Vulnerability to COVID-19 in Pernambuco, Brazil: A geospatial evaluation supported by multiple-criteria decision aid methodology

Submitted: 24 March 2021
Accepted: 8 July 2021
Published: 14 January 2022
Abstract Views: 2206
PDF: 308
HTML: 41
Publisher's note
All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article or claim that may be made by its manufacturer is not guaranteed or endorsed by the publisher.

Authors

The paper presents an innovative application to identify areas vulnerable to coronavirus disease 2019 (COVID-19) considering a combination of spatial analysis and a multi-criteria learning approach. We applied this methodology in the state of Pernambuco, Brazil identifying vulnerable areas by considering a set of determinants and risk factors for COVID-19, including demographic, economic and spatial characteristics and the number of human COVID-19 infections. Examining possible patterns over a set number of days taking the number of cases recorded, we arrived at a set of compatible decision rules to explain the relation between risk factors and COVID-19 cases. The results reveal why certain municipalities are critically vulnerable to COVID-19 highlighting locations for which knowledge can be gained about environmental factors.

Dimensions

Altmetric

PlumX Metrics

Downloads

Download data is not yet available.

Citations

Adger WN, 2006. Vulnerability. Global Environ Chang 16:268-81. DOI: https://doi.org/10.1016/j.gloenvcha.2006.02.006
Adhikari Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, Sun C, Sylvia S, Rozelle S, Raat H, Zhou H, 2020. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbeak period: a scoping review. Infect Dis Poverty 9:29. DOI: https://doi.org/10.1186/s40249-020-00646-x
Ambikapathy B, Krishnamurthy K, 2020. Mathematical modelling to assess the impact of lockdown on COVID-19 transmission in India: model development and validation. JMIR Public Health Surveill 6:e19368. DOI: https://doi.org/10.2196/19368
Andersen LM, Harden SR, Sugg MM, Runkle JD, Lundquist TE, 2021. Analyzing the spatial determinants of local COVID-19 transmission the United States. Sci Total Environ 754:1-10. DOI: https://doi.org/10.1016/j.scitotenv.2020.142396
Aquino EML, Silveira IH, Pescarini JM, Aquino R, Souza-Filho JA, Rocha AS, Ferreira A, Victor A, Teixeira C, Machado DB, Paixão E, Alves FJO, Pilecco F, Menezes G, Gabrielli L, Leite L, Almeida MCC, Ortelan N, Fernandes QHRF, Ortiz RJF, Palmeira RN, Junior EPP, Aragão E, Souza LEPF, Netto MB, Teixeira MG, Barreto ML, Ichihara MY, Lima RTRS, 2020. Social distancing measures to control the COVID-19 pandemic: potential impacts and challenges in Brazil. Ciência Saúde Coletiva 25:2423-46. DOI: https://doi.org/10.1590/1413-81232020256.1.10502020
Ball F, Neal P, 2002. A general model for stochastic SIR epidemics with two levels of mixing. Math Biosci 180:73-102. DOI: https://doi.org/10.1016/S0025-5564(02)00125-6
Bekiros S, Kouloumpou D, 2002. SBDiEM: A new mathematical model of infectious disease dynamics Chaos, Solitons Fractals 136:1-16. DOI: https://doi.org/10.1016/j.chaos.2020.109828
Blaszczynski J, Greco S, Matarazzo B, Slowinski R, Szelag M, 2013. jMAF Dominance-based rough set data analysis framework. In: Skowron A, Suraj Z (Eds.), Rough sets and intelligent systems. Professor Zdzislaw Pawlak in memoriam, Springer, Berlin Heidelberg, pp. XXX?. DOI: https://doi.org/10.1007/978-3-642-30344-9_5
Brazilian Institute of Geography and Statistics, 2020. IBGE Cidades 2020 [Demographic census 2010]. Available from: https://cidades.ibge.gov.br/
Coelho FC, 2020. Assessing the spread of COVID-9 in Brazil: mobility, morbidity and social vulnerability. PLoS One 15:1-11. DOI: https://doi.org/10.1371/journal.pone.0238214
Crokidakis N, 2020. COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work? Chaos, Solitons & Fractals 136:1-17. DOI: https://doi.org/10.1016/j.chaos.2020.109930
De Toro P, Nocca F, Renna A, Sepe L, 2020. Real estate market dynamics in the city of Naples: an integration of a multi-criteria decision analysis and geographical information system. Sustainability 12:1-24. DOI: https://doi.org/10.3390/su12031211
Djilali S, Ghanbari B, 2020. Coronavirus pandemic: a predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil. Chaos, Solitons & Fractals 138:1-20. DOI: https://doi.org/10.1016/j.chaos.2020.109971
Dom NC, Ahmad AH, Latif ZA, Ismail R, 2016. Application of geographical information system-based analytical hierarchy process as a tool for dengue risk assessment. Asian Pacif J Trop Dis 6:928-35. DOI: https://doi.org/10.1016/S2222-1808(16)61158-1
Edler C, Schröder AS, Aepfelbacher M, Fitzek A, Heinemann A, Heinrich F, Klein A, Langenwalder F, Lütgehetmann M, Meißner K, Püschel K, Schädler J, Steurer S, Mushumba H, Sperhake JP, 2020. Dying with SARS-CoV-2 infection - an autopsy study of the first consecutive 80 case in Hamburg, Germany. Int J Legal Med 19:1-10. DOI: https://doi.org/10.1007/s00414-020-02336-7
ESRI, 2011. ArcGIS Desktop: Release 10. Environmental Systems Research Institute, Redlands, CA, USA.
Figueiredo CJJ, Mota CMM, 2019. Learning preferences in a spatial multiple criteria decision approach: an application in public security planning. Int J Inf Technol Decis Making 18:1403-32. DOI: https://doi.org/10.1142/S0219622019500251
Fotheringham A, Brunsdon C, Charlton M, 2002. Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons, Chichester, UK.
Fusade-Boyer M, Pato PS, Komlan M, Dogno K, Batawui K, Go-Maro E, McKenzie P, Guinat C, Secula A, Paul M, Webby RJ, Tran A, Waret-Szkuta A, Ducatez MF, 2020. Risk mapping of influenza D virus occurrence in ruminants and swine in Togo using a spatial multicrieria decision analysis approach. Viruses 128:1-12. DOI: https://doi.org/10.3390/v12020128
Grassly NC, Fraser C, 2006. Seasonal infectious disease epidemiology. Proc R Soc Bull 273:2541-50. DOI: https://doi.org/10.1098/rspb.2006.3604
Greco S, Ehrogott M, Figueira J (Eds.), 2016. Multiple criteria decision analysis: state of the art surveys. Springer, New York, NY, USA, pp. 507-555. DOI: https://doi.org/10.1007/978-1-4939-3094-4
Greco S, Matarazzo B, Slowinski R, 2002. Rough sets methodology for sorting problems in presence of multiple attributes and criteria. Eur J Operat Res 138:247-59. DOI: https://doi.org/10.1016/S0377-2217(01)00244-2
Greco S, Słowiński R, Zielniewicz P, 2013. Putting dominance-based rough set approach and robust ordinal regression together. Decis Support Syst 54:891-903. DOI: https://doi.org/10.1016/j.dss.2012.09.013
Han Y, Yang L, Jia K, Li J, Feng S, Chen W, Zhao W, Pereira P, 2021. Spatial distribution characteristics of the COVID-19 pandemic in Beijing and its relationship with environmental factors. Sci Total Environ 761:1-11. DOI: https://doi.org/10.1016/j.scitotenv.2020.144257
Hazarika N, Barman D, Das AK, Sarma AK, Borah SB, 2018. Assessing and mapping flood hazard, vulnerability and risk in the Upper Brahmaputra River valley using stakeholders’ knowledge and multicriteria evaluation (MCE). J Flood Risk Manage 11:S700-16. DOI: https://doi.org/10.1111/jfr3.12237
Hongoh V, Hoen AG, Aenishaenslin C, Waaub J-P, Bélanger D, Michel P, The Lyme-MCDA Consortium, 2011. Spatially explicit multi-criteria decision analysis for managing vector-borne diseases. Int J Health Geograph 70:1-10. DOI: https://doi.org/10.1186/1476-072X-10-70
Jain S, Sharma T, 2020. Social and travel lockdown impact considering coronavirus disease (COVID-19) on air quality in megacities of India: present benefits, future challenges and way forward. Aerosol Air Qual Res 20:1222-36. DOI: https://doi.org/10.4209/aaqr.2020.04.0171
Jelokhani-Niaraki M, Malczewski J, 2015. The decision task complexity and information acquisition strategies in GIS-MCDA. Int J Geograph Inf Sci 29:327-44. DOI: https://doi.org/10.1080/13658816.2014.947614
Kim SJ, Bostwick W, 2020. Social vulnerability and racial inequality in COVID-19 deaths in Chicago. Health Educ Behav 47:509-13. DOI: https://doi.org/10.1177/1090198120929677
Li J, Wang J, Wu C, Yang Y, Ji Z, Wang H, 2007. Establishment of a risk assessment framework for analysis of the spread of highly pathogenic avian influenza. Agric Sci China 6:877-81. DOI: https://doi.org/10.1016/S1671-2927(07)60125-4
Liu L, 2020. Emerging study on the transmission of the novel coronavirus (COVID-19) from urban perspective: evidence from China. Cities 103:1-11. DOI: https://doi.org/10.1016/j.cities.2020.102759
Linka K, Peirlinck M, Costabal FS, Kuhl E, 2020. Outbreak dynamics of COVID-19 in Europe and the effect of travel restrictions. Comput Meth Biomechan Biomed Engine. [Epub ahead of print] doi:10.1080/10255842.2020.1759560. DOI: https://doi.org/10.1101/2020.04.18.20071035
Ministry of Health, 2020. Banco de dados do Sistema Único de Saúde-DATASUS [Database system unified health - DATASUS]. Available from: http://www.datasus.gov.br
Moran PAP 1950. Notes on continuous stochastic phenomena. Biometrika 37:17-23. DOI: https://doi.org/10.1093/biomet/37.1-2.17
Moreira RS, 2020. COVID-19: intensive care units, mechanical ventilators, and latent mortality profiles associated with case-fatality. Brazil Cadern Saúde Públ 36:1012.
Pedrosa NL, Albuquerque NLS, 2020. Spatial analysis of COVID-19 cases and intensive care beds in the State of Ceará, Brazil. Ciência Saúde Colet 25:2461-8. DOI: https://doi.org/10.1590/1413-81232020256.1.10952020
Qi X, Wang J, Li X, Wang Z, Liu Y, Yang H, Li X, Shi J, Xiang H, Liu T, Kawada N, Maruyama H, Jiang Z, Wang F, Takehara T, Rockey DC, Sarin SK; COVID-Cirrhosis-CHESS Group, 2020. Clinical course of COVID-19 in patients with pre-existing decompensated cirrhosis: initial report from China. Hepatol Int 22:1-5. DOI: https://doi.org/10.1007/s12072-020-10051-z
Qiu Y, Chen X, Shi W, 2020. Impacts of social and economic factors on the transmission of coronavirus disease 209 (COVID-19) in China. J Popul Econ 33:1127-72. DOI: https://doi.org/10.1007/s00148-020-00778-2
Requia W, Kondo EK, Adams MD, Gold DR, Struchiner CJ, 2020. Risk of the Brazilian health care system over 5572 municipalities to exceed health care capacity due to the 2019 novel coronavirus (COVID-19). Sci Total Environ 730:139144. DOI: https://doi.org/10.1016/j.scitotenv.2020.139144
Silva L, Figueiredo Filho D, Fernandes, A 2020. The effect of lockdown on the COVID-19 epidemic in Brazil: evidence from an interrupted time series design. Cadernos Saúde Públ 36:e00213920. DOI: https://doi.org/10.1590/0102-311x00213920
Singh RK, Rani M, Bhagavathula AS, Sah R, Rodriguez-Morales AJ, Kalita H, Nanda C, Sharma S, Sharma YD, Rabaan AA, Rahmani J, Kumar P, 2020. Prediction of the COVID19 pandemic for the top 15 affected countries: advanced autoregressie integrated moving average (ARIMA) model. MIR Public Health Surveill 6:1-23. DOI: https://doi.org/10.2196/preprints.19115
Souza DB, Santos FA, Figueiroa E, Correia JB, da Silva HP, de Lima Filho JL, Albuquerque J, 2020. Using curvature to infer COVID-19 fractal epidemic network fragility and systemic risk. medRxiv 2020.04.01.20047225.
Stevens KB, Gilbert M, Pfeiffer DU, 2013. Modeling habitat suitability for occurrence of highly pathogenic avian influenza virus H5N1 in domestic poultry in Asia: A spatial multicriteria decision analysis approach. Spatial Spatial-temp Epidemiol 4:1-14. DOI: https://doi.org/10.1016/j.sste.2012.11.002
UNISDR, 2009. Terminology on disaster risk reduction. UNISDR, Geneva, Switzerland.
Watson DF, Philip GM, 1985. A refinement of inverse distance weighted interpolation. Geoprocessing 315-27.
WHO (World Health Organization), 2020. Coronavirus disease (COVID-2019) situation reports. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports Accessed: May 15, 2020.
Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, Wu Y, Zhang L, Yu Z, Fang M, Yu T, Wang Y, Pan S, Zou X, Yuan S, Shang Y, 2002. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study. Lancet Respir Med 8:475-81. DOI: https://doi.org/10.1016/S2213-2600(20)30079-5
Ye L, Hu L, 2020. Spatiotemporal distribution and trend of COVID-19 in the Yangtze River Delta region of the People’s Republic of China. Geospatial Health 15:1-8. DOI: https://doi.org/10.4081/gh.2020.889
Younsi FZ, Hamdadou D, Chakhar S, 2018. A multicriteria spatiotemporal system for influenza epidemic surveillance. In: Dey N (Ed.), Technological innovations in knowledge management and decision support. IGI Global Press, Hershey, PA, USA, pp. 176-202. DOI: https://doi.org/10.4018/978-1-5225-6164-4.ch008
Younsi F, Chakhar S, Ishizaka A, Hamdadou D, Boussaid D, 2020. A dominance-based rough set approach for an enhanced assessment of seasonal influenza. Risk Analysis 40:1323-41. DOI: https://doi.org/10.1111/risa.13478
Zhai W, Liu M, Peng Z, 2020. Social distancing and inequality in the United States amid COVID-19 outbreak. Econ Space 0:1-3. DOI: https://doi.org/10.1177/0308518X20932576
Zifu F, Hong S, Lihua W, 2015. Research of the classification model based on dominance rough set approach for China emergency communication. Math Probl Engine 1-8. DOI: https://doi.org/10.1155/2015/428218

How to Cite

Figueiredo, C. J. J. de, Mota, C. M. de M., Rosa, A. G. F. ., Souza, A. P. G. de ., & Lima, S. M. da S. . (2022). Vulnerability to COVID-19 in Pernambuco, Brazil: A geospatial evaluation supported by multiple-criteria decision aid methodology. Geospatial Health, 17(s1). https://doi.org/10.4081/gh.2022.1000