Geospatial tools and data for health service delivery: opportunities and challenges across the disaster management cycle
Accepted: 4 October 2024
Supplementary Materials: 126
HTML: 75
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
As extreme weather events increase in frequency and intensity, the health system faces significant challenges, not only from shifting patterns of climate-sensitive diseases but also from disruptions to healthcare infrastructure, supply chains and the physical systems essential for delivering care. This necessitates the strategic use of geospatial tools to guide the delivery of healthcare services and make evidence-informed priorities, especially in contexts with scarce human and financial resources. In this article, we highlight several published papers that have been used throughout the phases of the disaster management cycle in relation to health service delivery. We complement the findings from these publications with a rapid scoping review to present the body of knowledge for using spatial methods for health service delivery in the context of disasters. The main aim of this article is to demonstrate the benefits and discuss the challenges associated with the use of geospatial methods throughout the disaster management cycle. Our scoping review identified 48 articles employing geospatial techniques in the disaster management cycle. Most of them focused on geospatial tools employed for preparedness, anticipatory action and mitigation, particularly for targeted health service delivery. We note that while geospatial data analytics are effectively deployed throughout the different phases of disaster management, important challenges remain, such as ensuring timely availability of geospatial data during disasters, developing standardized and structured data formats, securing pre-disaster data for disaster preparedness, addressing gaps in health incidence data, reducing underreporting of cases and overcoming limitations in spatial and temporal coverage and granularity. Overall, existing and novel geospatial methods can bridge specific evidence gaps in all phases of the disaster management cycle. Improvement and ‘operationalization’ of these methods can provide opportunities for more evidence-informed decision making in responding to health crises during climate change.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.