Spatiotemporal analysis of hand, foot and mouth disease data using time-lag geographically-weighted regression
Accepted: 19 August 2020
HTML: 24
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Hand, Foot, and Mouth Disease (HFMD) is a common and widespread infectious disease. Previous studies have presented evidence that climate factors, including the monthly averages of temperature, relative humidity, air pressure, wind speed and Cumulative Risk (CR) all have a strong influence on the transmission of HFMD. In this paper, the monthly time-lag geographically- weighted regression model was constructed to investigate the spatiotemporal variations of effect of climate factors on HFMD occurrence in Inner Mongolia Autonomous Region, China. From the spatial and temporal perspectives, the spatial and temporal variations of effect of climate factors on HFMD incidence are described respectively. The results indicate that the effect of climate factors on HFMD incidence shows very different spatial patterns and time trends. The findings may provide not only an indepth understanding of spatiotemporal variation patterns of the effect of climate factors on HFMD occurrence, but also provide helpful evidence for making measures of HFMD prevention and control and implementing appropriate public health interventions at the county level in different seasons.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.