Commun. 2018;9(1):2837.
Hasegawa M, Tuno N, Yen NT, Nam VS, Takagi M. Influence of the distribution of host species on adult abundance of Japanese encephalitis vectors Culex vishnui subgroup and Culex gelidus in a rice-cultivating village in northern Vietnam. Am J Trop Med Hyg. 2008;78(1):159-168.
Heffelfinger JD, Li X, Batmunkh N, Grabovac V, Diorditsa S, Liyanage JB, et al. Japanese Encephalitis Surveillance and Immunization - Asia and Western Pacific Regions, 2016. MMWR Morb Mortal Wkly Rep. 2017;66(22):579-583.
Heymann DL, Rodier GR. Hot spots in a wired world: WHO surveillance of emerging and re-emerging infectious diseases. Lancet Infect Dis. 2001;1(5):345-353.
Higa Y. Dengue Vectors and their Spatial Distribution. Trop Med Health. 2011;39(4 Suppl):17-27.
Husnina Z, Clements ACA, Wangdi K. Forest cover and climate as potential drivers for dengue fever in Sumatra and Kalimantan 2006–2016: a spatiotemporal analysis. Trop Med Int Health. 2019;24(7):888-898.
Jeefoo P, Tripathi NK, Souris M. Spatio-temporal diffusion pattern and hotspot detection of dengue in Chachoengsao province, Thailand. Int J Environ Res Public Health. 2011;8(1):51-74.
Johansson MA, Hombach J, Cummings DAT. Models of the impact of dengue vaccines: a review of current research and potential approaches. Vaccine. 2011;29(35):5860-5868.
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, et al. Global trends in emerging infectious diseases. Nature. 2008;451(7181):990-993.
Kesetyaningsih TW, Andarini S, Sudarto, Pramoedyo H. Determination of Environmental Factors Affecting Dengue Incidence in Sleman District, Yogyakarta, Indonesia. Afr J Infect Dis. 2018;12(1 Suppl):13-25.
Kittayapong P, Yoksan S, Chansang U, Chansang C, Bhumiratana A. Suppression of dengue transmission by application of integrated vector control strategies at sero-positive GIS-based foci. Am J Trop Med Hyg. 2008;78(1):70-76.
Lai YH. The climatic factors affecting dengue fever outbreaks in southern Taiwan: an application of symbolic data analysis. Biomed Eng Online. 2018;17(Suppl 2):148.
Lam-Phua SG, Yeo H, Lee RML, Chong CS, Png AB, Foo SY, et al. Mosquitoes (Diptera: Culicidae) of Singapore: Updated Checklist and New Records. J Med Entomol. 2019;56(1):103-119.
Leta S, Beyene TJ, De Clercq EM, Amenu K, Kraemer MUG, Revie CW. Global risk mapping for major diseases transmitted by Aedes aegypti and Aedes albopictus. Int J Infect Dis. 2018;67:25-35.
Lipkin WI. The changing face of pathogen discovery and surveillance. Nat Rev Microbiol. 2013;11(2):133-141.
Longbottom J, Browne AJ, Pigott DM, Sinka ME, Golding N, Hay SI, et al. Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk. Parasit Vectors. 2017;10(1):148-148.
Louis VR, Phalkey R, Horstick O, Ratanawong P, Wilder-Smith A, Tozan Y, et al. Modeling tools for dengue risk mapping - a systematic review. Int J Health Geogr. 2014;13:50-50.
Ludwig A, Zheng H, Vrbova L, Drebot MA, Iranpour M, Lindsay LR. Increased risk of endemic mosquito-borne diseases in Canada due to climate change. Can Commun Dis Rep. 2019;45(4):91-97.
Manore CA, Hickmann KS, Xu S, Wearing HJ, Hyman JM. Comparing dengue and chikungunya emergence and endemic transmission in A. aegypti and A. albopictus. J Theor Biol. 2014;356:174-191.
Miller RH, Masuoka P, Klein TA, Kim H-C, Somer T, Grieco J. Ecological niche modeling to estimate the distribution of Japanese encephalitis virus in Asia. PLoS Negl Trop Dis. 2012;6(6):e1678-e1678.
Morse SS, Mazet JAK, Woolhouse M, Parrish CR, Carroll D, Karesh WB, et al. Prediction and prevention of the next pandemic zoonosis. Lancet. 2012;380(9857):1956-1965.
Musa GJ, Chiang P-H, Sylk T, Bavley R, Keating W, Lakew B, et al. Use of GIS Mapping as a Public Health Tool-From Cholera to Cancer. Health Serv Insights. 2013;6:111-116.
Nakhapakorn K, Tripathi NK. An information value based analysis of physical and climatic factors affecting dengue fever and dengue haemorrhagic fever incidence. Int J Health Geogr. 2005;4:13-13.
O'Reilly KM, Hendrickx E, Kharisma DD, Wilastonegoro NN, Carrington LB, Elyazar IRF, et al. Estimating the burden of dengue and the impact of release of wMel Wolbachia-infected mosquitoes in Indonesia: a modelling study. BMC Med. 2019;17(1):172-172.
Ong J, Liu X, Rajarethinam J, Kok SY, Liang S, Tang CS, et al. Mapping dengue risk in Singapore using Random Forest. PLoS Negl Trop Dis. 2018;12(6):e0006587.
Ong J, Liu X, Rajarethinam J, Yap G, Ho D, Ng LC. A novel entomological index, Aedes aegypti Breeding Percentage, reveals the geographical spread of the dengue vector in Singapore and serves as a spatial risk indicator for dengue. Parasit Vectors. 2019;12(1):17-17.
Pearce JC, Learoyd TP, Langendorf BJ, Logan JG. Japanese encephalitis: the vectors, ecology and potential for expansion. J Travel Med. 2018;25(suppl_1):S16-S26.
Rossi G, Karki S, Smith RL, Brown WM, Ruiz MOH. The spread of mosquito-borne viruses in modern times: A spatio-temporal analysis of dengue and chikungunya. Spat Spatiotemporal Epidemiol. 2018;26:113-125.
Salje H, Lessler J, Endy TP, Curriero FC, Gibbons RV, Nisalak A, et al. Revealing the microscale spatial signature of dengue transmission and immunity in an urban population. Proc Natl Acad Sci USA. 2012;109(24):9535-9538.
Salje H, Lessler J, Maljkovic Berry I, Melendrez MC, Endy T, Kalayanarooj S, et al. Dengue diversity across spatial and temporal scales: Local structure and the effect of host population size. Science. 2017;355(6331):1302-1306.
Samy AM, Alkishe AA, Thomas SM, Wang L, Zhang W. Mapping the potential distributions of etiological agent, vectors, and reservoirs of Japanese Encephalitis in Asia and Australia. Acta Trop. 2018;188:108-117.
Sarfraz MS, Tripathi NK, Tipdecho T, Thongbu T, Kerdthong P, Souris M. Analyzing the spatio-temporal relationship between dengue vector larval density and land-use using factor analysis and spatial ring mapping. BMC Public Health. 2012;12:853-853.
Sasmono RT, Taurel A-F, Prayitno A, Sitompul H, Yohan B, Hayati RF, et al. Dengue virus serotype distribution based on serological evidence in pediatric urban population in Indonesia. PLoS Negl Trop Dis. 2018;12(6):e0006616.
Seidahmed OME, Eltahir EAB. A Sequence of Flushing and Drying of Breeding Habitats of Aedes aegypti (L.) Prior to the Low Dengue Season in Singapore. PLoS Negl Trop Dis. 2016;10(7):e0004842.
Shepard DS, Undurraga EA, Halasa YA. Economic and Disease Burden of Dengue in Southeast Asia. PLoS Negl Trop Dis. 2013;7(2):e2055.
Stoddard ST, Forshey BM, Morrison AC, Paz-Soldan VA, Vazquez-Prokopec GM, Astete H, et al. House-to-house human movement drives dengue virus transmission. Proc Natl Acad Sci USA. 2013;110(3):994-999.
Supadmi W, Suwantika AA, Perwitasari DA, Abdulah R. Economic Evaluations of Dengue Vaccination in the Southeast Asia Region: Evidence From a Systematic Review. Value Health Reg Issues. 2019;18:132-144.
Sutherst RW. Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 2004;17(1):136-173.
Thammapalo S, Meksawi S, Chongsuvivatwong V. Effectiveness of Space Spraying on the Transmission of Dengue/Dengue Hemorrhagic Fever (DF/DHF) in an Urban Area of Southern Thailand. J Trop Med. 2012;2012:652564-652564.
Thomas SJ, Aldstadt J, Jarman RG, Buddhari D, Yoon I-K, Richardson JH, et al. Improving dengue virus capture rates in humans and vectors in Kamphaeng Phet Province, Thailand, using an enhanced spatiotemporal surveillance strategy. Am J Trop Med Hyg. 2015;93(1):24-32.
Tipayamongkholgul M, Fang C-T, Klinchan S, Liu C-M, King C-C. Effects of the El Niño-southern oscillation on dengue epidemics in Thailand, 1996-2005. BMC Public Health. 2009;9:422-422.
Toan NT, Rossi S, Prisco G, Nante N, Viviani S. Dengue epidemiology in selected endemic countries: factors influencing expansion factors as estimates of underreporting. Trop Med Int Health. 2015;20(7):840-863.
Vallee J, Dubot-Peres A, Ounaphom P, Sayavong C, Bryant JE, Gonzalez JP. Spatial distribution and risk factors of dengue and Japanese encephalitis virus infection in urban settings: the case of Vientiane, Lao PDR. Trop Med Int Health. 2009;14(9):1134-1142.
van Panhuis WG, Choisy M, Xiong X, Chok NS, Akarasewi P, Iamsirithaworn S, et al. Region-wide synchrony and traveling waves of dengue across eight countries in Southeast Asia. Proc Natl Acad Sci USA. 2015;112(42):13069-13074.
Vanwambeke SO, van Benthem BHB, Khantikul N, Burghoorn-Maas C, Panart K, Oskam L, et al. Multi-level analyses of spatial and temporal determinants for dengue infection. Int J Health Geogr. 2006;5:5-5.
Villar LA, Rojas DP, Besada-Lombana S, Sarti E. Epidemiological trends of dengue disease in Colombia (2000-2011): a systematic review. PLoS Negl Trop Dis. 2015;9(3):e0003499.
Vincenti-Gonzalez MF, Grillet M-E, Velasco-Salas ZI, Lizarazo EF, Amarista MA, Sierra GM, et al. Spatial Analysis of Dengue Seroprevalence and Modeling of Transmission Risk Factors in a Dengue Hyperendemic City of Venezuela. PLoS Negl Trop Dis. 2017;11(1):e0005317.
Weiss RA, McMichael AJ. Social and environmental risk factors in the emergence of infectious diseases. Nature Med. 2004;10:S70.
Whitehorn J, Yacoub S. Global warming and arboviral infections. Clin Med. 2019;19(2):149-152.
WHO. Asia Pacific Strategy for Emerging Diseases (APSED) Evaluation Report (2005-2015). World Health Organization; 2018.
Xu Z, Bambrick H, Yakob L, Devine G, Lu J, Frentiu FD, et al. Spatiotemporal patterns and climatic drivers of severe dengue in Thailand. Sci Total Environ. 2019;656:889-901.
Yoon IK, Getis A, Aldstadt J, Rothman AL, Tannitisupawong D, Koenraadt CJM, et al. Fine scale spatiotemporal clustering of dengue virus transmission in children and Aedes aegypti in rural Thai villages. PLoS Negl Trop Dis. 2012;6(7):e1730-e1730.
GIS, mosquito-borne viruses, dengue, chikungunya, Japanese encephalitis, mapping; surveillance, Southeast Asia
  • Abstract views: 99

  • PDF: 58
How to Cite
Diptyanusa, A., Lazuardi, L., & Jatmiko, R. H. (2020). Implementation of geographical information systems for the study of diseases caused by vector-borne arboviruses in Southeast Asia: A review based on the publication record. Geospatial Health, 15(1).