Multiple testing in disease mapping and descriptive epidemiology

Submitted: 22 December 2014
Accepted: 22 December 2014
Published: 1 May 2010
Abstract Views: 1254
PDF: 799
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The problem of multiple testing is rarely addressed in disease mapping or descriptive epidemiology. This issue is relevant when a large number of small areas or diseases are analysed. Control of the family wise error rate (FWER), for example via the Bonferroni correction, is avoided because it leads to loss of statistical power. To overcome such difficulties, control of the false discovery rate (FDR), the expected proportion of false rejections among all rejected hypotheses, was proposed in the context of clinical trials and genomic data analysis. FDR has a Bayesian interpretation and it is the basis of the so called q-value, the Bayesian counterpart of the p-value. In the present work, we address the multiplicity problem in disease mapping and show the performance of the FDR approach with two real examples and a small simulation study. The examples consider testing multiple diseases for a given area or multiple areas for a given disease. Using unadjusted p-values for multiple testing, an inappropriately large number of areas or diseases at altered risk are identified, whilst FDR procedures are appropriate and more powerful than the control of the FWER with the Bonferroni correction. We conclude that the FDR approach is adequate to screen for high/low risk areas or for disease excess/deficit and useful as a complementary procedure to point estimates and confidence intervals.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

How to Cite

Catelan, D., & Biggeri, A. (2010). Multiple testing in disease mapping and descriptive epidemiology. Geospatial Health, 4(2), 219–229. https://doi.org/10.4081/gh.2010.202