Colorectal cancer mortality in Mato Grosso, Brazil: Spatiotemporal trends

Spatiotemporal trends

Submitted: 15 October 2019
Accepted: 27 January 2020
Published: 17 June 2020
Abstract Views: 925
PDF: 572
HTML: 36
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mortality due to colorectal cancer is increasing in Brazil, but an organised approach to screening and prevention is lacking. Considering the importance of this disease, the present study examines recent mortality trends of colorectal cancer mortality in the meso- and microregions in the state of Mato Grosso with the objective of analysing spatiotemporal trends to help guide the allocation of health services related to this type of cancer. Mortality data from the Brazilian national public health system from 1996 to 2015 were analysed investigating spatiotemporal trends using Conditional Autoregressive (CAR) models, a class of Bayesian hierarchical models that rely on Markov Chain Monte Carlo (MCMC) simulations. Convergence issues arose with several types of CAR models, but notably not with the linear variant, which models the mortality within each spatial region as a linear function of time. Men and women of all ages displayed higher and increasing mortality rates in the Cuiabá and Rondonópolis microregions. Additional regions of increasing mortality were found for specific age and gender strata. It was concluded that spatiotemporal modelling is a useful tool for the characterisation of diseases, including cancer, which are influenced by several factors and need to be monitored over space and time. The combination of spatial and temporal analyses of mortality shown in this paper unveils important information regarding the small areas dynamics, which may guide discussions, regulation and application of decentralised public health policies.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Arnold M, Sierra MS, Laversanne M, Soerjomataram I, Jemal A, Bray F, 2017. Global patterns and trends in colorectal cancer incidence and mortality. Gut 66 (4): 683−91. DOI: https://doi.org/10.1136/gutjnl-2015-310912
Atlas do Desenvolvimento Humano. Available from: http://www.atlasbrasil.org.br/2013/pt/perfil_uf/mato-grosso. Accessed 08 Mar 2018.
Bender R, Lange S, 2001. Adjusting for multiple testing – when or how? J Clin Epidemiol 54: 343-349. DOI: https://doi.org/10.1016/S0895-4356(00)00314-0
Besag J,York J, Mollie A, 1991. Bayesian image restoration, with two applications in spatial statistics. Ann Inst Stat Math 43: 1-20. DOI: https://doi.org/10.1007/BF00116466
Brasil. Ministério da Saúde. Portal da Saúde. Available from: http://www.datasus.saude.gov.br. Accessed 26 May 2017.
Claro RM, Santos MAS, Oliveira TA, Pereira CA, Szwarcwald CL, Malta DC, 2015. Consumo de alimentos não saudáveis relacionados a doenças crônicas não transmissíveis no Brasil: Pesquisa nacional de Saúde. Epidemiol. Serv Saúde 24 (2): 257−65. DOI: https://doi.org/10.5123/S1679-49742015000200008
Cócaro H, Cardoso RF, Pereira JR, 2016. Territórios da Cidadania do estado de Mato Grosso: uma avaliação socioeconômica utilizando o índice FIRJAN. Interações 17 (2): 193-209. DOI: https://doi.org/10.20435/1984042X2016204
Douaiher J, Ravipati A, Grams B, Chowdhury S, Alatise O, Are C, 2017. Colorectal cancer – global burden, trends and geographical variations. J Surg Oncol 115 (5): 619–30. DOI: https://doi.org/10.1002/jso.24578
Etxeberria J, Ugarte MD, Goicoa T, Militino AF, 2014. Age- and sex-specific spatio-temporal patterns of colorectal cancer mortality in Spain (1975-2008). Popul Health Metrics 12: 17. DOI: https://doi.org/10.1186/1478-7954-12-17
Fundação Nacional do Ãndio. Available from: http://www.funai.gov.br. Accessed 10 May 2018.
Hamra G, Maclehose R, Richrdson D, 2013. Markov Chain Monte Carlo: an introduction for epidemiologists. Int J Epidemiol 42: 627−34. DOI: https://doi.org/10.1093/ije/dyt043
Huxley RR, Ansary-Moghaddam A, Clifton P, Czernichow S, Parr CL, Woodward M, 2009. The impact of dietary and lifestyle risk factors on risk of colorectal cancer: a quantitative overview of the epidemiological evidence. Int J Cancer 125 (1): 171–80. DOI: https://doi.org/10.1002/ijc.24343
Instituto Brasileiro de Geografia e Estatística. Available from: http//www.ibge.gov.br. Accessed 08 Feb 2017.
Instituto Brasileiro de Geografia e Estatística. Available from: http://geoftp.ibge.gov.br/organizacao_do_territorio/malhas_territoriais/malhas_municipais/municipio_2018/UFs/MT/. Accessed 07 Aug 2019.
Instituto Brasileiro de Geografia e Estatística. Os indígenas no Censo Demográfico de 2010, primeiras considerações com base no critério cor ou raça. Available from: https://indigenas.ibge.gov.br/images/indigenas/estudos/indigena_censo2010.pdf. Accessed 08 May 2018.
Instituto Brasileiro de Geografia e Estatística. Pesquisa Nacional de Saúde 2013 – Percepção do estado de saúde, estilos de vida e doenças crônicas, Brasil, grandes regiões e Unidades de Federação. Available from: https://biblioteca.ibge.gov.br/visualizacao/livros/liv91110.pdf. Accessed 10 May 2018.
Johnson CM, Wei C, Ensor JE, Smolenski DJ, Amos CI, Levin B, Berry DA, 2013. Meta-analyses of Colorectal Cancer Risk Factors. Cancer Causes Control 24 (6): 1207–22. DOI: https://doi.org/10.1007/s10552-013-0201-5
Jürgens V, Ess S, Phuleria HC, Früh M, Schwenkglenks M, Frick H, Cerny T, Vounatsou P, 2013. Bayesian spatio-temporal modelling of tobacco-related cancer mortality in Switzerland. Geospat Health 7 (2): 219-236. DOI: https://doi.org/10.4081/gh.2013.82
Kang SY, Cramb SM, White NM, Ball SJ, Mengersen KL, 2016. Making the most of spatial information in health: a tutorial in Bayesian disease mapping for areal data. Geospat Health 11:428. DOI: https://doi.org/10.4081/gh.2016.428
Lee D, Rushworth A, Napier G, 2018. Spatio-temporal areal unit modelling in R with conditional autoregressive priors using the CARBayesST package. J Stat Softw 84 (9): 1-39. doi:10.18637/jss.v084.i09 DOI: https://doi.org/10.18637/jss.v084.i09
Lima EEC, Queiroz BL, 2014. Evolution of the deaths registry system in Brazil: associations with changes in the mortality profile, under-registration of death counts, and ill-defined causes of death. Cad. Saúde Pública 30 (8): 1721−30. DOI: https://doi.org/10.1590/0102-311X00131113
Lynch HT, Chapelle A. Hereditary Colorectal Cancer, 2013. N Engl J Med 348 (11): 919-32. DOI: https://doi.org/10.1056/NEJMra012242
Martin FL, Martinez EZ, Stopper H, Garcia SB, Uyemura AS, Kannen V, 2018. Increased exposure to pesticides and colon cancer: Early evidence in Brazil. Chemosph 208: 623−31. DOI: https://doi.org/10.1016/j.chemosphere.2018.06.118
Mato Grosso. Secretaria de Estado da Saúde de Mato Grosso. Plano Estadual de Saúde de MT 2012-2015. Secretaria de Estado de Saúde de Mato Grosso. Superintendência de Políticas de Saúde. Cuiabá, 2013. Available from: <http://www.saude.mt.gov.br>. Accessed 18 Mar 2018.
Mato Grosso, Governo de Mato Grosso. Avilable from: < http://www.mt.gov.br>. Accessed 02 Jan 2019.
Ministério da Saúde. Secretária de Atenção à Saúde. Available from: <http://bvsms.saude.gov.br/bvs/saudelegis/sas/2012/prt0102_03_02_2012.html>. Accessed 05 Mar 2018.
National Comprehensive Cancer Network clinical practice guidelines in oncology (NCCN Guidelines®), 2017. Anal Carcinoma. Version 2.2017. Available from: <https://www.nccn.org/professionals/physician_gls/pdf/anal.pdf>. Accessed 05 Aug 2017.
Oliveira RC, Rêgo MAV, 2016. Mortality risk of colorectal cancer in Brazil from 1980 to 2013. Arq Gastroenterol 53 (2): 76−82. DOI: https://doi.org/10.1590/S0004-28032016000200005
Oliveira AG, Curado MP, Koechlin A, Oliveira JC, Silva DRM, 2016. Incidence and mortality from colon and rectal cancer in Midwestern Brazil. Rev. Bras. Epidemiol. 19(4): 779−90. DOI: https://doi.org/10.1590/1980-5497201600040008
Oliveira MM, Latorre MRDO, Tanaka LF, Rossi BM, Curado MP, 2018. Disparidades na mortalidade de câncer colorretal nos estados brasileiros. Rev. Bras. Epidemiol. 21: E180012. DOI: https://doi.org/10.1590/1980-549720180012
Parreira VG, Meira KC, Guimarães RM, 2016. Socioeconomics differentials and mortality from colorectal cancer in large cities in Brazil. Ecancermedicalscience 10: 614.
Pignati W, Oliveira NP, Silva AMC, 2014. Vigilância aos agrotóxicos: quantificação do uso e previsão de impactos na saúde-trabalho-ambiente para os munícipios brasileiros. Ciênc. Saúde Colet. 19 (12): 4669−78. DOI: https://doi.org/10.1590/1413-812320141912.12762014
R Development Core Team: A language and environment for statistical computing. R Foundation for Statistical Computing. Available from: <https://www.r-project.org>. Accessed 12 Jul 2017.
Roquette R, Painho M, Nunes B, 2017. Spatial epidemiology of cancer: a review of data sources, methods and risk factors. Geospat Health 12: 504. DOI: https://doi.org/10.4081/gh.2017.504
Sinicrope FA, 2018. Lynch Syndrome–Associated Colorectal Cancer. N Engl J Med 379:764-73. DOI: https://doi.org/10.1056/NEJMcp1714533
Souza DLB, Jerez-Roig J, Cabral FJ, Lima JRF, Rutalira MK, Costa JAG, 2014. Colorectal cancer mortality in Brazil: predictions until the year 2025 and cancer control implications. Dis Colon Rectum 57 (9): 1082−88. DOI: https://doi.org/10.1097/DCR.0000000000000186
Ugarte MD, Etxeberria J, Goicoa T, Ardanaz E, 2012. Gender-specific spatio-temporal patterns of colorectal cancer incidence in Navarre, Spain (1990-2005). Cancer Epidemiol 36: 254−62 DOI: https://doi.org/10.1016/j.canep.2011.10.004
Ugarte MD, Goicoa T, Etxeberria J, Militino AF, 2012. Testing for space-time interactions in conditional autoregressive models. Environmetrics 23: 3−11. DOI: https://doi.org/10.1002/env.1126
World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR). Diet, Nutrition, Physical Activity and Cancer: a Global perspective. Continuous Project Expert Report 2018. Available from: < https://www.wcrf.org/sites/default/files/Summary-third-expert-report.pdf>. Accessed 22 December 2018.
World Health Organisation, 1995. Manual de classificação estatística internacional de doenças e problemas relacionados à saúde, 10ª revisão. São Paulo: Centro Colaborador da OMS para a Classificação de Doenças em Português.

How to Cite

Alves, C. M. M., Souza, V. G. B., & Bastos, R. R. (2020). Colorectal cancer mortality in Mato Grosso, Brazil: Spatiotemporal trends: Spatiotemporal trends. Geospatial Health, 15(1). https://doi.org/10.4081/gh.2020.826