Spatial-temporal risk factors in the occurrence of rabies in Mexico

Submitted: 17 October 2023
Accepted: 21 December 2023
Published: 30 January 2024
Abstract Views: 3137
PDF: 813
HTML: 463
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Rabies is a zoonotic disease that affects livestock worldwide. The distribution of rabies is highly correlated with the distribution of the vampire bat Desmodus rotundus, the main vector of the disease. In this study, climatic, topographic, livestock population, vampire distribution and urban and rural zones were used to estimate the risk for presentation of cases of rabies in Mexico by co- Kriging interpolation. The highest risk for the presentation of cases is in the endemic areas of the disease, i.e. the States of Yucatán, Chiapas, Campeche, Quintana Roo, Tabasco, Veracruz, San Luis Potosí, Nayarit and Baja California Sur. A transition zone for cases was identified across northern Mexico, involving the States of Sonora, Sinaloa, Chihuahua, and Durango. The variables topography, vampire distribution, bovine population and rural zones are the most important to explain the risk of cases in livestock. This study provides robust estimates of risk and spread of rabies based on geostatistical methods. The information presented should be useful for authorities responsible of public and animal health when they plan and establish strategies preventing the spread of rabies into rabies-free regions of México.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Acha PN, Alba AM, 1988. Economic losses due to Desmodus rotundus. In Natural history of vampire bats, CRC Press 1st Edition 1988, pp. 207-214. DOI: https://doi.org/10.1201/9781351074919-14
Agyeman PC, Kingsley JOHN, Kebonye NM, Ofori S, Borůvka L, Vašát R, Kočárek M, 2022. Ecological risk source distribution, uncertainty analysis, and application of geographically weighted regression cokriging for prediction of potentially toxic elements in agricultural soils. Process Saf Environ Prot 164:729-46. DOI: https://doi.org/10.1016/j.psep.2022.06.051
Anderson A, Shwiff S, Gebhardt K, Ramírez AJ, Shwiff S, Kohler D, Lecuona L, 2014. Economic Evaluation of Vampire Bat (Desmodus rotundus) Rabies Prevention in Mexico. Transbound Emerg Dis 61:140-6. DOI: https://doi.org/10.1111/tbed.12007
Aréchiga-Ceballos N, Velasco-Villa A, Shi M, Flores-Chávez S, Barrón B, Cuevas-Domínguez E, Aguilar-Setién A, 2010. New rabies virus variant found during an epizootic in white-nosed coatis from the Yucatan Peninsula. Epidemiol Infect 138:1586-9. DOI: https://doi.org/10.1017/S0950268810000762
Aréchiga-Ceballos N, Puebla Rodríguez P, Aguilar Setién Á, 2022. The New Face of Human Rabies in Mexico, What's Next After Eradicating Rabies in Dogs. Vector Borne Zoonotic Dis:22:2, 69-75. DOI: https://doi.org/10.1089/vbz.2021.0051
Baffoe-Twum E, Asa E, Awuku B, 2022. Estimating annual average daily traffic (AADT) data on low-volume roads with the cokriging technique and census/population data. Emerald Group Publ Ltd Bingley 4:20. DOI: https://doi.org/10.35241/emeraldopenres.14632.1
Bárcenas-Reyes I, Loza-Rubio E, Zendejas-Martínez H, Luna-Soria H, Canto-Alarcón GJ, Milian-Suazo F, 2015. Epidemiological trends in bovine paralytic rabies in central Mexico, 2001-2013. Rev Panam Salud Publica 38:396-403.
Bárcenas-Reyes I, Loza-Rubio E, Cantó-Alarcón GJ, Luna-Cozar J, Enríquez-Vázquez A, Barrón-Rodríguez RJ, Milián-Suazo F, 2017. Whole genome sequence phylogenetic analysis of four Mexican rabies viruses isolated from cattle. Res Vet Sci 113:21-4. DOI: https://doi.org/10.1016/j.rvsc.2017.08.004
Bárcenas-Reyes I, Nieves-Martínez DP, Cuador-Gil JQ, Loza-Rubio E, González-Ruiz S, Cantó-Alarcón GJ, Milián-Suazo F, 2019. Spatiotemporal analysis of rabies in cattle in central Mexico. Geospat Health 14:2. DOI: https://doi.org/10.4081/gh.2019.805
Becker DJ, Czirják GÁ, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Streicker DG, 2018. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philosophical Transactions of the Royal Society B: Biol Sci 373:20170089. DOI: https://doi.org/10.1098/rstb.2017.0089
Benavides JA, Valderrama W, Recuenco S, Uieda W, Suzán G, Avila-Flores R, Streicker DG, 2020. Defining new pathways to manage the ongoing emergence of bat rabies in Latin America. Viruses 12:1002. DOI: https://doi.org/10.3390/v12091002
Bouslama Z, Belkhiria JA, Turki I, Kharmachi H, 2020. Spatio-temporal evolution of canine rabies in Tunisia, 2011–2016. Prev Vet Med 185:105-95. DOI: https://doi.org/10.1016/j.prevetmed.2020.105195
Brito-Hoyos DM, 2013. Geographic distribution of wild rabies risk and evaluation of the factors associated with its incidence in Colombia, 1982-2010. Rev Panam Salud Publica 33:8-14. DOI: https://doi.org/10.1590/S1020-49892013000100002
Castellanos YDL, Cuador-Gil JQ, Carmona AD, 2019. Estimación de los recursos de cobalto del yacimiento hierro Mantua, Pinar del Río. INFOMIN 11.
Benito CÁ, 2012. Modelización geoestadística para la predicción de actividad de Cs en suelo. Diss Universidad Autónoma de Madrid.
CENAPRECE, 2018. Rabia canina. Accessed July 2022. Available from: http://www.cenaprece.salud.gob.mx/programas/interior/zoonosis/situacion_casos_rabia.html
Chen S, 2022. Spatial and temporal dynamic analysis of rabies: A review of current methodologies Geospat Health 17:2. DOI: https://doi.org/10.4081/gh.2022.1139
CONABIO, 2022. Portal de geoinformación 2022. Accessed March 2022. Available from: http://www.conabio.gob.mx/informacion/gis/
CONAGUA, 2022. Resúmenes mensuales de temperatura y lluvia. Accessed March 2022. Available from: https://smn.conagua.gob.mx/es/climatologia/temperaturas-y-lluvias/resumenes-mensuales-de-temperaturas-y-lluvias.
DOF, 2011. Norma Oficial Mexicana. NOM-ZOO-067-2007. Available from: https://www.gob.mx/cms/uploads/attachment/file/203509/NOM-067-ZOO-2207_20may11_Ori.pdf
Dzikwi AA, Umoh JU, Kwaga JKP, Ahmed AA, 2010. Serological surveillance for non-rabies lyssaviruses among apparently healthy dogs in Zaria, Nigeria. Niger Vet J:31:3. DOI: https://doi.org/10.4314/nvj.v31i3.68972
Ekwaru, JP, Veugelers, PJ, 2018. The overlooked importance of constants added in log transformation of independent variables with zero values: A proposed approach for determining an optimal constant. Stat Biopharm Res 10:26-9. DOI: https://doi.org/10.1080/19466315.2017.1369900
Escobar Cifuentes E, 2004. Rabies transmitted by vampires. Biomedica 24:231–6. DOI: https://doi.org/10.7705/biomedica.v24i3.1268
Escobar LE, Craft ME, 2016. Advances and limitations of disease biogeography using ecological niche modeling. Front Microbiol 7:1174. DOI: https://doi.org/10.3389/fmicb.2016.01174
Franco-Molina MA, Santana-Krímskaya SE, Cortés-García B, Sánchez-Aldana-Pérez JA, García-Jiménez O, Kawas J, 2021. Fatal case of rabies in a captive white-tailed deer: A case report from Chiapas, Mexico. Trop Med Infect Dis 6:135. DOI: https://doi.org/10.3390/tropicalmed6030135
Fuenzalida-Díaz M, 2015. Evaluación de modelos geoestadísticos aplicados a la exposición al contaminante atmosférico PM10 en Chile. Cienc Espac 8:441-57. DOI: https://doi.org/10.5377/ce.v8i1.2060
Galarde-López M, Quiroz-Rocha GF, Candanosa-Aranda IE, Soberanis-Ramos O, García-García L, 2022. Community engagement in the diagnosis and control of a bovine paralytic rabies outbreak in two rural communities of Mexico. J Agromedicine 27:193-6. DOI: https://doi.org/10.1080/1059924X.2021.1979153
Giannakopoulos A, Valiakos G, Papaspyropoulos K, Dougas G, Korou LM, Tasioudi KE, Billinis C, 2016. Rabies outbreak in Greece during 2012–2014: use of Geographical Information System for analysis, risk assessment and control. Epidemiol Infect 144:3068-79. DOI: https://doi.org/10.1017/S0950268816001527
Goovaerts, P, 1997. Geostatistics for natural resources evaluation, 1997. DOI: https://doi.org/10.1093/oso/9780195115383.001.0001
Hayes MA, Piaggio AJ, 2018. Assessing the potential impacts of a changing climate on the distribution of a RABV vector. PLoS One 13:e0192887. DOI: https://doi.org/10.1371/journal.pone.0192887
INEGI, 2023. Suelo agrícola en México: retrospección y perspectiva de la seguridad alimentaria. Accessed June 2023. Available from: https://rde.inegi.org.mx/index.php/2019/01/25/suelo-agricola-en-mexico-retrospeccion-prospectiva-laseguridadalimentaria/#:~:text=Pese%20a%20ello%2C%20la%20superficie,23%25%20(45.5%20millones)
Jaramillo-Reyna E, Almazán-Marín C, de la O-Cavazos ME, Valdéz-Leal R, Bañuelos-Álvarez AH, Zúñiga-Ramos MA, Aréchiga-Ceballos N, 2020. Public veterinary medicine: public health rabies virus variants identified in Nuevo Leon State, Mexico, from 2008 to 2015. J Am Vet Med Assoc 256:438-43. DOI: https://doi.org/10.2460/javma.256.4.438
Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A, 2014. Vampire bat rabies: ecology, epidemiology and control. Viruses 6:1911-28. DOI: https://doi.org/10.3390/v6051911
Jurado-Guerra P, Velázquez-Martínez M, Sánchez-Gutiérrez RA, Álvarez-Holguín A, Domínguez-Martínez PA, Gutiérrez-Luna R, Chávez-Ruiz MG, 2021. Los pastizales y matorrales de zonas áridas y semiáridas de México: Estatus actual, retos y perspectivas. Rev Mex Cienc Pecu 12:261-85. DOI: https://doi.org/10.22319/rmcp.v12s3.5875
Lanzagorta-Valencia K, Fernández-Méndez JI, Medellín RA, Rodas-Martínez AZ, Avila-Flores R, 2020. Landscape and cattle management attributes associated with the incidence of Desmodus rotundus attacks on cattle. Ecosistemas y Recursos Agropecuarios 7:1. DOI: https://doi.org/10.19136/era.a7n1.2164
Lee DN, Papes M, Van Den Bussche RA, 2012. Present and Potential Future Distribution of Common Vampire Bats in the Americas and the Associated Risk to Cattle. PLoS ONE 7:e42466. DOI: https://doi.org/10.1371/journal.pone.0042466
León B, González SF, Solís LM, Ramírez-Cardoce M, Moreira-Soto A, Cordero-Solorzano JM, Rupprecht CE, 2021. Focus: Zoonotic Disease: Rabies in Costa Rica–Next Steps Towards Controlling Bat-Borne Rabies After its Elimination in Dogs. Yale J Biol Med 94:311.
Mantovan KB, Menozzi BD, Paiz LM, Sevá AP, Brandão PE, Langoni H, 2022. Geographic Distribution of Common Vampire Bat Desmodus rotundus (Chiroptera: Phyllostomidae) Shelters: Implications for the Spread of RABV to Cattle in Southeastern Brazil. Pathogens 11:942. DOI: https://doi.org/10.3390/pathogens11080942
Martínez EAA, 2020. Vampire bat reservoir and main transmitter of rabies, a public health problem in Mexico. Mex J Med Res 8:29-36. DOI: https://doi.org/10.29057/mjmr.v8i15.3907
Maxwell MJ, Freire de Carvalho MH, Hoet AE, Vigilato MA, Pompei JC, Cosivi O, del Rio Vilas VJ 2017. Building the road to a regional zoonoses strategy: A survey of zoonoses programmes in the Americas. PLoS One 12:e0174175. DOI: https://doi.org/10.1371/journal.pone.0174175
Meza DK, Mollentze N, Broos A, Tello C, Valderrama W, Recuenco S, Streicker DG, 2022. Ecological determinants of rabies virus dynamics in vampire bats and spillover to livestock. Proceedings of the Royal Society B 289:20220860. DOI: https://doi.org/10.1098/rspb.2022.0860
Morgan CN, Wallace RM, Vokaty A, Seetahal JF, Nakazawa YJ, 2020. Risk modeling of bat rabies in the Caribbean Islands. Trop Med Infect Dis 5:1. DOI: https://doi.org/10.3390/tropicalmed5010035
Oliveira FAS, Castro RJS, de Oliveira JF, Barreto FM, Farias MPO, Marinho GLDOC, Schwarz DGG, 2022. Geographical and temporal spread of equine rabies in Brazil. Acta Trop 227:106302. DOI: https://doi.org/10.1016/j.actatropica.2022.106302
Orlando SA, Panchana VF, Calderón JL, Muñoz OS, Campos DN, Torres-Lasso, PR, Quentin E, 2019. Risk factors associated with attacks of hematophagous bats (Desmodus rotundus) on cattle in Ecuador. Vector Borne Zoonotic Dis 19:407-13. DOI: https://doi.org/10.1089/vbz.2017.2247
Ortega-Sánchez R, Bárcenas-Reyes I, Cantó-Alarcón GJ, Luna-Cozar J, ERA, Contreras-Magallanes YG, Milián-Suazo F, 2022, Descriptive and Time-Series Analysis of Rabies in Different Animal Species in Mexico. Front Vet Sci 9:800735. DOI: https://doi.org/10.3389/fvets.2022.800735
Paz AM. Gómez, MT Taboada, 1996. Análisis geoestadístico de las propiedades generales de un suelo de cultivo. Cienc Investig Agrar 11:133–60.
Pimentel MFA, Nassarden SM, Cândido SL, Dutra, V, Nakazato L, 2022. Genotyping of rabies positive samples isolated from animals in Mato Grosso and Rondônia–Brazil. Infect Genet Evol 103:105336. DOI: https://doi.org/10.1016/j.meegid.2022.105336
Rocha F, Días RA, 2020. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the RABV to livestock: A contact network approach and recommendations for surveillance and control. Prev Vet Med 174:104809. DOI: https://doi.org/10.1016/j.prevetmed.2019.104809
Romero-Barrera CE., Osorio-Rodriguez AN, Juárez-Agis A, 2021. Distribución, abundancia, control y registros de casos de murciélagos vampiro, Desmodus rotundus (E. GEOFFROY), infectados de rabia en ambientes pecuarios de Guerrero, México: Population control of the vampire bat. Acta Agr Pec 7:1. DOI: https://doi.org/10.30973/aap/2021.7.0071006
Rupprecht CE, Xiang Z, Servat A, Franka R, Kirby J, Ertl HC, 2018. Additional progress in the development and application of a direct, rapid immunohistochemical test for rabies diagnosis. Vet Sci 5:59. DOI: https://doi.org/10.3390/vetsci5020059
Sarsenbay K, Abdrakhmanov SK, Akhmetzhan A, Sultanov AA, Kanatzhan K, Beisembayev KK, Korennoy FI, Kushubaev DB, Kadyrov AS, 2016. Zoning the territory of the Republic of Kazakhstan as to the risk of rabies among various categories of animals. Geospat Health 11:2. DOI: https://doi.org/10.4081/gh.2016.429
Seetahal JF, Greenberg L, Satheshkumar PS, Sanchez-Vazquez MJ, Legall G, Singh S, Carrington CV, 2020. The serological prevalence of rabies virus-neutralizing antibodies in the bat population on the Caribbean island of Trinidad. Viruses 12:178. DOI: https://doi.org/10.3390/v12020178
Shipley R, Wright E, Selden D, Wu G, Aegerter J, Fooks AR, Banyard AC, 2019. Bats and viruses: emergence of novel lyssaviruses and association of bats with viral zoonoses in the EU. Trop Med Infect Dis 4:31. DOI: https://doi.org/10.3390/tropicalmed4010031
Shwiff SA, RT Sterner, M Jay-Russell, S Parikh, A Bellomy, MI Meltzer, CE Rupprecht, D Slate, 2007. Direct and indirect costs of rabies exposure: a retrospective study in Southern California (1998-2002). J Wildlife Dis 43:251–7. DOI: https://doi.org/10.7589/0090-3558-43.2.251
SIAP, 2022. Producción ganadera. Accessed March 2022. Available from: https://www.gob.mx/siap/acciones-y-programas/produccion-pecuaria
Streicker, DG, Recuenco S, Valderrama W, Gomez Benavides J, Vargas I, Pacheco V, Altizer S, 2012. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proceedings of the Royal Society B: Biol Sci 279:3384-92. DOI: https://doi.org/10.1098/rspb.2012.0538
Streicker DG, Allgeier JE. 2016 a. Foraging choices of vampire bats in diverse landscapes: potential implications for land-use change and disease transmission. J Appl Ecol 53:1280–8. DOI: https://doi.org/10.1111/1365-2664.12690
Streicker DG, Winternitz JC, Satterfield DA, Condori-Condori RE, Broos A, Tello C, Valderrama W, 2016b. Host–pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc Natl Acad Sci USA 113:10926-10931. DOI: https://doi.org/10.1073/pnas.1606587113
Tidman R, Thumbi SM, Wallace R, De Balogh K, Iwar V, Dieuzy-Labaye I, Trees A, 2022. United against rabies forum: the one health concept at work. Front Public Health 10:854419. DOI: https://doi.org/10.3389/fpubh.2022.854419
Torres-Mejía X, Pérez-Rivero JJ, Olvera-Vargas LA, Barragán-Hernández EÁ, Martínez-Maya JJ, Aguilar-Setién Á, 2021. La coexistencia de Desmodus rotundus con la población humana en San Luis Potosí, México. Rev Mex Cienc Pecu 12:694-704. DOI: https://doi.org/10.22319/rmcp.v12i3.5670
Ulloa‐Stanojlovic FM, Días RA, 2020. Spatio‐temporal description of bovine rabies cases in Peru, 2003–2017. Transboundary and Emerging Diseases 67:1688-96. DOI: https://doi.org/10.1111/tbed.13512
Van de Vuurst P, Díaz MM, Pedro RS, Allendes JL, Brown N, Gutiérrez JD, Escobar LE, 2022. A database of common vampire bat reports. Sci Data 9:1-7. DOI: https://doi.org/10.1038/s41597-022-01140-9
Velasco-Villa A, Gómez-Sierra M, Hernández-Rodríguez G, Juárez-Islas V, Meléndez-Félix A, Vargas-Pino F, Flisser A, 2002. Antigenic diversity and distribution of rabies virus in Mexico. J Clin Microbiol 40:951-8. DOI: https://doi.org/10.1128/JCM.40.3.951-958.2002
Wakernaguel H, 1998. Multivariate Geostatistics, An introduction with applications. DOI: https://doi.org/10.1007/978-3-662-03550-4
Webster R, Oliver MA, 2007. Geostatistics for environmental scientists. John Wiley & Sons. DOI: https://doi.org/10.1002/9780470517277
Zarza H, Martínez-Meyer E, Suzán G, Ceballos G, 2017. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Vet Mex: 4:10-25. DOI: https://doi.org/10.21753/vmoa.4.3.390
Zortéa M, Silva DA, Calaça AM, 2018. Susceptibility of targets to the vampire bat Desmodus rotundus are proportional to their abundance in Atlantic Forest fragments? Iheringia Ser Zool 108. DOI: https://doi.org/10.1590/1678-4766e2018037

How to Cite

Ortega-Sánchez, R. ., Bárcenas-Reyes, I., Luna-Cozar, J. ., Rojas-Anaya, E. ., Cuador-Gil, J. Q. ., Cantó-Alarcón, G. J. ., Veyna-Salazar, N. ., González-Ruiz, S. ., & Milián-Suazo, F. . (2024). Spatial-temporal risk factors in the occurrence of rabies in Mexico. Geospatial Health, 19(1). https://doi.org/10.4081/gh.2024.1245