
Abstract
The aim of this study was to assess the role of climate variabil-

ity on the incidence of dengue fever (DF), an endemic arboviral
infection existing in Jakarta, Indonesia. The work carried out

included analysis of the spatial distribution of confirmed DF cases
from January 2007 to December 2018 characterising the socio-
demographical and ecological factors in DF high-risk areas.
Spearman’s rank correlation was used to examine the relationship
between DF incidence and climatic factors. Spatial clustering and
hotspots of DF were examined using global Moran’s I statistic and
the local indicator for spatial association analysis. Classification
and regression tree (CART) analysis was performed to compare
and identify demographical and socio-ecological characteristics of
the identified hotspots and low-risk clusters. The seasonality of
DF incidence was correlated with precipitation (r=0.254, P<0.01),
humidity (r=0.340, P<0.01), dipole mode index (r= –0.459,
P<0.01) and Tmin (r= –0.181, P<0.05). DF incidence was spatially
clustered at the village level (I=0.294, P<0.001) and 22 hotspots
were identified with a concentration in the central and eastern
parts of Jakarta. CART analysis showed that age and occupation
were the most important factors explaining DF clustering. Area-
specific and population-targeted interventions are needed to
improve the situation among those living in the identified DF
high-risk areas in Jakarta.

Introduction
Dengue fever (DF) is a common vector-borne infectious dis-

ease transmitted by Aedes aegypti and Ae. albopictus. More than
390 million cases were reported annually (Bhatt et al., 2013), and
approximately USD 8.9 billion lost due to these infections world-
wide (Shepard et al., 2016). According to the World Health
Organization (WHO) more than 2.5 billion people are at high risk,
with at least 70% of whom at risk residing in Southeast Asia and
the Western Pacific region (WHO, 2011). Indonesia is one of the
tropical countries where DF is a common viral infection (Harapan
et al., 2019a). All four dengue serotypes (DEN-1 to 4) are current-
ly circulating in the country emphasizing a great risk of infection
and public health burden (Karyanti et al., 2014).

The first DF case in Indonesia was reported in Jakarta and
Surabaya in 1968 (Sumarmo, 1987). To date, DF outbreaks have
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been reported in all 34 provinces and 514 districts across the
nation, including the capital city, Jakarta, known as the most pop-
ulated city in Indonesia with a high incidence of DF each year. The
number of DF cases has increased from 36,345 in 2007 to 49,496
in 2016, while there was a decrease to 9204 in 2018 (Ministry of
Health, Republic of Indonesia, 2018). A recent study demonstrates
that all four dengue serotypes have been identified in the city,
which may have led to imported cases also in other countries
(Lestari et al., 2017; Harapan et al., 2019a). To date, a tetravalent
dengue vaccine has been developed and advanced to clinical trial
(Biswal et al., 2019). However, so far, DF control is primarily
focusing on vector control aimed at larviciding and reduction of
breeding sites (Karyanti et al., 2014; Hamid et al., 2017). Despite
its importance, information on the variation in the distribution of
risk of DF and socio-ecological characteristics affecting its trans-
mission spatially and temporally at the village level within the area
covered by Jakarta are lacking. Such information is essential as it
would provide evidence for allowing better intervention strategies
in supporting existing DF control efforts. 

A large number of factors may affect the variation in DF inci-
dence at finer scales, e.g., heterogeneity of socio-ecological fac-
tors, such as mobility, access to water and sanitation and socioeco-
nomic status (Schmidt et al., 2011; Li et al., 2018; Chen et al.,
2019; Harapan et al., 2019b). In addition, climatic factors have
been known to have a strong effect on the distribution DF trans-
mission (Astuti et al., 2019; Xu et al., 2019). Precipitation may
have either a positive or negative effect by rainfall producing water
bodies in the environment thus facilitates an increased number of
breeding sites for Aedes mosquitoes. Yet, extreme rainfall and
flooding could flush and diminish the immature mosquitoes and
their breeding sites (Seidahmed & Eltahir, 2016). Further, humidi-
ty together with temperature within suitable margins contribute to
mosquito breeding and taken together, all these variables play an
important function on mosquito survival and their ability to host
and transmit the dengue virus (Morin et al., 2013; Gimenez et al.,
2020). 

Geographical information systems (GIS) and spatial statistics
are commonly used in the public health field (Oliveira et al., 2013;
Fletcher-Lartey and Caprarelli, 2016; Diptyanusa et al., 2020) to
help map and profile disease characteristics including potentially
related environmental and socioeconomic features. Several studies
have used GIS and spatial analysis for mapping and understanding
the geographic pattern of dengue cases at the national (Xu et al.,
2019; Zambrano et al., 2019) and local level (e.g., district or city
level) (Carvalho et al., 2017; Fuentes-Vallejo, 2017; Astuti et al.,
2019). Spatial analyses allow the identification of disease clusters,
which can help reveal underlying risk factors of transmission in
neighbouring areas. This can be useful in supporting epidemiolog-
ical surveillance and in providing better visualization and generat-
ing hypotheses, which could facilitate more thorough control
strategies (Fletcher-Lartey and Caprarelli, 2016).

The present study aimed to: i) examine the relationship
between DF incidence and climate variability during the period
2007-2018; ii) identify spatial clusters with the highest risk of DF;
and iii) attempt to profile socio-ecological characteristics of high-
risk clusters of DF in Jakarta, since better information would help
local health authorities to better design and implement dengue con-
trol strategies in the city of Jakarta.

Materials and methods

Study site
The study was carried on in the city of Jakarta, situated in the

lowland area of north-western Java island. It covers an area of 622.33
km2 and comprises six municipalities, 44 sub-districts and 267 vil-
lages. Based on the 2010 census report, the population amounts to
approximately 9.6 million with a density at the village level ranging
from 2,423 to 18,761 people per km2. Jakarta has a tropical climate
with a mean temperature of 28.7°C and the annual precipitation
ranges from 1459 to 1600 mm with the highest rate in February. 

Data acquisition
Confirmed DF cases for the period of January 2007 to

December 2018 were obtained from the disease information sys-
tem managed by the Jakarta Provincial Health Office (PHO). The
data contain information on age, gender, date of hospital admission
and address (village identification). In Indonesia, DF is classified
as a notifiable disease since 1968. All health facilities are required
to report all DF cases to the District Health Office (DHO) within
24 hours after diagnosis. Population data and population density
(per km2) at the village level for each corresponding year were col-
lected from the Bureau of Statistics. 

The village-level socio-ecological data were extracted from
village census (‘Potensi Desa’). For each village, data for the num-
ber of households in slum, drinking water source, main occupation,
number of doctors and doctor per 1000 people were collected.
Additionally, road network density data (per km2) for each county
were calculated based on road length divided by areal space. The
road network density was used as a proxy for connectivity which
reflects the movement of people, which is known to be a factor
associated with dengue distribution in urban areas (Qi et al., 2015;
Li et al., 2018). Monthly climate data, including the mean temper-
ature (Tmean), the minimum temperature (Tmin), the maximum tem-
perature (Tmax), the monthly average relative humidity (RHavg), the
mean precipitation (Pavg) for the study period, were obtained from
the Meteorological, Climatological and Geophysical Bureau
database (http://dataonline.bmkg.go.id/). Data on the monthly El
Niño-Southern Oscillation (Niño3.4) a periodic variation in sea
surface temperatures, and the dipole mode index (DMI), also
known as the Indian Ocean Dipole (IOD) were obtained from the
Earth System Research Laboratory of the National Oceanic and
Atmospheric Administration (NOAA) (https://psl.noaa.gov/gcos_
wgsp/Timeseries/SOI/) in the US and from the Japan Agency for
Marine-Earth Science and Technology (JAMSTEC) (http://www.
jamstec.go.jp/aplinfo/sintexf/iod/dipole_mode_index.html),
respectively. 

Data analysis

Approach to seasonal variation
To explore seasonal patterns and trends with respect to dengue

incidence, we expressed the weekly incidence of dengue (Yt) as
trend (Tt), cyclical component (Ct), seasonal component (St) and
error or residual component (Et) by employing a multiplicative,
seasonal decomposition analysis using SPSS version 21 (IBM
Corp., Armonk, NY, USA). This analysis decomposes the time-
series to generate these components at time t as described by
Cleveland et al. (1990).
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Relationship between dengue incidence and climate variability
A Spearman’s correlation test was performed to examine asso-

ciations between monthly dengue incidence and monthly climatic
variables including Tmean, Tmin, Tmax, RHavg, Pavg, Niño3.4 and DMI.
A 95% confidence interval (95% CI) was calculated and signifi-
cance assessed at α=0.05. Correlograms were made by using R
software (‘Hmisc’ package).

Spatial analysis of the incidence of dengue
The village was used as the geographic unit for the analysis

(n=261). We did not include villages in Kepulauan Seribu
(Thousand Islands) in the study as the number of DF cases there
were low. DF cases were linked with village IDs and polygons by
using ArcGIS 10.5 [Environmental Systems Research Institute
(ESRI), Redlands, CA, USA]. Village-level polygons (shapefile)
were obtained from the Indonesian Statistical Services Information
System of National Bureau of Statistics (Sistem Informasi
Layanan Statistik) (https://www.bps.go.id/). 

Incidence mapping
Crude incidence of dengue at village-level (per 10,000 people)

was calculated and mapped. The village-level incidence maps of
dengue were created by ArcGIS 10.5.1 (ESRI).

Clustering assessment 
Spatial neighbourhood weight was created based on a Queen-

based spatial contiguity matrix (where the village polygons share a
common edge or vertex). Moran’s I analysis (Moran, 1950) was per-
formed to estimate global spatial autocorrelation of the incidence of
dengue during 2007-2018. Furthermore, local indicator spatial asso-
ciation analysis was performed to locate high-high (HH) risk clusters,
low-low (LL) risk cluster and outliers designated as high-low (HL)
and low-high (LH) according to Anselin (1995). A HH cluster con-
sists of villages with high rates adjacent to other such villages, while
the LL cluster indicates the opposite villages with low rates close to
other low-rate villages. All of the above spatial clustering analyses
were performed using GeoDA v.1.8 software (https://geodacenter.
github.io/download_linux. html). 

Profiling and comparisons
Demographical and socio-ecological characteristics of HH and

LL clusters were profiled and compared. Independent t-test or
Mann-Whitney U test (for continuous variables) and Fischer’s
Exact/Chi-square (for categorical variables) were performed.
Levels of significance were set at 5%. Statistical analysis was per-
formed using SPSS 24 (IBM Corp). Classification and regression
trees (CART) were used to identify the relative importance of envi-
ronmental and socio-demographic variables of the DF clustering.
This analysis was done using the rpart packages of R (Therneau et
al., 2019). Nine socio-demographic factors at the village level, i.e.
mean age of patients; gender; drinking water source; main occupa-
tion; proportion of households in the slum area; population densi-
ty; road density; total number of doctors; and doctors per 1000
population were incorporated into the model using the class
method of the rpart function. The sample consisted of 60 villages
from two classes (HH and LL) based on the clustering analysis.

Results

Descriptive statistics 
A total of 265,225 DF cases were reported in Jakarta in the

period 2007-2018. The proportion of DF cases among those aged
24 years or more (at the time of infection) was 94,598 (35.7%),
which is a significantly higher number compared other age groups;
the number of males in this group was slightly higher than the
females (n=139,911; 52.8%) (Table 1). Overall, the incidence of
DF cases per year was reduced by approximately 80% from
325.5/100,000 people in 2007 to 71.67/100,000 people in 2018.
However, the annual incidence of DF fluctuated over the study
years with the highest incidence observed in 2016 (424.06/100.000
people) (Table 1).

Temporal pattern of dengue fever incidence
The variability of monthly incidence was evident (Figure 1).

Further, the boxplot chart shows that the monthly mean incidence
was relatively higher in January to May, with the highest and low-
est means observed in April and October, respectively (Figure 2).
Seasonal decomposition confirmed the fluctuated trend and strong
seasonality in the DF incidence (Figure 3). 
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Table 1. Summary statistics of notified dengue cases in Jakarta, Indonesia 2007-2018.

                                                                                                             Year           
Age        2007            2008           2009             2010               2011             2012                2013               2014             2015             2016             2017            2018      12-year total
group  no. (%)        no. (%)      no. (%)        no. (%)          no. (%)        no. (%)           no. (%)           no. (%)        no. (%)         no. (%)        no. (%)       no. (%)        no. (%)

<5        3363 (10.8)      3133 (11.2)    3220 (11.5)       3603 (12.6)         1539 (14.4)      1724 (14.4)          4602 (13.4)          3851 (13.5)      1288 (15.5)       5206 (12.8)      1466 (18.9)      798 (11.6)      33,793 (12.7)
5-15      7882 (25.2)      7378 (26.4)    7607 (27.1)       8133 (28.4)           2673 (25)        3172 (26.5)         10,056 (29.2)          8257 (29)        2193 (26.3)      14,057 (34.5)     2308 (29.7)     1967 (28.6)     75,683 (28.5)
15-24    8536 (27.3)       7268 (26)     7164 (25.5)       6847 (23.9)           2351 (22)        2413 (20.2)          7316 (21.2)          5719 (20.1)      1638 (19.7)       8852 (21.7)      1492 (19.2)     1555 (22.6)       6151 (23.1)
>24     11,495 (36.8)   10,207 (36.5)  10,100 (36)     10,034 (35.1)        4131 (38.6)      4650 (38.9)         12,466 (36.2)       10,600 (37.3)     3210 (38.5)       12,629 (31)      2510 (32.3)     2566 (37.3)     94,598 (35.7)
Gender                                                                                                                                                                                                                                                  

Male   16,236 (51.9)   14,666 (52.4) 14,468 (51.5)    14,901 (52.1)        5610 (52.5)      6301 (52.7)         18,448 (53.6)       15,473 (54.4)     4476 (53.7)      21,465 (52.7)     4188 (53.9)     3679 (53.4)    139,911 (52.8)
Female15,040 (48.1) 13,320 (47.6) 13,623 (48.5)    13,716 (47.9)        5084 (47.5)      5658 (47.3)         15,992 (46.4)       12,954 (45.6)     3853 (46.3)      19,279 (47.3)     3588 (46.1)     3207 (46.6)    125,314 (47.2)
Total         31,276               27,986             28,091                28,617                   10,694                11,959                    34,44                    28,427                 8329                  40,744                 7776                  6886                265,225
Incidence 325.25              291.28             292.37                297.84                   111.30                124.47                   358.03                   295.86                 86.68                  424.06                 80.93                 71.67
rate*                                         
*Per 100,000 people.
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Relationship between dengue fever incidence and climate
Spearman’s correlation analysis showed significant positive

correlation between DF incidence with precipitation (r=0.254,
P<0.01) and humidity (r=0.340, P<0.01). Negative correlation was
observed between DF incidence and DMI (r= –0.459, P<0.01) and

Tmin (r= –0.181, P<0.05). The DMI was significantly negatively
correlated with precipitation (r= –0.309, P<0.01) and humidity (r=
–0.384, P<0.01) but positively correlated with temperature. The
correlations between DF incidence and Niño3.4, Tmean and Tmax

were not statistically significant (Figure 4, Supplementary file
Table S1). 
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Figure 1. Incidence of dengue fever in Jakarta, Indonesia 2007-
2018.

Figure 2. Monthly distribution of the incidence of dengue fever
in Jakarta, Indonesia.

Figure 3. Decomposition of the dengue fever incidence in Jakarta, Indonesia.

[page 186]                                                            [Geospatial Health 2021; 16:948]                                                                             

Non
-co

mmerc
ial

 us
e o

nly



Spatial distribution of dengue fever incidence 
The distribution of crude, cumulative incidence of DF was spa-

tially different at the village level across the city, with a high inci-
dence observed in certain villages including Setiabudi
(1098/10,000 persons), West Kelapa Gading (1019/10,000 per-
sons), Gambir (825/10,000 persons), East Kelapa Gading
(772/10,000 persons) and Rawa Sari (676/10,000 persons) (Figure
5). In addition, the application of Moran’s I statistics showed the
DF incidence during the period to be significantly clustered (Table
2), with the power of spatial clustering relatively stable over the
whole period studied. Overall, over the period studied, the Local
Moran’s I statistic identified 22 HH clusters or hotspots including
a population of 795,702 at risk. The analysis also identified 38 LL
clusters and spatial outliers (six HL clusters and six LH clusters).
A detailed list of these clusters is given in the Supplementary file.
The map shown in Figure 6 illustrates the annual dynamic of the
distribution of DF clusters from 2007 to 2018. Hotspots were iden-
tified in Central, East and South Jakarta and some villages were
consistently identified as hotspots over the period, including East
Cempaka Putih (Central Jakarta), Kayu Putih (East Jakarta) and
Sumur Batu (Central Jakarta). Meanwhile, it was evident that some
hotspots emerged in the northwest and south Jakarta in the period
2016-2018. The number of HH villages increased by 50% during
the period, from 21 in 2007 to 32 in 2018. The population at risk
ranged from 421,264 to 1,440,048 (Table 3).

Demographical and socio-ecological profiles 
The demographical and socio-ecological characteristics of

hotspots and low risk clusters are given in Table 4. Compared to

low risk clusters, the DF hotspots were characterised by a relative-
ly higher number of cases (38.8%) among people older than 24
years and further characterized by predominantly working in ser-
vice industries, living and areas with less number of households in
slum, a high ratio of doctor per 1000 people and a lower population
density. Based on CART analysis, age (15.5%) and occupation
(11.2%) were the most important variables determining the DF
clustering (Table 5, Supplementary Figure S1). 
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Table 2. Annual spatial clustering estimated by Moran (1950) analysis.

Year                          Moran’s I                               P-value

2007                                         0.314                                                 0.001
2008                                         0.258                                                 0.001
2009                                         0.324                                                 0.001
2010                                         0.298                                                 0.001
2011                                         0.258                                                 0.001
2012                                         0.144                                                 0.001
2013                                         0.397                                                 0.001
2014                                         0.358                                                 0.001
2015                                         0.354                                                 0.001
2016                                         0.345                                                 0.001
2017                                         0.345                                                 0.001
2018                                         0.326                                                 0.001
2007-2018                               0.294                                                 0.001

Figure 4. Spearman’s correlation matrix for dengue fever (DF)
incidence and climatic variables. RH, relative humidity; DMI,
dipole mode index.

Figure 5. Cumulative crude incidence (per 10,000 population) of
dengue fever at village-level in across Jakarta, Indonesia 2007-
2018.
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Discussion
To best our knowledge, this study is the first attempt to explore

the spatial heterogeneity of DF incidence and hotspots at the vil-
lage level in Indonesia by examining correlations between inci-
dence and climate variables based on a 12-year dataset. We found
significant changes in the trends of the spatial DF incidence pattern
and identified 22 hotspots across the city, some of which persisted
over the whole study period. It was also noted that the DF high-risk
clusters primarily included individuals over 24 years of age living
in better, less populated surroundings. Our analysis showed that
age and occupation were the main contributors to the clustering. 

The DF long-term incidence trend fluctuated over the period
studied with at least two major peaks (in 2014 and 2016), a pattern
likely to be driven by climate variations. However, this association

could not be fully shown as changes could also related to improved
reporting, surveillance or changes on people’s awareness towards
DF. However, there was no significant change in the DF surveil-
lance/reporting system in Jakarta or in other provinces in Indonesia
during the period (Harapan et al., 2019a). On the other hand, the
strong DF seasonality was obvious and this can be explained by its
significant correlation with the seven climatic factors as evidenced
in the present study. Our analysis suggests that the temporal pattern
of DF incidence is positively correlated with the monthly variabil-
ity of rainfall and humidity but negatively influenced by the mini-
mum temperature and DMI. This finding is consistent with studies
in other parts of Indonesia (Tosepu et al., 2018; Astuti et al., 2019)
as well as other tropical cities such as Bangkok, Thailand
(Polwiang, 2020) and Hanoi, Viet Nam (Thi Tuyet-Hanh, 2018). 

We also attempted to further investigate the influence of the

                   Article
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Table 3. Descriptive statistics of dengue fever clusters as identified by local indicator spatial association in Jakarta, Indonesia 2007-2018.

Year       Cluster                        Number of DF cases          Incidence per 10,000 people         Number of villages        Population at risk

2007           High-high                                               4726                                                         59.46                                                         21                                          794,824
                  Low-low                                                  3879                                                         17.50                                                         42                                         2,215,947
                  Outliers (HL & LH)                            1132                                                         33.93                                                         11                                          333,625
2008           High-high                                               5939                                                         52.26                                                         28                                         1,136,477
                  Low-low                                                  3275                                                         14.88                                                         41                                         2,200,504
                  Outliers (HL & LH)                             354                                                          21.92                                                          8                                           161,494
2009           High-high                                               4392                                                         53.02                                                         24                                          828,311
                  Low-low                                                  1698                                                         10.43                                                         36                                         1,628,411
                  Outliers (HL & LH)                             684                                                          25.77                                                         10                                          265,464
2010           High-high                                               4065                                                         51.65                                                         23                                          787,047
                  Low-low                                                  2729                                                         18.42                                                         35                                         1,481,362
                  Outliers (HL & LH)                            1038                                                         31.01                                                         11                                          334,736
2011           High-high                                               1675                                                         19.39                                                         22                                          863,649
                  Low-low                                                   731                                                           6.47                                                          27                                         1,129,593
                  Outliers (HL & LH)                             278                                                          12.40                                                          7                                           224,154
2012           High-high                                               1188                                                         19.57                                                         15                                          607,100
                  Low-low                                                   496                                                           7.71                                                          19                                          643,563
                  Outliers (HL & LH)                             292                                                          12.64                                                          8                                           231,020
2013           High-high                                               6835                                                         72.75                                                         25                                          939,508
                  Low-low                                                  2192                                                         16.74                                                         38                                         1,309,417
                  Outliers (HL & LH)                             520                                                          37.90                                                          5                                           137,198
2014           High-high                                               3823                                                         58.88                                                         19                                          649,282
                  Low-low                                                  2278                                                         16.31                                                         38                                         1,396,885
                  Outliers (HL & LH)                             589                                                          25.40                                                          8                                           231,912
2015           High-high                                               1475                                                         35.01                                                         10                                          421,264
                  Low-low                                                   508                                                           4.10                                                          35                                         1,238,131
                  Outliers (HL & LH)                              64                                                            8.45                                                           3                                            75,698
2016           High-high                                               8771                                                         67.95                                                         33                                         1,290,827
                  Low-low                                                  4107                                                         24.97                                                         45                                         1,645,097
                  Outliers (HL & LH)                            1046                                                         40.87                                                         12                                          255,932
2017           High-high                                               1813                                                         12.59                                                         31                                         1,440,048
                  Low-low                                                   610                                                           4.18                                                          44                                         1,458,553
                  Outliers (HL & LH)                             215                                                           8.00                                                          10                                          268,793
2018           High-high                                               1153                                                         11.59                                                         32                                          995,018
                  Low-low                                                   465                                                           3.81                                                          31                                         1,218,951
                  Outliers (HL & LH)                             192                                                           6.89                                                          10                                          278,769
DF, dengue fever; HL, high-low; LH, low-high.
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regional climate on the major outbreaks in 2014 and 2016.
Although we found no significant correlation between DF inci-
dence and Niño3.4 but we did note that the incidence of DF these
years was negatively correlated with DMI. The positive correlation
observed between DMI and the DF incidence might have triggered
an increase in DF incidence in 2014 and 2016 after a 5-7 months
lag period (Supplementary file Figure S2). Indeed, associations
between IOD/DMI and DF incidence have also been reported in
Bangladesh (Banu et al., 2015) and Pakistan (Atique et al., 2016)
a positive IOD/DMI significantly multiplies the monsoon rainfall
over the Indian region but in Indonesia the precipitation rate is
reduced (Ashok et al., 2004; Hashizume et al., 2009). A combina-
tion between water shortage due to drought (which drives people
to put out more containers to collect water) followed by increased
rainfall (2-3 months before) may likely have driven the outbreak in
2016 (Supplementary file Figure S2).

The present study found clear evidence of geographical varia-
tion in incidence of DF at the village level in with a high incidence
observed in central and east Jakarta. Central Jakarta is a highly
populated area and it is the center of economic and business activ-
ities. The probability of human and vectors contact is likely to be
influenced by the population/settlement density; the risk of being
infected is likely to be higher in areas with more people (Hasanah
and Susanna, 2019). The results in eastern Jakarta, on the other
hand, could have primarily been caused by poor sanitation. Based
on a recent environmental risk survey in this area, 72.8% of house-
holds showed moderate risk of DF transmission (Prasetyowati and
Ginanjar, 2017). The spatial variation in risk, however, may also be
partly explained by the variation in socio-ecological conditions,
the effects of interventions (e.g., vector control), entomological
characteristics (e.g., breeding sites, density and resistance) as well

as immunity. We did not include meteorological factors (e.g. rain-
fall, temperature and humidity) in the comparative analysis since
the meteorological variation at the village level was not evident.
However, further exploration is important to understand the role of
such societal and ecological on the spatial heterogeneity in risk of
DF in Jakarta. Moreover, population-based studies are required to
better understand the variation in risk factors at the various levels
(individual, household and community). In addition, seropreva-
lence studies may be needed to understand the heterogeneity in the
transmission dynamic. 

The dynamic variation of the DF hotspots varied over years,
may indicate changes in risk factors at the local level. In our study,
DF high-risk clusters were characterized by a higher number of
cases in people older than 24 years, which might be explained by
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Table 4. Sociodemographic and ecological characteristics of dengue fever clusters in Jakarta, Indonesia 2007-2018.

Characteristics                                      Spatial clusters                                          t/c2/U                           P-value
                                                                                     HH (n=22)                     LL (n=38)                                                                   

Mean age (SD) (years)                                                                  22.42 (16.36)                           21.02 (15.62)                             t=10.848                                  <0.001
Age group (%)                                                                                                                                                                                                                                                  
       <5                                                                                                         11.8                                           12.4                                     c2=95.79                                  <0.001
       5-15                                                                                                       25.8                                           28.6                                                                                              
       15-24                                                                                                     23.7                                           23.6                                                                                              
       >24                                                                                                       38.8                                           35.4                                                                                              
Sex (%)                                                                                                                                                                                                      c2=0.013                                    0.908
       Male                                                                                                      52.2                                           52.2                                                                                              
       Female                                                                                                 47.8                                           47.8                                                                                              
Village characteristics                                                                                                                                                                                                                                     
       Main occupation                                                                                                                                                                               c2=25.89                                  <0.001
       Manufacturing                                                                                       -                                         11 (28.95)                                                                                        
       Trade/retail                                                                                            -                                                 -                                                                                                 
       Transportation and communication                                          7 (31.8)                                  24 (63.15)                                                                                        
       Service                                                                                            15 (68.2)                                   3 (7.90)                                                                                          
Source of drinking water                                                                                                                                                                        c2=4.80                                     0.187
       Retail/refill                                                                                     16 (72.7)                                 18 (47.36)                                                                                        
       Metered water                                                                               5 (22.7)                                  15 (39.48)                                                                                        
       Borehole/pump                                                                               1 (4.6)                                    5 (13.16)                                                                                         
Mean number of slum households                                                      469                                           1,402                                   U=551.00                                   0.038
       Mean road density (km per km2)                                                 17.57                                         14.45                                    U=307.00                                   0.089
       Mean population density (per km2)                                           16,109                                       40,638                                  U=631.00                                   0.001
       Mean doctor per 1000 people                                                        0.32                                           0.18                                     U=271.00                                   0.024
       Mean number of doctors per village                                               9                                                7                                       U=327.50                                   0.164
HH, high-high; LL, low-low; SD, standard deviation.

Table 5. The overall importance of variables on the clustering of
dengue fever based on the classification and regression trees
model.

Variable                                                               Overall

Mean age (in years)                                                                   15.5
Doctor per 1000                                                                            3.9
Source of drinking (%)                                                               1.8
Household slum (%)                                                                   6.5
Main occupation (%)                                                                  11.2
Population density                                                                        9.2
Road density                                                                                  1.8
Sex                                                                                                   0.0
Sum of doctor                                                                                0.0
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Figure 6. Spatial clusters for dengue fever in Jakarta during 2007 to 2018 as determined by local indicator spatial association analysis.
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higher levels of mobility of this population group as it consists of
people engaged in productive work. Mobility is a known potential
driver associated with pathogens transmission (Pybus et al., 2015;
Zhu et al., 2019; Santos et al., 2019). In this study, we used road
density as a proxy for mobility. While it is not statistically signifi-
cantly different, the mean of the road density in high risk clusters
was relatively higher than in the low-risk clusters. This finding is
consistent with study in China (Qi et al., 2015) which found that
higher road density is associated with an increased DF risk. In
addition, our study found that DF hotspots were common in areas
where most people are engaged in service industries compared. We
therefore identified age and occupation as the important predictors
of clustering. 

This study found intriguing evidence that high risk DF areas
(e.g., Kayu Putih, West Cempaka Putih) have a lower mean popu-
lation density than those in the low-risk areas. Further, the average
number of households in slum was much lower here than in the
low-risk clusters. This is inconsistent with the many previous stud-
ies showing a positive correlation between DF risk and population
density (Schmidt et al., 2011; Qi et al., 2015; Harapan et al., 2020)
and poor socioeconomic conditions (Kikuti et al., 2015; Aswi et
al., 2018). Our findings suggest that high DF risk not merely affect
impoverished communities but also wealthy populations. It is
important to note that inhabitants living in Kayu Putih (a sub-dis-
trict in Pulo Gadung) have a relatively higher socioeconomic level
compared to the surrounding sub-districts (data not shown) and to
living in a well-maintained residential area. This finding may be
closely linked with environmental and behavioral aspect, especial-
ly with regard to how people manage or store water and their
yards. In addition, the mere presence of outdoor water bodies (e.g.,
pools and canals) has potential as breeding sites for the mosquitoes
(Machault et al., 2014). In fact, interventions (e.g., routine vector
control and monitoring) could not be effectively implemented in
this neighborhood due to limited access given by the residents. A
strong partnership between local health authorities and stakehold-
ers (e.g., local community leaders, property management, private
sectors) would be needed to change this situation. In addition, fre-
quent flooding as a result of poor drainage system especially dur-
ing rainy seasons, could be an environmental driver that maintains
the risk of DF. These findings provide meaningful information for
determining locations or areas where interventions and resources
(e.g., awareness campaigns, vector monitoring, etc.) are needed the
most. According to our findings, we recommend that area-specific
interventions may be needed, accounting for local socio-ecological
contexts of the village. Additionally, this study demonstrated that
spatial analytical tools could be applied or integrated in the exist-
ing surveillance system to provide evidence in decision making
processes (e.g., designing and evaluating intervention). 

In this study, we also found that the high-risk clusters had a
higher ratio of doctor per 1000 people compared to low-risk clus-
ters. This is probably due to more precise reporting. The more
available health services, the better the contact with infected
patients leading to diagnosis and treatment. This is accordance
with findings reported by Watts et al. (2020) in the Unites States
and Mexico. 

This study has several limitations. First, the present analysis
was based on passive surveillance data with its potential bias of
underreporting as many infected people do not report or present to
health facilities if not severely ill. Second, the variation in DF inci-
dence at the village scale may likely occur due to the heterogeneity
of socio-ecological factors (e.g., disease awareness and behavior,

mobility and vector density) (Prasetyowati and Ginanjar, 2017;
Ren et al., 2017; Chen et al., 2019; Harapan et al., 2019a;
Desjardins et al., 2020). However, such data were not available at
the village level so that we could not include them the analysis.
Despite the limitations, the study has provided important evidence
and new approaches in identifying hotspots of DF in Jakarta,
which could help improve existing surveillance activities. In the
future, population-based epidemiological investigations should
acquire a better understanding on DF epidemiology in Jakarta. 

The spatial epidemiological approaches used in this study can
be utilized and be integrated into the existing surveillance system
to monitor and identify areas where intervention is needed at most.
Further, understanding the role of the climate on DF distribution
could help determine when interventions are needed. For instance,
vector control and health promotion campaigns should be priori-
tised in the identified high-risk locations and certain populations
just before the raining season which could be much more efficient
and effective. 

Conclusions
Our analysis identified a correlation between the DF incidence

and local weather (precipitation, humidity, temperature) and
regional climate variables, such as the DMI and Niño3.4. confirm-
ing that DF seasonality in Jakarta is driven by climatic compo-
nents. Our study reveals that the DF hotspots remained at particu-
lar parts of the city of Jakarta during the period studied. Persistent
hotpots are strong indications for the need of enhanced and focal
intervention strategies (e.g., community-based vector control,
campaigns). 
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