
Abstract
The aim of this study was to estimate the territory at risk of

establishment of influenza type A (EOITA) in Mexico, using
geospatial models. A spatial database of 1973 outbreaks of
influenza worldwide was used to develop risk models accounting
for natural (natural threat), anthropic (man-made) and environ-
mental (combination of the above) transmission. Then, a virus
establishment risk model; an introduction model of influenza A
developed in another study; and the three models mentioned were
utilized using multi-criteria spatial evaluation supported by geo-

graphically weighted regression (GWR), receiver operating char-
acteristic analysis and Moran’s I. The results show that environ-
mental risk was concentrated along the Gulf and Pacific coasts,
the Yucatan Peninsula and southern Baja California. The identified
risk for EOITA in Mexico were: 15.6% and 4.8%, by natural and
anthropic risk, respectively, while 18.5% presented simultaneous
environmental, natural and anthropic risk. Overall, 28.1% of
localities in Mexico presented a High/High risk for the establish-
ment of influenza type A (area under the curve=0.923, P<0.001;
GWR, r2=0.840, P<0.001; Moran’s I =0.79, P<0.001). Hence,
these geospatial models were able to robustly estimate those areas
susceptible to EOITA, where the results obtained show the rela-
tion between the geographical area and the different effects on
health. The information obtained should help devising and direct-
ing strategies leading to efficient prevention and sound adminis-
tration of both human and financial resources.

Introduction
Influenza type A virus infection is caused by a virus of the

Orthomyxoviridae family, that represents the greatest risk for
global health according to World Health Organization (WHO) cri-
teria; some variants of these viruses, specifically the highly
pathogenic ones, now pose a serious threat to public health world-
wide (PAHO/WHO, 2018). The pandemic potential of type A
virus lies in the constant evolution of variants (Pergolizzi et al.,
2020); it is estimated that, globally, annual epidemics cause 3-5
million severe infections and 290,000-650,000 deaths (Vega,
2020). Likewise, the circulation of some subtypes of influenza
type A, such as H5, will usually cause serious human disease, and
the pandemic subtypes H7N9 and H5N1 have even presented mor-
tality rates of 27% and 60% in SouthEast Asia and the Middle
East, respectively (PAHO/WHO, 2018). Nevertheless, it is impor-
tant to note that H5-type viruses generally infect birds but that
they are also responsible for human transmission (Li et al., 2019).

Accordingly, investigations have been pursued in the regions
where these types of viruses are considered endemic. In SouthEast
Asia, habitat suitability models for the H5N1 virus were devel-
oped based on climatic similarity, based on the presence or
absence of the serotype (Stevens et al., 2013), and spatial mod-
elling has been carried out for the surveillance of H5N1 in the
Middle East by also considering a climatic similarity model
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(Alkhamis et al., 2016). Moreover, other spatial-model studies
have been published with regard to spatial-temporal dynamics,
propagation and risk of avian influenza (AI) in the Asiatic popula-
tion (Wang et al., 2010; Zhang et al., 2015; Parque et al., 2017).
On the other hand, Gulyaeva et al. (2020) reported a model for AI
along the Pacific Rim using geospatial methods. In addition, the
use of multiple-criteria decision analysis (MCDA) identified
potential high-risk areas by monitoring specific factors (Egli et al.,
2019; Younsi et al., 2019; Stenkamp-Strahm et al., 2020). All these
contribute to a better understanding of the transmission of influen-
za viruses that could be estimated in great detail by combining geo-
graphic, epidemiological and immunological data. However, it is
important to mention that neither did the methodologies consider
the natural and anthropic risk aspects of influenza, nor were geo-
statistical aspects examined to validate the adjustment of the mod-
elling done. Moreover, there is no evidence that natural, anthropic
and environmental risk aspects were used in the analysis or the test
to validate the estimates made by the model, which implies that the
analysis is shallow.

In a study performed at the macro scale to estimate the risk of
transmission and propagation of AI (Belkhiria et al., 2016; Global
Consortium for H5N8 and Related Influenza Viruses, 2016;
Prosser et al., 2016), Ibarra-Zapata et al. (2019) evaluated a sce-
nario of the introduction of influenza type A (IOITA) in Mexico.
Regarding the establishment of the AI, a global model for predict-
ing has been proposed, which includes bioclimatic, geographical,
and anthropogenic variables in its risk estimation (Herrick et al.,
2013). Analysing the spatial association of risk factors and popula-
tion data is crucial for taking preventive measures and for acting in
response to an emerging or re-emerging disease (Belkhiria et al.,
2018). Estimation of the risk of EOITA commonly includes the cli-
matic similarity model, receiver operating characteristic (ROC)
analysis, geospatial modelling, multi-criteria spatial evaluation and
spatial statistics. The climatic similarity model (based on the
MaxEnt algorithm) obtains a global character scenario and
responds to the conditions that are environmentally similar by
pathogenic influenza cases, i.e. it predicts the distribution in envi-
ronmental conditions and in a determined timeframe (Phillips et
al., 2006), Moreover, it is considered the most efficient model cur-
rently available for predicting the distribution of species (Elith et
al., 2006). Mexico suffered a pandemic outbreak of influenza A
(H1N1) in 2009. This was a public health problem whose resolu-
tion involved the participation of all social actors, public and pri-
vate, to implement appropriate mitigation measures aimed at
reducing its spread, thereby fostering a sense of security and pro-
tection of the general population (Cordova-Villalobos et al., 2017).

During the 2018-2019 season, 187,709 cases of influenza were
estimated at the national level in Mexico by the Secretaría de
Salud (2020), whose surveillance was carried out following WHO
guidelines. Specifically, this strategy relied on sentinel surveil-
lance, which consists of the collection, integration, verification and
analysis of epidemiological information from the set of monitoring
units, thus enabling the planning of prevention and control inter-
ventions in different territories (Cordova-Villalobos et al., 2017).
The viruses were classified into highly pathogenic influenza
strains - H5N1, H5N2, H5N8, H5N6, H5N3, and H5N9 - some of
them considered endemic to their region of origin, but with the
potential to mutate via recombination with a low-pathogenicity
virus, bringing with it possible effects upon public health
(Fernandes-Matano et al., 2019).

This ecological study is based on the analysis of a spatial

database of 1973 outbreaks of influenza type A that occurred
throughout the world (2014-2016) as confirmed by laboratories of
the WHO and the World Organization for Animal Health (OIE),
and where PAHO/WHO (2018) and Belkhiria et al. (2018) empha-
sized that the location of events is a fundamental component. Our
aim was to estimate the territory at risk of EOITA in Mexico, by
using geo-intelligence, including geostatistical tools and Euclidean
distances.

Materials and methods
The study involved a risk estimate for EOITA concerning the

whole territory of Mexico as seen in Figures 1-4 with reference to
environmental, natural and anthropic risk characterization.

Environmental risk
Environmental risk is an essential component in the survival of

high and low pathogenicity viruses, one that is mainly associated
with temperature and humidity (Olsen et al., 2006). Therefore, an
virus establishment model was estimated through the climatic sim-
ilarity model by incorporating 20 environmental variables from the
global BIOCLIM database, each having a spatial resolution of 1
km2 (Belkhiria et al., 2016; Fick & Hijmans, 2017) (Table 1).
Moreover, the model is statistically robust and can be validated
with a ROC curve analysis to quantify the area under the curve
(AUC) (Herrick et al., 2013). The AUC validates the model perfor-
mance at estimating those territorial surfaces prone to EOITA.

Natural and anthropic risk characterization 
A geospatial model was developed, by considering the similar-

ities found when comparing different spatial patterns (Harding et
al., 2020) that epidemiologically and probabilistically favour the
establishment of EOITA. Spatial criteria as random, dispersed or
grouped and a High/Low clustering tool have been spatially repre-
sented according to the quadrant methodology (Chen, 2020).
These values represent spatial autocorrelation of the Getis-Ord
(Gi*) indices expressed as High/High, Low/Low, High/Low,
Low/High and non-significant values, which measure the concen-
tration of values for a study area. In addition, these groupings were
defined by the z score, showing the hotspots and/or coldspots rep-
resenting the variation of the interval of highly pathogenic influen-
za according to the risk of establishment obtained (Ord & Getis,
1995).

The spatial statistical method Gi* measures the degree of spa-
tial association resulting from the concentration of weighted sites
and their neighbourhoods within weighted distance radii, classify-
ing the risk in four quadrants (Torres et al., 2017). A reference radi-
al distance of 35 km was used, following the National Animal
Health Device (Secretaría de Agricultura y Desarrollo Rural,
2020). This analysis allows the variables that confer natural and
anthropic risk to be associated, by including the bird conservation
area as the host’s distribution area (Herrick et al., 2013), for char-
acterizing the natural risk of EOITA. This involves accounting for
the spatial distribution of the bird conservation areas and they are
considered as sites of congregation that enable the viral exchange
favouring the emergence of highly pathogenic strains (Bouwstra et
al., 2017). By taking such a spatial approach, the epidemiology of
avian influenza at the nexus of host, causal agent and environment
can be jointly analysed (Stallknecht & Brown, 2008). The anthrop-
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ic risk was estimated through the coverage of poultry production
units (PPU), as represented by the location and capacity of individ-
uals per PPU; small farmers excluded. This made it possible to cal-
culate the density of the PPU in the general neighbourhood accord-
ing to location. On the other hand, according to Xian et al. (2013),
the interaction between humans and poultry favours the evolution
and zoonotic transmission of new strains, opening possible
avenues to greater human mortality.

Data analysis
Spatially, each type of risk was represented by a weighting pro-

cess according to the estimated surface of natural, anthropic, and
environmental risk, designated here by hotspots and coldspots.
Warm colours (red, orange, yellow) highlight the areas of greater
risk compared with cold colours (ranging from blue to green) for
areas with a lower risk of establishment. This assessment was done
statistically, by applying the method of Gi*. The agglomeration of
the risk of virus establishment in space is calculated this way:

                      
(1)

where SD is the standard distance; Dm the median distance; n the
number of elements; and min minutes.

Integration of environmental, natural and anthropic
risks

A spatial multi-criteria evaluation (SMCE) was applied to esti-
mate the surfaces with characteristics that simultaneously integrate
risk of environmental, natural and anthropic virus establishment.
For their weighted linear combination, the weight of each factor
was first obtained by expert methodology and the standardization
of the risk factors achieved by the diffuse membership method
(Aguirre et al., 2015). The fuzzy membership defined the respec-
tive degree of belonging of the factors. Then, optimal requirements
for the establishment of the type A virus were considered on a byte
scale (0 to 255), this being the most recommended approach for
spatial aptitude analysis (Tables 1 and 2) (Silva et al., 2017).

Next, the 20 variables were standardized. After this, using the
expert method, the weights that each type of risk represents were
assigned to estimate the EOITA (Bui et al., 2017). The estimation
of loads was expressed based on data characteristics and risk types
(Marsh et al., 2018). Moreover, it was assigned the corresponding
loads as follows: Introduction risk =0.25, Environmental risk
=0.35; Natural risk =0.20, Anthropic risk =0.20. Through the
weighted linear regression technique, each of the factors was
adjusted to generate the risk to public health cartographic model in
the estimation of the probabilistic potential of virus establishment,
by using this equation (Aguirre et al., 2015):

                      
(2)

where S is the suitability for establishment; n the number of ele-
ments; wi the importance value of the i factor/subfactor; and xi the
standardized factor i.

The virus establishment potential implicated the analysis of
cartographic superposition, With the results obtained, the optimal

surfaces for the establishment of this type of virus in Mexico were
characterized. It was made according to two essential criteria: the
characterization of certain risk factors (environmental, natural, and
anthropic) coupled to a consideration of human population density
(PD) since it has a dependency relationship with nature (Tjon-
Kon-Fat et al., 2016; Sullivan-Wiley & Gianotti, 2017). On the
other hand, anthropic factors constitute a crucial element in the
recombination of influenza virus strains and even highly
pathogenic viruses such as H5N1 can originate from direct or close
human interactions with infected, diseased, or dead poultry ani-
mals (Bi et al., 2015). 

Table 2. Diffuse membership risk factors of influenza type A.

Table 1. Environmental variables from the global BIOCLIM
database.

Variable     Description 

BIO1                   Annual mean temperature
BIO2                   Mean diurnal range (mean of monthly [max. temp. - min. temp.])
BIO3                   Isothermality (BIO2/BIO7) ( 100)
BIO4                   Temperature seasonality (standard deviation 100)
BIO5                   Max. temperature of warmest month
BIO6                   Min. temperature of coldest month
BIO7                   Temperature annual range (BIO5-BIO6)
BIO8                   Mean temperature of wettest quarter
BIO9                   Mean temperature of driest quarter
BIO10                 Mean temperature of warmest quarter
BIO11                 Mean temperature of coldest quarter
BIO12                 Annual precipitation
BIO13                 Precipitation of wettest month
BIO14                 Precipitation of driest month
BIO15                 Precipitation seasonality (coefficient of variation)
BIO16                 Precipitation of wettest quarter
BIO17                 Precipitation of driest quarter
BIO18                 Precipitation of warmest quarter
BIO19                 Precipitation of coldest quarter
BIO20                 Elevation (meters above sea level)
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Figure 1. Probabilistic potential modelling for introduction of influenza type A in Mexico.

Figure 2. Mexican’ map of natural risk and anthropic by the conservation, production, and densi-ties of birds: A) surfaces of natural conser-
vation; B) densities and corridors of natural risk; C) sur-faces of poultry production; and D) densities and corridors of anthropic risk.
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Figure 3. Probabilistic potential modelling of establishment of influenza type A in Mexico.

Figure 4. Estimates of the risk of establishment of influenza type A in Mexico. Geographically weighted regression (A) and Moran’s I (B).
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Finally, to further strengthen the methodology and offer statis-
tical support, the risk of EOITA was evaluated by geographically
weighted regression (GWR), this technique is based on kernel
regression (Brundson et al., 1996) and used to examine the spatial
variability of a territorial extension. It has the ability to explain the
relations between the analysed factors (Mondal et al., 2015).
Additionally, the results were then corroborated by the ROC curve,
i.e. AUC analysis, and spatial autocorrelation analyses in the form
of Moran’s I. Together, these supplementary analyses made it pos-
sible to reliably identify the concentration or dispersion of the val-
ues representing the risk of EOITA in Mexico.

Results
The outcome of the environmental risk model for the EOITA

was considered impressive at AUC =0.923. This model was able to
spatially represent areas with greater suitability for the establish-
ment of highly pathogenic viruses (warm colours) and areas with
lower environmental suitability for these viruses (cold colours) as
shown in Figure 1.

The environmental risk of EOITA was defined as a function of
the following precipitation variables: the wettest month contribut-
ed 22.5%, the average annual temperature 21.3%, seasonality of
temperature 11.6%, precipitation of the warmest quarter 6.9%,
average temperature of the warmest quarter 5.9%, and precipita-
tion of the coldest quarter 5.5%, with less contributed by the aver-
age temperature of the wettest quarter (3.6%) and average temper-
ature of the coldest quarter (3.5%); the other 12 other Bioclim vari-
ables contributed jointly the remaining 11.4%. The characteriza-
tion of the natural risk of virus establishment showed 15.6% of the
Mexican territory to be at risk, amounting to a surface area of
304,500 km2 (Figure 2A). Concerning the anthropic risk of estab-
lishment, 4.8% of the Mexican territory (92,600 km2) it was
involved (Figure 2C).

The risk model integrated the areas that simultaneously
showed evidence of environmental, natural, and anthropic risks of
influenza establishment. These estimations revealed that 0.9% of
the Mexican surface was deemed very high risk for the establish-
ment of EOITA with 5.9% at high risk, 11.7% at medium risk and
31% at low risk, leaving roughly half of the Mexican territory at
very low risk of EOITA. Overall, 19 priority clusters carrying virus
infection risk were characterized with the largest identified on the
Pacific Coast and in the Western part of the country, followed by
areas located on the Gulf Coastal Plain, the Isthmus of
Tehuantepec, the Yucatan Peninsula, and the Baja California
Peninsula, along with some smaller areas found in other parts of
the country (Figure 3).

The Gi* hot spot analysis showed that 28.7% of the country
was in a High/High risk zone for EOITA, while another 39.5% was
in a Low/Low-risk (LL) zone with statistically significant values.
By contrast, 0.38% of the country had High/Low-risk values and
slightly more (1.09%) featured Low/High-risk values. In 30.9% of
the locations, no significant aggregation of risk was discernible
(Figure 4A). The GWR behaved efficiently in that it showed that
the model was statistically significant (P<0.001), with r2=0.84.
Hence, the spatial characteristics of the established risk factors,
together with population density, explained 84% of the spatial vari-
ation of virus establishment risk across Mexico’s territory (Figure
4A). The Moran’s I yielded a value of 0.79, with a z=3515 and
P<0.001. This meant the obtained results were statistically signif-

icant and demonstrated that the distribution pattern of the estab-
lishment risk model was indeed aggregated - with a <0.01% prob-
ability that the distribution pattern arose from chance - reflecting
the positive spatial autocorrelation found in 67.6% of Mexico’s ter-
ritory (Figure 4B).

Discussion
The use of geospatial modelling to estimate the virus establish-

ment risk allowed us to characterize the Mexican territory accord-
ing to epidemiological criteria related to the causative agent of
type A influenza. From this method, a key product are the so-called
health risk maps, which support decision-making in health policy
matters according to the One Health approach proposed by the
WHO (Global Consortium for H5N8 and Related Influenza
Viruses, 2016), especially considering that public health and ani-
mal health are linked in the ecosystems in which they coexist
(Peiris et al., 2016). The environmental risk model enabled at-risk
areas to be adequately classified, and this was validated by ROC
analysis, a robust diagnostic where we recorded AUC=0.923, i.e.
much higher than its critical cut-off around 0.700 (Herrick et al.,
2013). Likewise, the key predictor variables were associated with
precipitation, humidity and temperature, together contributing to
more than half of the prediction available with the environmental
risk model (62.3%). This result is similar to previous studies that
have demonstrated the effectiveness of this type of analysis for
identifying risk scenarios of highly pathogenic viruses in countries
and regions, such as Japan (Moriguchi et al., 2013), China (Fang
et al., 2013; Artois et al., 2018), the Middle East (Zhang et al.,
2012), and the United States (Belkhiria et al., 2016).

We uncovered a natural risk of virus establishment in 15.6% of
the Mexican territory. A possible prevention strategy may be to
establish sentinel sites to carry out monitoring activities that sup-
port epidemiological surveillance systems in these at-risk areas.
The anthropic risk of virus establishment was limited to just 4.8%
of the country’s area. Although it is a very low percentage, it
should not be neglected because once this type of virus becomes
established, nearby regions are at latent risk due to the likelihood
the virus will spread. Thus, it is important to maintain PPU facili-
ties in good, hygienic conditions, ideally through proper waste
management and disposal.

The spatial interaction between environmental, natural, and
anthropic risk factors play a fundamental role in the establishment
of highly pathogenic viruses and their possible recombination, as
demonstrated by a study carried out in California (Belkhiria et al.,
2018). Analysing spatial databases using geographic information
systems (GIS), specifically by implementing an SMCE, greatly
benefits public health studies due to the possibility of achieving
early detection under adverse situations. The present study identi-
fied 19 clusters at high-risk for EOITA, areas where all the factors
conducive to the establishment of this type of virus converge. This
result suggests that epidemiological surveillance systems should
be strengthened.

The establishment risk model used in the present study had
good geostatistical support, mainly from Moran’s I and GWR,
which were used to validate the model’s estimations. Their robust
results provided confidence in the evidence presented for the risk
clusters found in Mexico. Finally, it is advisable to strengthen rela-
tions between national and international health agencies, which
could involve sharing data and institutional information, to
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strengthen the global analysis and thereby estimate influenza out-
break scenarios with greater predictive power.

Conclusions
The geospatial model developed here to estimate the risk of

establishment of type A influenza virus should be useful for epi-
demiological surveillance in Mexico, and possibly other countries
as well, since it incorporates multiple geographic and environmen-
tal variables that can lead to optimal conditions for virus establish-
ment in host populations. In tandem, by identifying areas at risk,
this modelling can strengthen public health decision-making and
facilitate the design of more effective intervention strategies.
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