Spatial association and modelling of under-5 mortality in Thailand, 2020
Accepted: 7 August 2023
HTML: 31
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Under-5 mortality rate (U5MR) is a key indicator of child health and overall development. In Thailand, despite significant steps made in child health, disparities in U5MR persist across different provinces. We examined various socio-economic variables, health service availability and environmental factors impacting U5MR in Thailand to model their influences through spatial analysis. Global and Local Moran’s I statistics for spatial autocorrelation of U5MR and its related factors were used on secondary data from the Ministry of Public Health, National Centers for Environmental Information, National Statistical Office, and the Office of the National Economic and Social Development Council in Thailand. The relationships between U5MR and these factors were modelled using ordinary least squares (OLS) estimation, spatial lag model (SLM) and spatial error model (SEM). There were significant spatial disparities in U5MR across Thailand. Factors such as low birth weight, unemployment rate, and proportion of land use for agricultural purposes exhibited significant positive spatial autocorrelation, directly influencing U5MR, while average years of education, community organizations, number of beds for inpatients per 1,000 population, and exclusive breastfeeding practices acted as protective factors against U5MR (R2 of SEM = 0.588).The findings underscore the need for comprehensive, multi-sectoral strategies to address the U5MR disparities in Thailand. Policy interventions should consider improving socioeconomic conditions, healthcare quality, health accessibility, and environmental health in high U5M areas. Overall, this study provides valuable insights into the spatial distribution of U5MR and its associated factors, which highlights the need for tailored and localized health policies and interventions.
How to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.