Spatial patterns of Plasmodium vivax transmission explored by multivariate auto-regressive state-space modelling - A case study in Baoshan Prefecture in southern China

Submitted: 9 March 2020
Accepted: 21 August 2020
Published: 12 March 2021
Abstract Views: 1463
PDF: 504
HTML: 18
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The transition from the control phase to elimination of malaria in China through the national malaria elimination programme has focussed attention on the need for improvement of the surveillance- response systems. It is now understood that routine passive surveillance is inadequate in the parasite elimination phase that requires supplementation by active surveillance in foci where cluster cases have occurred. This study aims to explore the spatial clusters and temporal trends of malaria cases by the multivariate auto-regressive state-space model (MARSS) along the border to Myanmar in southern China. Data for indigenous cases spanning the period from 2007 to 2010 were extracted from the China's Infectious Diseases Information Reporting Management System (IDIRMS). The best MARSS model indicated that malaria transmission in the study area during 36 months could be grouped into three clusters. The estimation of malaria transmission patterns showed a downward trend across all clusters. The proposed methodology used in this study offers a simple and rapid, yet effective way to categorize patterns of foci which provide assistance for active monitoring of malaria in the elimination phase.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Anwar MY, Lewnard JA, Parikh S, Pitzer VE, 2016. Time series analysis of malaria in Afghanistan: using ARIMA models to predict future trends in incidence. Malar J. 15:566. DOI: https://doi.org/10.1186/s12936-016-1602-1
Aryee G, Kwarteng E, Essuman R, Nkansa Agyei A, Kudzawu S, Djagbletey R, Owusu Darkwa E, Forson A, 2018. Estimating the incidence of tuberculosis cases reported at a tertiary hospital in Ghana: a time series model approach. BMC Public Health 18:1292. DOI: https://doi.org/10.1186/s12889-018-6221-z
Bartocci E, Lió P, 2016. Computational modeling, formal analysis, and tools for systems biology. PLoS Comput Biol 12:e1004591. DOI: https://doi.org/10.1371/journal.pcbi.1004591
Bivand R, Gómez-Rubio V, Rue H, 2015. Spatial data analysis with R-INLA with some extensions. J Stat Softw 63:1-31. DOI: https://doi.org/10.18637/jss.v063.i20
Costa AC, Codeço CT, Honório NA, Pereira GR, N Pinheiro CF, Nobre AA, 2015. Surveillance of dengue vectors using spatio-temporal Bayesian modeling. BMC Med Inform Decis Mak. 15:93. DOI: https://doi.org/10.1186/s12911-015-0219-6
Chen T, Zhang S, Zhou SS, Wang X, Luo C, Zeng X, Guo X, Lin Z, Tu H, Sun X, Zhou H, 2017. Receptivity to malaria in the China-Myanmar border in Yingjiang County, Yunnan Province, China. Malar J 16:478. DOI: https://doi.org/10.1186/s12936-017-2126-z
Cui L, Yan G, Sattabongkot J, Chen B, Cao Y, Fan Q, Parker D, Sirichaisinthop J, Su XZ, Yang H, Yang Z, Wang B, Zhou G, 2012. Challenges and prospects for malaria elimination in the Greater Mekong Subregion. Acta Trop 121:240-5. DOI: https://doi.org/10.1016/j.actatropica.2011.04.006
Dong X, 2000. [The malaria vectors and their ecology in Yunnan Province.] Chin J Parasit Dis Contr. [Article in Chinese]. Available from: http://en.cnki.com.cn/Article_en/CJFDTOTAL-ZISC200002032.htm
Feng X, Huang L, Lin L, Yang M, Ma Y, 2017. Genetic diversity and population structure of the primary malaria vector Anopheles sinensis (Diptera: Culicidae) in China inferred by cox1 gene. Parasit Vectors 10:75. Erratum in: Parasit Vectors 10:120. DOI: https://doi.org/10.1186/s13071-017-2013-z
Feng XY, Xia ZG, Vong S, Yang WZ, Zhou SS, 2014. Surveillance and response to drive the national malaria elimination program. Adv Parasitol 86:81-108. DOI: https://doi.org/10.1016/B978-0-12-800869-0.00004-4
Feng J, Zhang L, Huang F, Yin JH, Tu H, Xia ZG, Zhou SS, Xiao N, Zhou XN, 2018. Ready for malaria elimination: zero indigenous case reported in the People’s Republic of China. Malar J 17:315. DOI: https://doi.org/10.1186/s12936-018-2444-9
Garros C, Van Bortel W, Trung HD, Coosemans M, Manguin S, 2006. Review of the minimus complex of Anopheles, main malaria vector in Southeast Asia: from taxonomic issues to vector control strategies. Trop Med Int Health 11:102-14. DOI: https://doi.org/10.1111/j.1365-3156.2005.01536.x
Gosling RD, Whittaker M, Gueye CS, Fullman N, Baquilod M, Kusriastuti R, Feachem RG, 2012. Malaria elimination gaining ground in the Asia Pacific. Malar J 11:346. DOI: https://doi.org/10.1186/1475-2875-11-346
Hay SI, Smith DL, Snow RW, 2008. Measuring malaria endemicity from intense to interrupted transmission. Lancet Infect Dis 8:369-78. DOI: https://doi.org/10.1016/S1473-3099(08)70069-0
Hinrichsen RA, 2009. Population viability analysis for several populations using multivariate state-space models. Ecol Model 220:1197-202. DOI: https://doi.org/10.1016/j.ecolmodel.2009.02.014
Holmes EE, Ward EJ, Wills K, 2012. MARSS: Multivariate autoregressive state-space models for analyzing time-series data. R J 4:11-9. DOI: https://doi.org/10.32614/RJ-2012-002
Hu T, Liu YB, Zhang SS, Xia ZG, Zhou SS, Yan J, Cao J, Feng ZC, 2016. Shrinking the malaria map in China: measuring the progress of the National Malaria Elimination Programme. Infect Dis Poverty 5:52. DOI: https://doi.org/10.1186/s40249-016-0146-5
Koc EK, Bozdogan H, 2015. Model selection in multivariate adaptive regression splines (MARSS) using information complexity as the fitness function. Machine Learn 101:35-58. DOI: https://doi.org/10.1007/s10994-014-5440-5
Liu H, Huang K, Liu S, Sun H, Lin K, Huang X, Chu J, Yang Z, 2016. Gene frequency and haplotype distribution of hemoglobin E among seven minority groups of Yunnan, China. Am J Hum Biol 28:927-31. DOI: https://doi.org/10.1002/ajhb.22868
Li BF, Lin YX, Guo XR, Chen LF, Zhou DL, Yu GC, Zou J, Sun XD, 2015. [Survey on malaria epidemics in China-Myanmar border area]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 33:261-3 [Article in Chinese].
Li JQ, Yang HX, 2015. [Analysis of time distribution of malaria incidence in Baoshan City during 1990-2014.] Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 33:309-11 [Article in Chinese].
Li S, Yin S, Wang J, Li X, Feng J, 2016. Shifting from control to elimination: analysis of malaria epidemiological characteristics in Tengchong County around China-Myanmar border, 2005-2014. Malar J 15:45. DOI: https://doi.org/10.1186/s12936-016-1089-9
Ministry of Health, China (MoH), 2010. National Malaria Elimination Action Plan. Beijing, China. Available from: http://www.nhc.gov.cn/zwgk/wtwj/201304/15a4cc7a40b0452191fe409590ca99d8.shtml
Reiner RC, Le Menach A, Kunene S, Ntshalintshali N, Hsiang MS, Perkins TA, Greenhouse B, Tatem AJ, Cohen JM, Smith DL, 2015. Mapping residual transmission for malaria elimination. Elife. 4:e09520. DOI: https://doi.org/10.7554/eLife.09520
Royston JP, 1982. An extension of Shapiro and Wilk’s W test for normality to large samples. J Roy Stat Soc Series C (Appl Stat) 31:115-24. DOI: https://doi.org/10.2307/2347973
Shi B, Liu J, Zhou XN, Yang GJ, 2014. Inferring Plasmodium vivax transmission networks from tempo-spatial surveillance data. PLoS Negl Trop Dis 8:e2682. DOI: https://doi.org/10.1371/journal.pntd.0002682
Shi B, Tan Q, Zhou XN, Liu J, 2015. Mining geographic variations of Plasmodium vivax for active surveillance: a case study in China. Malar J 14:216. DOI: https://doi.org/10.1186/s12936-015-0719-y
Shi B, Zheng J, Qiu H, Yang GJ, Xia S, Zhou XN, 2017. Risk assessment of malaria transmission at the border area of China and Myanmar. Infect Dis Poverty 6:108. DOI: https://doi.org/10.1186/s40249-017-0322-2
Stoddard ST, Morrison AC, Vazquez-Prokopec GM, Paz Soldan V, Kochel TJ, Kitron U, Elder JP, Scott TW, 2009. The role of human movement in the transmission of vector-borne pathogens. PLoS Negl Trop Dis 3:e481. DOI: https://doi.org/10.1371/journal.pntd.0000481
Tolimieri N, Holmes EE, Williams GD, Pacunski R, Lowry D, 2017. Population assessment using multivariate time-series analysis: A case study of rockfishes in Puget Sound. Ecol Evol 7:2846-60. DOI: https://doi.org/10.1002/ece3.2901
Valle D, Clark J, 2013. Improving the modeling of disease data from the government surveillance system: a case study on malaria in the Brazilian Amazon. PLoS Comput Biol 9:e1003312. DOI: https://doi.org/10.1371/journal.pcbi.1003312
Wang D, He F, Maslov S, Gerstein M, 2016a. DREISS: using state-space models to infer the dynamics of gene expression driven by external and internal regulatory networks. PLoS Comput Biol 12:e1005146. DOI: https://doi.org/10.1371/journal.pcbi.1005146
Wang D, Li S, Cheng Z, Xiao N, Cotter C, Hwang J, Li X, Yin S, Wang J, Bai L, Zheng Z, Wang S, 2015a. Transmission risk from imported plasmodium vivax malaria in the China-Myanmar border region. Emerg Infect Dis 21:1861-4. DOI: https://doi.org/10.3201/eid2110.150679
Wang X, Yang L, Jiang T, Zhang B, Wang S, Wu X, Wang T, Li Y, Liu M, Peng Q, Zhang W, 2016b. Effects of a malaria elimination program: a retrospective study of 623 cases from 2008 to 2013 in a Chinese county hospital near the China--Myanmar border. Emerg Microbes Infect 5:e6. DOI: https://doi.org/10.1038/emi.2016.6
Wang JZ, Yin SQ, Li SG, Li XS, Cai WB, Feng J, 2016c. [Evaluation of measures and achievements of malaria control in Tengchong City, Yunnan Province during 2010-2015.] Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 34:435-8 [Article in Chinese].
Wang RB, Zhang QF, Zheng B, Xia ZG, Zhou SS, Tang LH, Gao Q, Wang LY, Wang RR, 2014. Transition from control to elimination: impact of the 10-year global fund project on malaria control and elimination in China. Adv Parasitol 86:289-318. DOI: https://doi.org/10.1016/B978-0-12-800869-0.00011-1
Wang Y, Zhong D, Cui L, Lee MC, Yang Z, Yan G, Zhou G, 2015b. Population dynamics and community structure of Anopheles mosquitoes along the China-Myanmar border. Parasit Vectors 8:445. DOI: https://doi.org/10.1186/s13071-015-1057-1
Wangdi K, Singhasivanon P, Silawan T, Lawpoolsri S, White NJ, Kaewkungwal J, 2010. Development of temporal modelling for forecasting and prediction of malaria infections using time-series and ARIMAX analyses: a case study in endemic districts of Bhutan. Malar J 9:251. DOI: https://doi.org/10.1186/1475-2875-9-251
Ward EJ, Chirakkal H, Gonzalezsuarez M, Auriolesgamboa D, Holmes EE, Gerber LR, 2010. Inferring spatial structure from time-series data: using multivariate state-space models to detect metapopulation structure of California sea lions in the Gulf of California, Mexico. J Appl Ecol 47:47-56. DOI: https://doi.org/10.1111/j.1365-2664.2009.01745.x
Whittaker MA, Dean AJ, Chancellor A, 2014. Advocating for malaria elimination - learning from the successes of other infectious disease elimination programmes. Malar J 13:221. DOI: https://doi.org/10.1186/1475-2875-13-221
World Health Organization (WHO), 2019. Malaria. Available from: http://www.who.int/mediacentre/factsheets/fs094/en/
Xu JW, Li JJ, Guo HP, Pu SW, Li SM, Wang RH, Liu H, Wang WJ, 2017. Malaria from hyperendemicity to elimination in Hekou County on China-Vietnam border: an ecological study. Malar J 16:66. DOI: https://doi.org/10.1186/s12936-017-1709-z
Xu JW, Li Y, Yang HL, Zhang J, Zhang ZX, Yang YM, Zhou HN, Havumaki J, Li HX, Liu H, Zhou H, Xie XY, Dong JX, Zhang Y, Sun XY, Li B, Li JY, Tian YH, Wang PY, Li BF, 2016. Malaria control along China-Myanmar Border during 2007-2013: an integrated impact evaluation. Infect Dis Poverty 5:75. DOI: https://doi.org/10.1186/s40249-016-0171-4
Xu JW, Liu H, 2016. The relationship of malaria between Chinese side and Myanmar’s five special regions along China-Myanmar border: a linear regression analysis. Malar J 15:368. DOI: https://doi.org/10.1186/s12936-016-1413-4
Yin JH, Zhou SS, Xia ZG, Wang RB, Qian YJ, Yang WZ, Zhou XN, 2014. Historical patterns of malaria transmission in China. Adv Parasitol 86:1-19. DOI: https://doi.org/10.1016/B978-0-12-800869-0.00001-9
Yu G, Yan G, Zhang N, Zhong D, Wang Y, He Z, Yan Z, Fu W, Yang F, Chen B, 2013. The Anopheles community and the role of Anopheles minimus on malaria transmission on the China-Myanmar border. Parasit Vectors 6:264. DOI: https://doi.org/10.1186/1756-3305-6-264
Zhang S, Guo S, Feng X, Afelt A, Frutos R, Zhou S, 2017. Manguin S. Anopheles vectors in mainland China while approaching malaria elimination. Trends Parasitol 33:889-900. DOI: https://doi.org/10.1016/j.pt.2017.06.010
Zhang Q, Sun J, Zhang Z, Geng Q, Lai S, Hu W, Clements AC, Li Z, 2016. Risk assessment of malaria in land border regions of China in the context of malaria elimination. Malar J 15:546. DOI: https://doi.org/10.1186/s12936-016-1590-1
Zhang SS, Zhou SS, Zhou ZB, Chen TM, Wang XZ, Shi WQ, Jiang WK, Li JL, Zhou XN, Frutos R, Manguin S, Afelt A, 2018. Monitoring of malaria vectors at the China-Myanmar border while approaching malaria elimination. Parasit Vectors 11:511. DOI: https://doi.org/10.1186/s13071-018-3073-4
Zhou P, Wang D, Hwang J, Bennett A, Sturrock HJ, Ma A, Huang J, Xia Z, Feng X, Wang J, 2015a. Spatial-temporal variation and primary ecological drivers of Anopheles sinensis human biting rates in malaria epidemic-prone regions of China. PLoS One 10:e0116932. DOI: https://doi.org/10.1371/journal.pone.0116932
Zhou SS, Wang Y, Li Y, 2011. [Malaria situation in the People’s Republic of China in 2010.] Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 29:401-3. [Article in Chinese].
Zhou SS, Zhang SS, Zhang L, Rietveld AE, Ramsay AR, Zachariah R, Bissell K, Van den Bergh R, Xia ZG, Zhou XN, Cibulskis RE, 2015b. China’s 1-3-7 surveillance and response strategy for malaria elimination: Is case reporting, investigation and foci response happening according to plan? Infect Dis Poverty 4:55. DOI: https://doi.org/10.1186/s40249-015-0089-2

How to Cite

Zheng, J., Shi, B., Xia, S., Yang, G., & Zhou, X.-N. (2021). Spatial patterns of <em>Plasmodium vivax</em> transmission explored by multivariate auto-regressive state-space modelling - A case study in Baoshan Prefecture in southern China. Geospatial Health, 16(1). https://doi.org/10.4081/gh.2021.879