Investigating local variation in disease rates within high-rate regions identified using smoothing
Accepted: 20 January 2023
Supplementary Materials: 47
HTML: 3
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.
Authors
Exploratory disease maps are designed to identify risk factors of disease and guide appropriate responses to disease and helpseeking behaviour. However, when produced using aggregatelevel administrative units, as is standard practice, disease maps may mislead users due to the Modifiable Areal Unit Problem (MAUP). Smoothed maps of fine-resolution data mitigate the MAUP but may still obscure spatial patterns and features. To investigate these issues, we mapped rates of Mental Health- Related Emergency Department (MHED) presentations in Perth, Western Australia, in 2018/19 using Australian Bureau of Statistics (ABS) Statistical Areas Level 2 (SA2) boundaries and a recent spatial smoothing technique: the Overlay Aggregation Method (OAM). Then, we investigated local variation in rates within high-rate regions delineated using both approaches. The SA2- and OAM-based maps identified two and five high-rate regions, respectively, with the latter not conforming to SA2 boundaries. Meanwhile, both sets of high-rate regions were found to comprise a select number of localised areas with exceptionally high rates. These results demonstrate how, due to the MAUP, disease maps that are produced using aggregate-level administrative units are unreliable as a basis for delineating geographic regions of interest for targeted interventions. Instead, reliance on such maps to guide responses may compromise the efficient and equitable delivery of healthcare. Detailed investigation of local variation in rates within high-rate regions identified using both administrative units and smoothing is required to improve hypothesis generation and the design of healthcare responses.
Supporting Agencies
Government of Western Australia Department of HealthHow to Cite
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
PAGEPress has chosen to apply the Creative Commons Attribution NonCommercial 4.0 International License (CC BY-NC 4.0) to all manuscripts to be published.