Spatial association of socio-demographic, environmental factors and prevalence of diabetes mellitus in middle-aged and elderly people in Thailand

Submitted: 23 March 2022
Accepted: 11 October 2022
Published: 29 November 2022
Abstract Views: 1037
PDF: 756
Appendix: 0
HTML: 136
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The burden of diabetes mellitus (DM), one of the major noncommunicable diseases (NCDs), has been significantly rising globally. In the Asia-Pacific region, Thailand ranks within the top ten of diabetic patient populations and the disease has increased from 2.3% in 1991 to 8.0% in 2015. This study applied local indicators of spatial association (LISA) and spatial regression to examine the local associations in Thailand with night-time light, spatial density of alcohol/convenience stores, concentration of elderly population and prevalence of DM among middle-aged and elderly people. Univariate LISA identified the statistically significant cluster of DM prevalence in the upper north-eastern region. For multivariate spatial analysis, the obtained R2 values of the spatial lag model (SLM) and spatial error model (SEM) were 0.310 and 0.316, respectively. These two models indicated a statistical significant association of several sociodemographic and environmental characteristics with the DM prevalence: food shops (SLM coefficient = 9.625, p<0.001; SEM coefficient = 9.695, p<0.001), alcohol stores (SLM coefficient = 1.936, p<0.05; SEM coefficient = 1.894, p<0.05), population density of elderly people (SLM coefficient = 0.156, p<0.05; SEM coefficient = 0.188, p<0.05) and night-time light density (SLM coefficient = -0.437, p<0.001; SEM coefficient = -0.437, p<0.001). These findings are useful for policymakers and public health professionals in formulating measures aimed at reducing DM burden in the country.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Akaike H, 1974. A new look at the statistical model identification. IEEE Trans Automat Contr 19:716-723. DOI: https://doi.org/10.1109/TAC.1974.1100705
Anselin L, 1995. Local indicators of spatial association—LISA. Geogr Anal 27:93-115. DOI: https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
Anselin L, 2001. Rao's score test in spatial econometrics. J Stat Plan Infer 97:113-139. DOI: https://doi.org/10.1016/S0378-3758(00)00349-9
Anselin L, Syabri I, Kho Y, 2010. GeoDa: An introduction to spatial data analysis in Handbook of applied spatial analysis, Springer-Verlag Berlin Heidelberg Press,811. DOI: https://doi.org/10.1007/978-3-642-03647-7_5
Atlas D, 2015. International diabetes federation. IDF Diabetes Atlas, 7th edn. Brussels, Belgium: International Diabetes Federation, 11-14.
Avilés-Santa ML, Monroig-rivera A, Soto-soto A, Lindberg, NM, 2020. Current state of diabetes mellitus prevalence, awareness, treatment, and control in Latin America: Challenges and innovative solutions to improve health outcomes across the continent. Current diabetes reports 20:1-44. DOI: https://doi.org/10.1007/s11892-020-01341-9
Bahijri SM, Jambi HA, Al Raddadi RM, Ferns G,Tuomilehto J, 2016. The prevalence of diabetes and prediabetes in the adult population of Jeddah, Saudi Arabia-a community-based survey. PloS One 11:e0152559. DOI: https://doi.org/10.1371/journal.pone.0152559
Bathna SJ, Dunga JA, Alkali NH, Musa JJ, Gombe AA, Yusuf SY, Joseph O, Baba SR. 2019. Cigarette smoking, alcohol intake and the risk of diabetes mellitus in Gombe state, northeast Nigeria. Ann Afr Med 2:71. DOI: https://doi.org/10.4081/aamr.2019.71
Bommer C, Heesemann E, Sagalova V, Manne-Goehler J, Atun R, Bärnighausen T, Vollmer S, 2017. The global economic burden of diabetes in adults aged 20–79 years: A cost-of-illness study. Lancet Diabetes Endocrinol 5: 423-430. DOI: https://doi.org/10.1016/S2213-8587(17)30097-9
Bommer C, Sagalova V, Heesemann E, Manne-Goehler J, Atun R, Bärnighausen T, Davies J, Vollmer S, 2018. Global economic burden of diabetes in adults: Projections from 2015 to 2030. Diabetes Care 41: 963-970. DOI: https://doi.org/10.2337/dc17-1962
Bukhman G, Bavuma C, Gishoma C, Gupta N, Kwan GF, Laing R, Beran D, 2015. Endemic diabetes in the world's poorest people. Lancet Diabetes Endocrinol 3:402-403. DOI: https://doi.org/10.1016/S2213-8587(15)00138-2
Chia CW, Egan JM, Ferrucci L, 2018. Age-related changes in glucose metabolism, hyperglycemia, and cardiovascular risk. Circ Res 123:886-904. DOI: https://doi.org/10.1161/CIRCRESAHA.118.312806
Christine PJ, Auchincloss AH, Bertoni AG, Carnethon MR, Sánchez BN, Moore K, Adar SD, Horwich TB, Watson KE, Diez Roux AV, 2015. Longitudinal associations between neighborhood physical and social environments and incident type 2 diabetes mellitus: The multi-ethnic study of atherosclerosis (MESA). JAMA Intern Med 175:1311-20. DOI: https://doi.org/10.1001/jamainternmed.2015.2691
Cliff AD, Ord JK, 1981. Spatial and temporal analysis: autocorrelation in space and time. Quantitative Geography: A British view 1:104-110.
Elhorst JP, 2010. Applied spatial econometrics: Raising the bar. Spat Econ Anal 5:9-28. DOI: https://doi.org/10.1080/17421770903541772
Esterson YB, Carey M, Piette JD, Thomas N, Hawkins M, 2014. A systematic review of innovative diabetes care models in low-and middle-income countries (LMICs). J Health Care Poor Underserved 25:72-93. DOI: https://doi.org/10.1353/hpu.2014.0037
Fan J, Ma T, Zhou C, Zhou Y, and Xu T, 2014. Comparative estimation of urban development in China’s cities using socioeconomic and DMSP/OLS night light data. Remote Sens 6:7840-7856. DOI: https://doi.org/10.3390/rs6087840
Flies E. J, Mavoa S, Zosky G. R, Mantzioris E, Williams C, Eri R, Buettel JC, 2019. Urban-
associated diseases: Candidate diseases, environmental risk factors, and a path forward. Environ Int 133:105187. DOI: https://doi.org/10.1016/j.envint.2019.105187
Forjuoh SN, Huber C, Bolin JN, Patil SP, Gupta M, Helduser JW, Holleman S, Ory MG, 2011. Provision of counseling on diabetes self-management: Are there any age disparities? Patient Educ Counsel 85:133-139. DOI: https://doi.org/10.1016/j.pec.2010.08.004
Gebreab SY, Hickson DA, Sims M, Wyatt SB, Davis SK, Correa A, Diez-Roux AV, 2017. Neighborhood social and physical environments and type 2 diabetes mellitus in African Americans: The Jackson Heart Study. Health Place 43:128-137. DOI: https://doi.org/10.1016/j.healthplace.2016.12.001
Hipp JA,Chalise N, 2015. Peer reviewed: Spatial analysis and correlates of county-level diabetes prevalence, 2009–2010. Prev Chronic Dis 12:1-9. DOI: https://doi.org/10.5888/pcd12.140404
Kahr MK, Suter MA, Ballas J, Ramin SM, Monga M, Lee W, Hu M, Shope CD, Chesnokova A, Krannich L, Griffing EN, Mastrobattista J, Dildy GA, Strehlow SL, Ramphul R, Hamilton WJ, Aagaard KM, 2016. Geospatial analysis of food environment demonstrates associations with gestational diabetes. Am J Obstet Gynecol 214:110.e1-9. DOI: https://doi.org/10.1016/j.ajog.2015.08.048
Khan MAB, Hashim MJ, King JK, Govender RD, Mustafa H, Al Kaabi J, 2020. Epidemiology of type 2 diabetes–global burden of disease and forecasted trends. J Epidemiol Glob Health 10:107-111. DOI: https://doi.org/10.2991/jegh.k.191028.001
Laohasiriwong W, Puttanapong N, Singsalasang A, 2018. Prevalence of hypertension in Thailand: Hotspot clustering detected by spatial analysis. Geospatial Health 13:20-27. DOI: https://doi.org/10.4081/gh.2018.608
Mezuk B, Li X, Cederin K, Rice K, Sundquist J, Sundquist K. 2016. Beyond access: Characteristics of the food environment and risk of diabetes. Am J Epidemiol 183:1129-37. DOI: https://doi.org/10.1093/aje/kwv318
Montoya-Betancur KV, Caicedo-Velásquez B, Álvarez-Castaño LS, 2020. Exploratory spatial analysis of diabetes mortality and its relationship with the socioeconomic conditions of Colombian municipalities. Cad Saude Publica 36:1-16. DOI: https://doi.org/10.1590/0102-311x00101219
Moran PA, 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23. DOI: https://doi.org/10.1093/biomet/37.1-2.17
Mordarska K, Godziejewska-Zawada M, 2017. Diabetes in the elderly. Prz Menopauzalny 16:38-43. DOI: https://doi.org/10.5114/pm.2017.68589
Oggioni C, Lara J, Wells J, Soroka K, Siervo M, 2014. Shifts in population dietary patterns and physical inactivity as determinants of global trends in the prevalence of diabetes: An ecological analysis. Nutr Metab Cardiovasc Dis 24:1105-11. DOI: https://doi.org/10.1016/j.numecd.2014.05.005
Pacheco AI, Tyrrell TJ, 2002. Testing spatial patterns and growth spillover effects in clusters of cities. J Geogr Syst 4:275-285. DOI: https://doi.org/10.1007/s101090200089
Papier K, Jordan S, D'Este C, Bain C, Peungson J, Banwell C, Yiengprugsawan V, Seubsman SA, Sleigh A, 2016. Incidence and risk factors for type 2 diabetes mellitus in transitional Thailand: Results from the Thai cohort study. BMJ Open 6:e014102. DOI: https://doi.org/10.1136/bmjopen-2016-014102
Papier K, D'Este C, Bain C, Banwell C, Seubsman S, Sleigh A, Jordan S, 2017. Consumption of sugar-sweetened beverages and type 2 diabetes incidence in Thai adults: Results from an 8-year prospective study. Nutr Diabetes 76:e283-e283. DOI: https://doi.org/10.1038/nutd.2017.27
Pérez-Ferrer C, Auchincloss AH, Barrientos-Gutierrez T, Colchero MA, de Oliveira Cardoso L, Carvalho de Menezes M, Bilal U, 2020. Longitudinal changes in the retail food environment in Mexico and their association with diabetes. Health Place 66:102461. DOI: https://doi.org/10.1016/j.healthplace.2020.102461
Perez-Sindin XS, Chen THK, Prishchepov A, 2021. Are night-time lights a good proxy of economic activity in rural areas in middle and low-income countries? Examining the empirical evidence from Colombia. Remote Sens Appl 24:100647. DOI: https://doi.org/10.1016/j.rsase.2021.100647
Pou S. A, Tumas N, Soria D. S, Ortiz P, Del Pilar Díaz M, 2017. Large-scale societal factors and noncommunicable diseases: Urbanization, poverty and mortality spatial patterns in Argentina. Appl Geogr 86:32-40. DOI: https://doi.org/10.1016/j.apgeog.2017.06.022
Rhee EJ, 2015. Diabetes in Asians. Endocrinology and Metabolism 30:263-269. DOI: https://doi.org/10.3803/EnM.2015.30.3.263
Salois MJ, 2012. Obesity and diabetes, the built environment, and the ‘local’food economy in the United States, 2007. Econ Hum Biol 10:35-42. DOI: https://doi.org/10.1016/j.ehb.2011.04.001
Shil A, Puri P, Prakash R, 2018. A geospatial analysis of noncommunicable disease (NCD) burden in Indian agro-climatic and political regions. J Public Health 26:391-398. DOI: https://doi.org/10.1007/s10389-017-0876-2
Tuoane-Nkhasi M, Van Eeden A, 2017. Spatial patterns and correlates of mortality due to selected non-communicable diseases among adults in South Africa, 2011. GeoJournal 82:1005-34. DOI: https://doi.org/10.1007/s10708-016-9725-z
Viton PA, 2010. Notes on spatial econometric models. City and Regional Planning 870:1-23.
World Health Organization (WHO), 2012. Effects of urbanization on incidence of noncommunicable diseases. World Health Organization. Regional Office for the Eastern Mediterranean. Available from: https://apps.who.int/iris/handle/10665/119960
World Health Organization (WHO), 2016. Global report on diabetes, WHO Press,Geneva,88.Available from: https://www.who.int/publications/i/item/9789241565257
Williams R, Karuranga S, Malanda B, Saeedi P, Basit A, Besançon S, Bommer C, Esteghamati A, Ogurtsova K, Zhang P, Colagiuri S. 2020. Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Res Clin Pract 162:108072. DOI: https://doi.org/10.1016/j.diabres.2020.108072

How to Cite

Tappo, S. ., Laohasiriwong, W., & Puttanapong, N. . (2022). Spatial association of socio-demographic, environmental factors and prevalence of diabetes mellitus in middle-aged and elderly people in Thailand. Geospatial Health, 17(2). https://doi.org/10.4081/gh.2022.1091