Geospatial context of social and environmental factors associated with health risk during temperature extremes: Review and discussion

  • Man Sing Wong Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong.
  • Hung Chak Ho | hcho21@hku.hk Department of Urban Planning and Design, The University of Hong Kong, Hong Kong. https://orcid.org/0000-0002-6505-3504
  • Agnes Tse Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong.

Abstract

This study reviews forty-six publications between 2008 and 2017 dealing with socio-environmental impacts on adverse health effects of temperature extremes, in a geospatial context. The review showed that most studies focus on extremely hot weather but lack analysis of how spatial heterogeneity across a region can influence cold mortality/morbidity. There are limitations regarding the use of temperature datasets for spatial analyses. Only a few studies have applied air temperature datasets with high spatial resolution to health studies, but none of these studies have used anthropogenic heat as a factor for analysis of health risk. In addition, the elderly is generally recognized as a vulnerable group in most studies, but the interaction between old age and temperature risk varies by location. Other socio-demographic factors such as low income, low education and accessibility to community shelters may also need to be considered in the future. There are only a few studies which investigate the interaction between temperature and air pollution in a geospatial context, despite the fact that this is a known interaction that can influence health risk under extreme weather. In conclusions, although investigation of temperature effects on health risk is already at the “mature stage”, studies of socio-environmental influences on human health under extreme weather in a geospatial context is still being investigated. A comprehensive assessment is required to analyse how the spatial aspects of the geophysical and social environments can influence human health under extreme weather, in order to develop a better community plan and health protocols for disaster preparedness.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

References

Hondula, D. M., Davis, R. E., Rocklöv, J., & Saha, M. V. (2013). A time series approach for evaluating intra-city heat-related mortality. J Epidemiol Community Health, 67(8), 707-712. DOI: https://doi.org/10.1136/jech-2012-202157

Onozuka, D., & Hagihara, A. (2017b). Spatiotemporal variations of extreme low temperature for emergency transport: a nationwide observational study. International journal of biometeorology, 61(6), 1081-1094. DOI: https://doi.org/10.1007/s00484-016-1288-7

Urban, A., Burkart, K., Kyselý, J., Schuster, C., Plavcová, E., Hanzlíková, H. & Lakes, T. (2016). Spatial patterns of heat-related cardiovascular mortality in the Czech Republic. International journal of environmental research and public health, 13(3), 284. DOI: https://doi.org/10.3390/ijerph13030284

Rey, G., Fouillet, A., Bessemoulin, P., Frayssinet, P., Dufour, A., Jougla, E., & Hémon, D. (2009). Heat exposure and socio-economic vulnerability as synergistic factors in heat-wave-related mortality. European journal of epidemiology, 24(9), 495-502. DOI: https://doi.org/10.1007/s10654-009-9374-3

Schuster, C., Burkart, K., & Lakes, T. (2014). Heat mortality in Berlin–Spatial variability at the neighborhood scale. Urban Climate, 10, 134-147. DOI: https://doi.org/10.1016/j.uclim.2014.10.008

Laaidi, K., Zeghnoun, A., Dousset, B., Bretin, P., Vandentorren, S., Giraudet, E., & Beaudeau, P. (2012). The impact of heat islands on mortality in Paris during the August 2003 heat wave. Environmental health perspectives, 120(2), 254-259. DOI: https://doi.org/10.1289/ehp.1103532

Johnson, D. P., & Wilson, J. S. (2009). The socio-spatial dynamics of extreme urban heat events: The case of heat-related deaths in Philadelphia. Applied Geography, 29(3), 419-434. DOI: https://doi.org/10.1016/j.apgeog.2008.11.004

Benmarhnia, T., Kihal-Talantikite, W., Ragettli, M. S., & Deguen, S. (2017). Small-area spatiotemporal analysis of heatwave impacts on elderly mortality in Paris: A cluster analysis approach. Science of the Total Environment, 592, 288-294. DOI: https://doi.org/10.1016/j.scitotenv.2017.03.102

Hondula, D. M., Davis, R. E., Leisten, M. J., Saha, M. V., Veazey, L. M., & Wegner, C. R. (2012). Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis. Environmental Health, 11(1), 16. DOI: https://doi.org/10.1186/1476-069X-11-16

Lee, M., Shi, L., Zanobetti, A., & Schwartz, J. D. (2016). Study on the association between ambient temperature and mortality using spatially resolved exposure data. Environmental research, 151, 610-617. DOI: https://doi.org/10.1016/j.envres.2016.08.029

Chien, L. C., Guo, Y., & Zhang, K. (2016). Spatiotemporal analysis of heat and heat wave effects on elderly mortality in Texas, 2006–2011. Science of the Total Environment, 562, 845-851. DOI: https://doi.org/10.1016/j.scitotenv.2016.04.042

Hondula, D. M., Davis, R. E., Saha, M. V., Wegner, C. R., & Veazey, L. M. (2015). Geographic dimensions of heat-related mortality in seven US cities. Environmental research, 138, 439-452. DOI: https://doi.org/10.1016/j.envres.2015.02.033

Onozuka, D., & Hagihara, A. (2017). Spatiotemporal variation in heat-related out-of-hospital cardiac arrest during the summer in Japan. Science of the Total Environment, 583, 401-407. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.081

Chau, P. H., Chan, K. C., & Woo, J. (2009). Hot weather warning might help to reduce elderly mortality in Hong Kong. International journal of biometeorology, 53(5), 461. DOI: https://doi.org/10.1007/s00484-009-0232-5

Ho, H. C., Lau, K. K. L., Ren, C., & Ng, E. (2017b). Characterizing prolonged heat effects on mortality in a sub-tropical high-density city, Hong Kong. International journal of biometeorology, 61(11), 1935-1944. DOI: https://doi.org/10.1007/s00484-017-1383-4

Bishop-Williams, K. E., Berke, O., Pearl, D. L., & Kelton, D. F. (2015). A spatial analysis of heat stress related emergency room visits in rural Southern Ontario during heat waves. BMC emergency medicine, 15(1), 17. DOI: https://doi.org/10.1186/s12873-015-0043-4

Bassil, K. L., Cole, D. C., Moineddin, R., Craig, A. M., Lou, W. W., Schwartz, B., & Rea, E. (2009). Temporal and spatial variation of heat-related illness using 911 medical dispatch data. Environmental research, 109(5), 600-606. DOI: https://doi.org/10.1016/j.envres.2009.03.011

Benmarhnia, T., Oulhote, Y., Petit, C., Lapostolle, A., Chauvin, P., Zmirou-Navier, D., & Deguen, S. (2014). Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality. Environmental Health, 13(1), 53. DOI: https://doi.org/10.1186/1476-069X-13-53

Willers, S. M., Jonker, M. F., Klok, L., Keuken, M. P., Odink, J., van den Elshout, S., ... & Burdorf, A. (2016). High resolution exposure modelling of heat and air pollution and the impact on mortality. Environment international, 89, 102-109. DOI: https://doi.org/10.1016/j.envint.2016.01.013

Pascal, M., Falq, G., Wagner, V., Chatignoux, E., Corso, M., Blanchard, M. & Larrieu, S. (2014). Short-term impacts of particulate matter (PM10, PM10–2.5, PM2. 5) on mortality in nine French cities. Atmospheric Environment, 95, 175-184. DOI: https://doi.org/10.1016/j.atmosenv.2014.06.030

Burkart, K., Meier, F., Schneider, A., Breitner, S., Canário, P., Alcoforado, M. J. & Endlicher, W. (2016). Modification of heat-related mortality in an elderly urban population by vegetation (urban green) and proximity to water (urban blue): evidence from Lisbon, Portugal. Environmental health perspectives, 124(7), 927-934. DOI: https://doi.org/10.1289/ehp.1409529

Rosenthal, J. K., Kinney, P. L., & Metzger, K. B. (2014). Intra-urban vulnerability to heat-related mortality in New York City, 1997–2006. Health & place, 30, 45-60. DOI: https://doi.org/10.1016/j.healthplace.2014.07.014

Hattis, D., Ogneva-Himmelberger, Y., & Ratick, S. (2012). The spatial variability of heat-related mortality in Massachusetts. Applied Geography, 33, 45-52. DOI: https://doi.org/10.1016/j.apgeog.2011.07.008

Qi, X., Hu, W., Mengersen, K., & Tong, S. (2014). Socio-environmental drivers and suicide in Australia: Bayesian spatial analysis. BMC public health, 14(1), 681. DOI: https://doi.org/10.1186/1471-2458-14-681

Hondula, D. M., & Barnett, A. G. (2014). Heat-related morbidity in Brisbane, Australia: spatial variation and area-level predictors. Environmental health perspectives, 122(8), 831. DOI: https://doi.org/10.1289/ehp.1307496

Chen, K., Huang, L., Zhou, L., Ma, Z., Bi, J., & Li, T. (2015). Spatial analysis of the effect of the 2010 heat wave on stroke mortality in Nanjing, China. Scientific reports, 5, 10816. DOI: https://doi.org/10.1038/srep10816

Ho, H. C., Knudby, A., Walker, B. B., & Henderson, S. B. (2017). Delineation of spatial variability in the temperature–mortality relationship on extremely hot days in greater Vancouver, Canada. Environmental health perspectives, 125(1), 66-75. DOI: https://doi.org/10.1289/EHP224

Vaneckova, P., Beggs, P. J., & Jacobson, C. R. (2010). Spatial analysis of heat-related mortality among the elderly between 1993 and 2004 in Sydney, Australia. Social science & medicine, 70(2), 293-304. DOI: https://doi.org/10.1016/j.socscimed.2009.09.058

Tsin, P. K., Knudby, A., Krayenhoff, E. S., Ho, H. C., Brauer, M., & Henderson, S. B. (2016). Microscale mobile monitoring of urban air temperature. Urban Climate, 18, 58-72. DOI: https://doi.org/10.1016/j.uclim.2016.10.001

Onozuka, D., & Hagihara, A. (2016). Spatial and temporal variation in emergency transport during periods of extreme heat in Japan: a nationwide study. Science of the Total Environment, 544, 220-229. DOI: https://doi.org/10.1016/j.scitotenv.2015.11.098

Ibrahim, J. E., Murphy, B. J., Bugeja, L., & Ranson, D. (2015). Nature and Extent of External‐Cause Deaths of Nursing Home Residents in Victoria, Australia. Journal of the American Geriatrics Society, 63(5), 954-962. DOI: https://doi.org/10.1111/jgs.13377

Rebholz, C. M., Gu, D., Yang, W., Chen, J., Wu, X., Huang, J. F. & Bazzano, L. A. (2011). Mortality from suicide and other external cause injuries in China: a prospective cohort study. BMC public health, 11(1), 56. DOI: https://doi.org/10.1186/1471-2458-11-56

Kim, E., Kim, H., Kim, Y. C., & Lee, J. P. (2018). Association between extreme temperature and kidney disease in South Korea, 2003–2013: Stratified by sex and age groups. Science of The Total Environment, 642, 800-808. DOI: https://doi.org/10.1016/j.scitotenv.2018.06.055

Ross, M. E., Vicedo-Cabrera, A. M., Kopp, R. E., Song, L., Goldfarb, D. S., Pulido, J., ... & Tasian, G. E. (2018). Assessment of the combination of temperature and relative humidity on kidney stone presentations. Environmental research, 162, 97-105. DOI: https://doi.org/10.1016/j.envres.2017.12.020

Chan, E. Y. Y., Goggins, W. B., Kim, J. J., & Griffiths, S. M. (2012). A study of intracity variation of temperature-related mortality and socioeconomic status among the Chinese population in Hong Kong. Journal of epidemiology and community health, 66(4), 322-327. DOI: https://doi.org/10.1136/jech.2008.085167

Eisenman, D. P., Wilhalme, H., Tseng, C. H., Chester, M., English, P., Pincetl, S. & Dhaliwal, S. K. (2016). Heat Death Associations with the built environment, social vulnerability and their interactions with rising temperature. Health & place, 41, 89-99. DOI: https://doi.org/10.1016/j.healthplace.2016.08.007

Thach, T. Q., Zheng, Q., Lai, P. C., Wong, P. P. Y., Chau, P. Y. K., Jahn, H. J., ... & Wong, C. M. (2015). Assessing spatial associations between thermal stress and mortality in Hong Kong: A small-area ecological study. Science of the Total Environment, 502, 666-672. DOI: https://doi.org/10.1016/j.scitotenv.2014.09.057

Wang, C., Zhang, Z., Zhou, M., Zhang, L., Yin, P., Ye, W., & Chen, Y. (2017). Nonlinear relationship between extreme temperature and mortality in different temperature zones: A systematic study of 122 communities across the mainland of China. Science of the Total Environment, 586, 96-106. DOI: https://doi.org/10.1016/j.scitotenv.2017.01.218

Heo, S., Lee, E., Kwon, B. Y., Lee, S., Jo, K. H., & Kim, J. (2016). Long-term changes in the heat–mortality relationship according to heterogeneous regional climate: a time-series study in South Korea. BMJ open, 6(8), e011786. DOI: https://doi.org/10.1136/bmjopen-2016-011786

Bayentin, L., El Adlouni, S., Ouarda, T. B., Gosselin, P., Doyon, B., & Chebana, F. (2010). Spatial variability of climate effects on ischemic heart disease hospitalization rates for the period 1989-2006 in Quebec, Canada. International journal of health geographics, 9(1), 5. DOI: https://doi.org/10.1186/1476-072X-9-5

Carmona, R., Díaz, J., Mirón, I. J., Ortiz, C., León, I., & Linares, C. (2016). Geographical variation in relative risks associated with cold waves in Spain: the need for a cold wave prevention plan. Environment international, 88, 103-111. DOI: https://doi.org/10.1016/j.envint.2015.12.027

Borden, K. A., & Cutter, S. L. (2008). Spatial patterns of natural hazards mortality in the United States. International journal of health geographics, 7(1), 64. DOI: https://doi.org/10.1186/1476-072X-7-64

Burke, M., Heft-Neal, S., & Bendavid, E. (2016). Sources of variation in under-5 mortality across sub-Saharan Africa: a spatial analysis. The Lancet Global Health, 4(12), e936-e945. DOI: https://doi.org/10.1016/S2214-109X(16)30212-1

Chen, K., Zhou, L., Chen, X., Ma, Z., Liu, Y., Huang, L. & Kinney, P. L. (2016). Urbanization level and vulnerability to heat-related mortality in Jiangsu Province, China. Environmental health perspectives, 124(12), 1863. DOI: https://doi.org/10.1289/EHP204

Guo, C., Du, Y., Shen, S. Q., Lao, X. Q., Qian, J., & Ou, C. Q. (2017). Spatiotemporal analysis of tuberculosis incidence and its associated factors in mainland China. Epidemiology & Infection, 145(12), 2510-2519. DOI: https://doi.org/10.1017/S0950268817001133

Harlan, S. L., Declet-Barreto, J. H., Stefanov, W. L., & Petitti, D. B. (2013). Neighborhood effects on heat deaths: social and environmental predictors of vulnerability in Maricopa County, Arizona. Environmental health perspectives, 121(2), 197-204. DOI: https://doi.org/10.1289/ehp.1104625

Jenerette, G. D., Harlan, S. L., Buyantuev, A., Stefanov, W. L., Declet-Barreto, J., Ruddell, B. L., ... & Li, X. (2016). Micro-scale urban surface temperatures are related to land-cover features and residential heat related health impacts in Phoenix, AZ USA. Landscape Ecology, 31(4), 745-760. DOI: https://doi.org/10.1007/s10980-015-0284-3

Johnson, D. P., Wilson, J. S., & Luber, G. C. (2009). Socioeconomic indicators of heat-related health risk supplemented with remotely sensed data. International Journal of Health Geographics, 8(1), 57. DOI: https://doi.org/10.1186/1476-072X-8-57

Saha, S., Brock, J. W., Vaidyanathan, A., Easterling, D. R., & Luber, G. (2015). Spatial variation in hyperthermia emergency department visits among those with employer-based insurance in the United States–a case-crossover analysis. Environmental Health, 14(1), 20. DOI: https://doi.org/10.1186/s12940-015-0005-z

Son, J. Y., Lane, K. J., Lee, J. T., & Bell, M. L. (2016). Urban vegetation and heat-related mortality in Seoul, Korea. Environmental research, 151, 728-733. DOI: https://doi.org/10.1016/j.envres.2016.09.001

Taylor, J., Wilkinson, P., Davies, M., Armstrong, B., Chalabi, Z., Mavrogianni, A. & Bohnenstengel, S. I. (2015). Mapping the effects of urban heat island, housing, and age on excess heat-related mortality in London. Urban Climate, 14, 517-528. DOI: https://doi.org/10.1016/j.uclim.2015.08.001

Uejio, C. K., Wilhelmi, O. V., Golden, J. S., Mills, D. M., Gulino, S. P., & Samenow, J. P. (2011). Intra-urban societal vulnerability to extreme heat: the role of heat exposure and the built environment, socioeconomics, and neighborhood stability. Health & Place, 17(2), 498-507. DOI: https://doi.org/10.1016/j.healthplace.2010.12.005

Urban, A., & Kyselý, J. (2018). Application of spatial synoptic classification in evaluating links between heat stress and cardiovascular mortality and morbidity in Prague, Czech Republic. International journal of biometeorology, 62(1), 85-96. DOI: https://doi.org/10.1007/s00484-015-1055-1

Vargo, J., Stone, B., Habeeb, D., Liu, P., & Russell, A. (2016). The social and spatial distribution of temperature-related health impacts from urban heat island reduction policies. Environmental Science & Policy, 66, 366-374. DOI: https://doi.org/10.1016/j.envsci.2016.08.012

Wu, P. C., Lin, C. Y., Lung, S. C., Guo, H. R., Chou, C. H., & Su, H. J. (2011). Cardiovascular mortality during heat and cold events: determinants of regional vulnerability in Taiwan. Occupational and environmental medicine, 68(7), 525-530. DOI: https://doi.org/10.1136/oem.2010.056168

Published
2020-06-22
Info
Issue
Section
Reviews
Keywords:
climate and health, spatial, socio-environmental, vulnerability, temperature extremes
Statistics
  • Abstract views: 467

  • PDF: 298
  • Appendix: 63
  • HTML: 0
How to Cite
Wong, M. S., Ho, H. C., & Tse, A. (2020). Geospatial context of social and environmental factors associated with health risk during temperature extremes: Review and discussion. Geospatial Health, 15(1). https://doi.org/10.4081/gh.2020.814