Spatiotemporal patterns of mortality associated with chronic non-communicable diseases and child malnutrition at the municipal level in Mexico

Submitted: 5 March 2022
Accepted: 19 April 2022
Published: 17 May 2022
Abstract Views: 1030
PDF: 562
Appendix: 83
HTML: 50
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

Malnutrition is one of the main risk factors related to chronic non-communicable diseases and child undernourishment on a planetary scale. Mexico is one of the countries with the highest levels of malnutrition, but there is also an accelerated increase in overweight or obesity. This study explored the spatiotemporal behaviour of mortality associated with chronic non-communicable diseases such as type II diabetes mellitus, hypertension, ischemic heart disease and cerebrovascular disease. The analysis was carried out at the municipality level for the 2000-2020 period targeting two age groups: ≥60-year olds and 20-59-year olds. In addition, 0-4-year olds were investigated with respect to undernourishment. National databases were gathered and standardized for each disease and SaTScan spatiotemporal cluster analyses were performed. We found that mortality associated with most of the diseases evaluated has increased since 2016 except for mortality caused by child undernourishment, which showed a downward trend during the study period. To focus on active conglomerates of diseases is important as they currently represent a threat to public health. Our results contribute to the potential spatial prioritization of the allocation of resources and campaigns for prevention and treatment of chronic non-communicable diseases and child undernourishment. Generally, geographical studies are fundamental for the discovery of disease aetiology and they provide valuable and timely information to multiple stakeholders.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Barquera S, Hernández-Barrera L, Trejo-Valdivia B, Shamah T, Campos-Nonato I, Rivera-Dommarco J, 2020. Obesidad en México, prevalencia y tendencias en adultos. Ensanut 2018-2019. Salud Públ México 62(6). DOI: https://doi.org/10.21149/11630
Benita F and Gasca-Sanchez F, 2021. The main factors influencing COVID-19 spread and deaths in México: A comparison between phases I and II. Appl Geogr 134:102523. DOI: https://doi.org/10.1016/j.apgeog.2021.102523
Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), 2021. Canastas regionales del bien comer. Available from: https://www.biodiversidad.gob.mx/diversidad/alimentos/canastas-regionales Accessed: December 14, 2021.
Consejo Nacional de Población (CONAPO), 2018. Proyecciones de la Población de México y de las Entidades Federativas, 2016-2050 y Conciliación Demográfica de México, 1950-2015. Available from: https://www.gob.mx/conapo/acciones-y-programas/conciliacion-demografica-de-México-1950-2015-y-proyecciones-de-la-poblacion-de-México-y-de-las-entidades-federativas-2016-2050 Accessed: July 27, 2021.
Córdova-Villalobos JÁ, Barriguete-Meléndez JA, Lara-Esqueda A, Barquera S, Rosas-Peralta M, Hernández-Ávila M, León-May ME, Aguilar-Salinas CA, 2008. Las enfermedades crónicas no transmisibles en México: sinopsis epidemiológica y prevención integral. Salud Públ México 50:419-27. DOI: https://doi.org/10.1590/S0036-36342008000500015
Dávila-Cervantes CA and Pardo-Montaño AM, 2017. Cambios en la esperanza de vida por causas de muertes crónicas en adultos mayores. México 2000-2013. Rev Cienc Salud 15:223-35. DOI: https://doi.org/10.12804/revistas.urosario.edu.co/revsalud/a.5759
Dávila-Cervantes CA, 2020. Tendencia e impacto de la mortalidad por enfermedades cardiovasculares en México, 1990-2015. Rev Cubana Salud Públ 45:1-18.
Di Cesare M, 2011. El perfil epidemiológico de América Latina y el Caribe: desafíos , límites y acciones. CEPAL, Santiago de Chile [Internet]. Comisión Económica para América Latina y el Caribe (CEPAL). Available from: http://www.eclac.org/publicaciones/xml/9/44309/lcw395.pdf
DG de I en S (DGIS), 2020. Subsistema de Prestación de Servicios. Cubos dinámicos de Servicios Otorgados SIS. México: Secretaría de Salud. Available from: http://www.dgis.salud.gob.mx/contenidos/basesdedatos/da_defunciones_gobmx.html Accessed: August 10, 2020.
FAO, FIDA, OMS, PMA and UNICEF,2020. El estado de la seguridad alimentaria y la nutrición en el mundo 2020. Transformación de los sistemas alimentarios para que promuevan dietas asequibles y saludables. FAO, Rome, Italy.
Fernández A, Martínez R, Carrasco I, Palma A, 2017. Impacto social y económico de la doble carga de la malnutrición: modelo de análisis y estudio piloto en Chile, el Ecuador y México. Available from: https://repositorio.cepal.org/bitstream/handle/11362/42535/1/S1700443_es.pdf
Gasca-Sánchez FM, Santos-Guzmán J, Elizondo-Dueñaz R, Mejía-Velázquez GM, Ruiz-Pacheco C, Reyes-Rodríguez D, Rojas-Martínez A, 2019. Spatial clusters of children with cleft lip and palate and their association with polluted zones in the Monterrey metropolitan Area. Int J Environ Res Public Health 16:2488. DOI: https://doi.org/10.3390/ijerph16142488
Gomes F, Baumgartner A, Bounoure L, Bally M, Deutz NE, Greenwald JL, Schuetz P, 2019. Association of nutritional support with clinical outcomes among medical inpatients who are malnourished or at nutritional risk: an updated systematic review and meta-analysis. JAMA Netw Open 2:e1915138. DOI: https://doi.org/10.1001/jamanetworkopen.2019.15138
Gutiérrez JP, García-Saisó S, Espinosa-de la Peña R, Balandrán DA, 2016. Desigualdad en indicadores de enfermedades crónicas y su atención en adultos en México: análisis de tres encuestas de salud. Salud Públ México 58:666-75. DOI: https://doi.org/10.21149/spm.v58i6.7923
Hernández-Gaytán SI, Díaz-Vásquez FJ, Duran-ArenasLG, CervantesML, Rothenberg SJ, 2017. 20 years spatial-temporal analysis of dengue fever and haemorrhagic fever in Mexico. Archiv Medical Res 48:653-62. DOI: https://doi.org/10.1016/j.arcmed.2018.01.003
Hohl A, Delmelle EM, Desjardins MR, LanY, 2020. Daily surveillance of COVID-19 using the prospective space-time scan statistic in the United States. Spatial Spatiotemp Epidemiol 34:100354. DOI: https://doi.org/10.1016/j.sste.2020.100354
Kulldorff M, Nagarwalla N, 1995. Spatial disease clusters: detection and inference. Stat Med 14:799-810. DOI: https://doi.org/10.1002/sim.4780140809
Kulldorff M, AthasWF, Feurer EJ, Miller BA, Key CR, 1998. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am J Public Health 88:1377-80. DOI: https://doi.org/10.2105/AJPH.88.9.1377
Kulldorff M, 2001. Prospective time periodic geographical disease surveillance using a scan statistic. J R Stat Soc Ser A (Stat Soc) 164:61-72. DOI: https://doi.org/10.1111/1467-985X.00186
Kulldorff M, Heffernan R, Hartman J, Assunçao R, Mostashari F, 2005. A space-time permutation scan statistic for disease outbreak detection. PLoS Med 2:e59. DOI: https://doi.org/10.1371/journal.pmed.0020059
Kulldorff and Information Management Services Inc, 2021. SaTScan version 10: software for the spatial, temporal and space-time scan statistics [Internet]. Available from: https://www.satscan.org/
Linton SL, Jennings JM, Latkin CA, Gomez MB, Mehta SH, 2014. Application of space-time scan statistics to describe geographic and temporal clustering of visible drug activity. J Urban Health 91:940-56. DOI: https://doi.org/10.1007/s11524-014-9890-7
Liu H, Chen S, Liu M, Nie H, Lu H, 2020. Comorbid chronic diseases are strongly correlated with disease severity among COVID-19 patients: a systematic review and meta-analysis. Aging Dis 11:668. DOI: https://doi.org/10.14336/AD.2020.0502
Lozano R, Gómez-Dantés H, Pelcastre B, Ruelas MG, Montañez JC, Campuzano JC, Franco FGJ, 2014. Carga de Enfermedades en México, 1990-2010. 148:148-62.
Macías Sánchez, A., and Villarreal Páez, H. J. 2018. Sostenibilidad del gasto público: Cobertura y financiamiento de enfermedades crónicas en México. Ensayos. Rev Econ 37:99-133. DOI: https://doi.org/10.29105/ensayos37.1-4
Mas JF and Pérez-Vega A, 2021. Spatiotemporal patterns of the COVID-19 epidemic in México at the municipality level. PeerJ 9:e12685. DOI: https://doi.org/10.7717/peerj.12685
Moraga P, 2017. SpatialEpiApp: A Shiny web application for the analysis of spatial and spatio-temporal disease data. Spatial Spatiotemp Epidemiol 23:47-57. DOI: https://doi.org/10.1016/j.sste.2017.08.001
Nugent R, Levin C, Hale J, Hutchinson B, 2020. Economic effects of the double burden of malnutrition. Lancet 395:156-64. DOI: https://doi.org/10.1016/S0140-6736(19)32473-0
Organización para la Cooperación y el Desarrollo Económicos (OCDE), 2020. Panorama de la Salud 2019: OCDE indicadores. Conifarma [Internet]. Available from: https://www.oecd.org/health/Panorama-de-la-Salud-2019.pdf
Rodríguez MA, Herrera M, Abalo RG, 2008. Las técnicas de estadística espacial en la investigación salubrista. Caso síndrome de Down. Rev Cubana Salud Públ 34:1-11. DOI: https://doi.org/10.1590/S0864-34662008000400003
Serra Valdés M, Serra Ruíz M, Viera García M, 2018. Las enfermedades crónicas no transmisibles: magnitud actual y tendencias futuras. Rev Finlay 8:140-8.
Shamah LT, Cuevas NL, Romero MM, Gaona PEB, Gómez ALM, Mendoza AL,(2020). Encuesta Nacional de Salud y Nutrición 2018-19. Resultados Nacionales [Internet]. Instituto Nacional de Salud Pública, 268 pp. Available from: https://ensanut.insp.mx/encuestas/ensanut2018/informes.php
Shi Z and Pun-Cheng LS, 2019. Spatiotemporal data clustering: a survey of methods. ISPRS Int J Geo-Inf 8:112. DOI: https://doi.org/10.3390/ijgi8030112
SHCP, 2021. Proyecto de presupuesto de egresos de la Federación 2021. [Internet]. Available from: https://www.ppef.hacienda.gob.mx/work/models/PPEF2021/docs/12/r12_ppcer.pdf
Thurston H, Freisthler B, Bell J, Tancredi D, Romano PS, Miyamoto S,Joseph JG, 2017. The temporal-spatial distribution of seriously maltreated children. Spatial Spatio-temp Epidemiol 20:1-8. DOI: https://doi.org/10.1016/j.sste.2016.12.004
Urquía-Fernández N, 2014. La seguridad alimentaria en México. Salud Públ México 56:s92-s98. DOI: https://doi.org/10.21149/spm.v56s1.5171
Vázquez JR, Ramírez JC, Rojas LA, Romero OC, Ledezma JCR, 2018. La obesidad y su asociación con otras de las enfermedades crónicas no transmisibles. J Negat No Positive Results JONNPR 3:627-42.
Villa-Mancera A, Pastelín-Rojas C, Olivares-Pérez J, Córdova-Izquierdo A, Reynoso-Palomar A, 2018. Bulk tank milk prevalence and production losses, spatial analysis, and predictive risk mapping of Ostertagiaostertagi infections in Mexican cattle herds. Parasitol Res 117:1613-20. DOI: https://doi.org/10.1007/s00436-018-5845-3
Villa-Mancera A and Reynoso-Palomar A, 2019. Bulk tank milk ELISA to detect IgG1 prevalence and clustering to determine spatial distribution and risk factors of Fasciola hepatica-infected herds in México. J Helminthol 93:704-10. DOI: https://doi.org/10.1017/S0022149X18000792
World Health Organization (WHO). Enfermedades no transmisibles. Nota Descriptiva. Diciembre 2021 [Internet]. WHO, Washington, DC, USA. Available from: https://www.who.int/es/news-room/fact-sheets/detail/the-top-10-causes-of-death
Zaragoza Bastida A, Hernández Téllez M, Bustamante Montes LP, Medina Torres I, Jaramillo Paniagua JN, Mendoza Martínez GD, Ramírez Durán N, 2012. Spatial and temporal distribution of tuberculosis in the State of México, México. Sci World J 2012:570278. DOI: https://doi.org/10.1100/2012/570278

How to Cite

Galeana-Pizaña, J. M., Verdeja-Vendrell, L. ., Díaz-Trejo, L. I., Anzaldo, C., Figueroa, D., & Jiménez-Ortega, A. D. (2022). Spatiotemporal patterns of mortality associated with chronic non-communicable diseases and child malnutrition at the municipal level in Mexico. Geospatial Health, 17(1). https://doi.org/10.4081/gh.2022.1087