Global Mpox spread due to increased air travel

Submitted: 3 January 2024
Accepted: 4 March 2024
Published: 11 June 2024
Abstract Views: 315
PDF: 116
HTML: 0
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Mpox is an emerging, infectious disease that has caused outbreaks in at least 91 countries from May to August 2022. We assessed the link between international air travel patterns and Mpox transmission risk, and the relationship between the translocation of Mpox and human mobility dynamics after travel restrictions due to the COVID-19 pandemic had been lifted. Our three novel observations were that: i) more people traveled internationally after the removal of travel restrictions in the summer of 2022 compared to pre-pandemic levels; ii) countries with a high concentration of global air travel have the most recorded Mpox cases; and iii) Mpox transmission includes a number of previously nonendemic regions. These results suggest that international airports should be a primary location for monitoring the risk of emerging communicable diseases. Findings highlight the need for global collaboration concerning proactive measures emphasizing realtime surveillance.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Baker RE, Mahmud AS, Miller IF, Rajeev M, Rasambainarivo F, Rice BL, Takahashi S, Tatem AJ, Wagner CE, Wang LF, Wesolowski A, 2022. Infectious disease in an era of global change. Nat Rev Microbiol 20:193-205. DOI: https://doi.org/10.1038/s41579-021-00639-z
Betancort-Plata C, Lopez-Delgado L, Jaén-Sanchez N, Tosco-Nuñez T, Suarez-Hormiga L, Lavilla-Salgado C, Pisos-Álamo E, Hernández-Betancor A, Hernández-Cabrera M, Carranza-Rodríguez C, Briega-Molina M, Pérez-Arellano JL, 2022. Monkeypox and HIV in the Canary islands: A different pattern in a mobile population. Trop Med Infect Dis 7:318. DOI: https://doi.org/10.3390/tropicalmed7100318
Bhatia S, Lassmann B, Cohn E, Desai AN, Carrion M, Kraemer MUG, Herringer M, Brownstein J, Madoff L, Cori A, Nouvellet P, 2021. Using digital surveillance tools for near real-time mapping of the risk of infectious disease spread. NPJ Digit Med 4:73. DOI: https://doi.org/10.1038/s41746-021-00442-3
Brockmann D, Helbing D, 2013. The hidden geometry of complex, network-driven contagion phenomena. Science 342:1337-42. DOI: https://doi.org/10.1126/science.1245200
Bunge EM, Hoet B, Chen L, Lienert F, Weidenthaler H, Baer LR, Steffen R, 2022. The changing epidemiology of human monkeypox - a potential threat? A systematic review. PLoS Negl Trop Dis 16:e0010141. DOI: https://doi.org/10.1371/journal.pntd.0010141
Burki T, 2022. Investigating monkeypox. Lancet 399:2254-5. DOI: https://doi.org/10.1016/S0140-6736(22)01096-0
Chang MC, Kahn R, Li YA, Lee CS, Buckee CO, Chang HH, 2021. Variation in human mobility and its impact on the risk of future COVID-19 outbreaks in Taiwan. BMC Public Health 21:226. DOI: https://doi.org/10.1186/s12889-021-10260-7
Chevallier R, Shapiro M, Engberg Z, Soler M, Delahaye D, 2023. Linear contrails detection, tracking and matching with aircraft using geostationary satellite and air traffic data. Aerospace 10:578. DOI: https://doi.org/10.3390/aerospace10070578
Cui X, Du B, Feng J, Feng Y, Cui J, Yan C, Zhao H, Gan L, Fan Z, Fu T, Xu Z, Zhang R, Du S, Zhou Y, Tian Z, Zhang Q, Fu H, Xue G, Yuan J, 2023. Rapid detection of Mpox virus using recombinase aided amplification assay. Front Cell Infect Microbiol 13:1008783. DOI: https://doi.org/10.3389/fcimb.2023.1008783
Damaso CR, 2023. Phasing out monkeypox: Mpox is the new name for an old disease. Lancet Reg Health Am 17:100424. DOI: https://doi.org/10.1016/j.lana.2022.100424
Del Valle SY, McMahon BH, Asher J, Hatchett R, Lega JC, Brown HE, Leany ME, Pantazis Y, Roberts DJ, Moore S, Peterson AT, 2018. Summary results of the 2014-2015 DARPA Chikungunya challenge. BMC Infect Dis 18:245. DOI: https://doi.org/10.1186/s12879-018-3124-7
Escobar LE, Qiao H, Peterson AT, 2016. Forecasting Chikungunya spread in the Americas via data-driven empirical approaches. Parasit Vectors 9:112. DOI: https://doi.org/10.1186/s13071-016-1403-y
European Center for Disease Control and Prevention, 2018. Rapid risk assessment: monkeypox cases in the UK imported by travellers returning from Nigeria. Available from: https://ecdc.europa.eu/en/publications-data/rapid-risk-assessment-monkeypox-cases-uk-imported-travellers-returning-nigeria/. Accessed on: 22/08/2023.
Falendysz EA, Lopera JG, Doty JB, Nakazawa Y, Crill C, Lorenzsonn F, Kalemba LN, Ronderos MD, Mejia A, Malekani JM, Karem K, Carroll DS, Osorio JE, Rocke TE, 2017. Characterization of Monkeypox virus infection in African rope squirrels (Funisciurus sp.). PLoS Negl Trop Dis 11:e0005809. DOI: https://doi.org/10.1371/journal.pntd.0005809
Glidden CK, Nova N, Kain MP, Lagerstrom KM, Skinner EB, Mandle L, Sokolow SH, Plowright RK, Dirzo R, De Leo GA, Mordecai EA, 2021. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr Biol 31:R1342-61. DOI: https://doi.org/10.1016/j.cub.2021.08.070
González-Val R, Marcén M, 2022. Mass gathering events and the spread of infectious diseases: evidence from the early growth phase of COVID-19. Econ Hum Biol 46:101140. DOI: https://doi.org/10.1016/j.ehb.2022.101140
Grépin KA, Ho TL, Liu Z, Marion S, Piper J, Worsnop CZ, Lee K, 2021. Evidence of the effectiveness of travel-related measures during the early phase of the COVID-19 pandemic: a rapid systematic review. BMJ Glob Health 6:e004537. DOI: https://doi.org/10.1136/bmjgh-2020-004537
Guarner J, Rio C del, Malani PN, 2022. Monkeypox in 2022 - what clinicians need to know. JAMA 328:139-40. DOI: https://doi.org/10.1001/jama.2022.10802
Han BA, O’Regan SM, Schmidt JP, Drake JM, 2020. Integrating data mining and transmission theory in the ecology of infectious diseases. Ecol Lett 23:1178-88. DOI: https://doi.org/10.1111/ele.13520
Henderson DA, Moss B. Smallpox and Vaccinia. In: Plotkin SA, Orenstein WA, editors. Vaccines. 3rd edition. Philadelphia: Saunders; 1999. Chapter 6. Available from: https://www.ncbi.nlm.nih.gov/books/NBK7294/
Hijmans R, Van Etten J, 2021. Raster: geographic analysis and modeling with raster data, R package version 2.3-0 ed. Available from: http://cran.r-project.org/web/packages/raster/. Accessed on: 1/08/2023.
Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P, 2008. Global trends in emerging infectious diseases. Nature 451:990-3. DOI: https://doi.org/10.1038/nature06536
Kading RC, Golnar AJ, Hamer SA, Hamer GL, 2018. Advanced surveillance and preparedness to meet a new era of invasive vectors and emerging vector-borne diseases. PLoS Negl Trop Dis 12:e0006761. DOI: https://doi.org/10.1371/journal.pntd.0006761
Kazda A, Badanik B, Serrano F, 2022. Pandemic vs. post-pandemic airport operations: hard impact, slow recovery. Aerospace 9:810. DOI: https://doi.org/10.3390/aerospace9120810
Kinoshita R, Sassa M, Otake S, Yoshimatsu F, Shi S, Ueno R, Suzuki M, Yoneoka D, 2023. Impact of airline network on the global importation risk of Mpox, 2022. Epidemiol Infect 151:e60. DOI: https://doi.org/10.1017/S0950268823000456
Kozlov M, 2022. Monkeypox outbreaks: 4 key questions researchers have. Nature 606:238-9. DOI: https://doi.org/10.1038/d41586-022-01493-6
Kraemer MUG, Tegally H, Pigott DM, Dasgupta A, Sheldon J, Wilkinson E, Schultheiss M, Han A, Oglia M, Marks S, Kanner J, O’Brien K, Dandamudi S, Rader B, Sewalk K, Bento AI, Scarpino SV, Oliveira T de, Bogoch II, Katz R, Brownstein JS, 2022. Tracking the 2022 monkeypox outbreak with epidemiological data in real-time. Lancet Infect Dis 22:941-2. DOI: https://doi.org/10.1016/S1473-3099(22)00359-0
Li K, Yuan Y, Jiang L, Liu Y, Liu Y, Zhang L, 2023. Animal host range of mpox virus. J Med Virol 95:e28513. DOI: https://doi.org/10.1002/jmv.28513
Luques MN, Oliveira RL, Hir S, dos Santos Nunes D, Higa LM, Mendonça AF, Pereira LA,Sousa F, Castiñeiras TM, Tanuri A, Damaso CR, 2023. Co-circulation of vaccinia and monkeypox viruses in rural areas of Brazil: importance of differential molecular diagnosis. Travel Med Infect Dis 53:102578. DOI: https://doi.org/10.1016/j.tmaid.2023.102578
Meier BM, Bueno de Mesquita J, Burci GL, Chirwa D, Dagron S, Eccleston-Turner M, Forman L, Gostin LO, Habibi R, Negri S, Phelan A, Sekalala S, Taylor A, Villarreal PA, Yamin AE, Hoffman SJ, 2022. Travel restrictions and variants of concern: global health laws need to reflect evidence. Bull World Health Organ 100:178-178A. DOI: https://doi.org/10.2471/BLT.21.287735
Pebesma E, 2018. Simple features for R: standardized support for spatial vector data. R J 10:439-46. DOI: https://doi.org/10.32614/RJ-2018-009
Pliakos EE, Andreatos N, Shehadeh F, Ziakas PD, Mylonakis E, 2018. The cost-effectiveness of rapid diagnostic testing for the diagnosis of bloodstream infections with or without antimicrobial stewardship. Clin Microbiol Rev 31:e00095-17. DOI: https://doi.org/10.1128/CMR.00095-17
R Core Team, 2021. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available from: https://www.R-project.org
Schafer M, Strohmeier M, Lenders V, Martinovic I, Wilhelm M, 2014. Bringing up OpenSky: a large-scale ADS-B sensor network for research. In: Proceedings of the 13th International Symposium on Information Processing in Sensor Networks, Berlin, Germany, 2014, pp. 83-94. DOI: https://doi.org/10.1109/IPSN.2014.6846743
Seang S, Burrel S, Todesco E, Leducq V, Monsel G, Le Pluart D, Cordevant C, Pourcher V, Palich R, 2022. Evidence of human-to-dog transmission of monkeypox virus. Lancet 400:658-9. DOI: https://doi.org/10.1016/S0140-6736(22)01487-8
Shi S, Tanaka S, Ueno R, Gilmour S, Tanoue Y, Kawashima T, Nomura S, Eguchi A, Miyata H, Yoneoka D, 2020. Travel restrictions and SARS-CoV-2 transmission: an effective distance approach to estimate impact. Bull World Health Organ 98:518-29. DOI: https://doi.org/10.2471/BLT.20.255679
Simpson K, Heymann D, Brown CS, Edmunds WJ, Elsgaard J, Fine P, Hochrein H, Hoff NA, Green A, Ihekweazu C, Jones TC, Lule S, Maclennan J, McCollum A, Mühlemann B, Nightingale E, Ogoina D, Ogunleye A, Petersen B, Powell J, Quantick O, Rimoin A, Ulaeato D, Wapling A, 2020. Human monkeypox - after 40 years, an unintended consequence of smallpox eradication. Vaccine 38:5077-81. DOI: https://doi.org/10.1016/j.vaccine.2020.04.062
Sott MK, Bender MS, da Silva Baum K, 2022. COVID-19 outbreak in Brazil: health, social, political, and economic implications. Int J Health Serv 52:442-54. DOI: https://doi.org/10.1177/00207314221122658
Thornhill JP, Barkati S, Walmsley S, Rockstroh J, Antinori A, Harrison LB, Palich R, Nori A, Reeves I, Habibi MS, Apea V, Boesecke C, Vandekerckhove L, Yakubovsky M, Sendagorta E, Blanco JL, Florence E, Moschese D, Maltez FM, Goorhuis A, Pourcher V, Migaud P, Noe S, Pintado C, Maggi F, Hansen A-BE, Hoffmann C, Lezama JI, Mussini C, Cattelan AM, Makofane K, Tan D, Nozza S, Nemeth J, Klein MB,Orkin CM, 2022. Monkeypox virus infection in humans across 16 countries - April-June 2022. N Engl J Med 387:679-91. DOI: https://doi.org/10.1056/NEJMoa2207323
Vaughan A, Aarons E, Astbury J, Brooks T, Chand M, Flegg P, Hardman A, Harper N, Jarvis R, Mawdsley S, McGivern M, Morgan D, Morris G, Nixon G, O’Connor C, Palmer R, Phin N, Price DA, Russell K, Said B, Schmid ML, Vivancos R, Walsh A, Welfare W, Wilburn J, Dunning J, 2020. Human-to-human transmission of monkeypox virus, United Kingdom, October 2018. Emerg Infect Dis 26:782-5. DOI: https://doi.org/10.3201/eid2604.191164
UNDESA, 2022. World population prospects. Available from: http://population.un.org/wpp. Accessed on: 16/05/2023.
World Health Organization, 2022. Monkeypox - United Kingdom of Great Britain and Northern Ireland. Available from: https://www.who.int/emergencies/disease-outbreak-news/item/2022-DON383/. Accessed on: 1/08/2023.

How to Cite

Qiao, H., Paansri, P., & Escobar, L. E. (2024). Global Mpox spread due to increased air travel. Geospatial Health, 19(1). https://doi.org/10.4081/gh.2024.1261