
Abstract
Comprehensive and spatially accurate poultry population

demographic data do not currently exist in the United States; how-
ever, these data are critically needed to adequately prepare for, and
efficiently respond to and manage disease outbreaks. In response
to absence of these data, this study developed a national-level
poultry population dataset by using a novel combination of remote
sensing and probabilistic modelling methodologies. The Farm
Location and Agricultural Production Simulator (FLAPS)
(Burdett et al., 2015) was used to provide baseline national-scale
data depicting the simulated locations and populations of individ-
ual poultry operations. Remote sensing methods (identification
using aerial imagery) were used to identify actual locations of
buildings having the characteristic size and shape of commercial
poultry barns. This approach was applied to 594 U.S. counties
with > 100,000 birds in 34 states based on the 2012 U.S.
Department of Agriculture (USDA), National Agricultural

Statistics Service (NASS), Census of Agriculture (CoA). The two
methods were integrated in a hybrid approach to develop an auto-
mated machine learning process to locate commercial poultry
operations and predict the number and type of poultry for each
operation across the coterminous United States. Validation illus-
trated that the hybrid model had higher locational accuracy and
more realistic distribution and density patterns when compared to
purely simulated data. The resulting national poultry population
dataset has significant potential for application in animal disease
spread modelling, surveillance, emergency planning and response,
economics, and other fields, providing a versatile asset for further
agricultural research.

Introduction
The United States (U.S.) poultry industry is the world’s largest

producer and the second largest exporter of poultry meat (ERS,
2019). Poultry production is an important sector of the agricultural
economy in the United States with 8.54 billion broilers, 99.8 bil-
lion eggs, and 238 million turkeys produced in 2014, for a com-
bined value of USD $48.3 billion (NASS, 2015). Safeguarding the
industry from infectious disease, especially high consequence
pathogens, such as Highly Pathogenic Avian Influenza (HPAI), is
a top priority due to the potentially devastating effects of out-
breaks to producers, the poultry industry, and the U.S. economy.
For example, the 2014-2015 H5N8 and H5N2 HPAI outbreak in
the United States resulted in the death (from infection) or depop-
ulation of approximately 48 million domestic poultry, amounted to
USD $879 million in outbreak response costs, and incurred eco-
nomic impacts to producers of USD $1.043 billion (Johnson et al.,
2016; Seitzinger and Paarlberg, 2016).

Complete and accurate data are needed to adequately prepare
for, and efficiently respond to, manage, and eradicate poultry dis-
ease outbreaks. In the event of an outbreak, knowledge of the loca-
tion, distribution, and density of operations is critical to quickly
develop response and surveillance plans, estimate resource needs,
and predict the potential number of impacted operations.
Epidemiologic models are often used to support planning activi-
ties before an outbreak, aid in decision making during an out-
break, and investigate outbreaks retrospectively (Dent et al., 2011;
Patyk et al., 2013; Backer et al., 2015; Andronico et al., 2019).
The accuracy of model outputs relies on the quality of the under-
lying data. One key set of model inputs is population data, includ-
ing the point or area locations of operations in the at-risk popula-
tion. A national, comprehensive dataset of individual poultry oper-
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ation locations is not currently available in the United States.
While some actual data (i.e., true latitude and longitude coordi-
nates of poultry operations) may exist for specific geographic areas
or poultry sectors, those data are typically not available or accessi-
ble due to the conditions under which they were collected (i.e.,
emergency response) (Martin et al., 2015). The United States
Department of Agriculture’s (USDA) National Agricultural
Statistics Service (NASS) conducts a Census of Agriculture (CoA)
every five years for all farms and ranches in the United States
where USD $1,000 or more of agricultural products were produced
and sold during the census year (NASS, 2019). While these data
are the most comprehensive available in the United States, the data
are collected under specific terms of confidentiality; therefore,
NASS only publishes results in aggregate at the county or state
level (NASS, 2019). In the absence of a national dataset that pro-
vides point locations of operations and operation attributes (e.g.,
production type, numbers of birds), several efforts have been made
to develop synthetic population datasets. These efforts have used
smart-placement techniques (e.g., dasymetric mapping, masking,
statistical modelling) to generate operation locations from the
county- or state-level summaries available from NASS (Melius et
al., 2006; Melius, 2008; Bruhn et al., 2012; Burdett et al., 2015).
Synthetic datasets often meet the basic needs for preparedness and
initial response; however, it is important to assess their fit for pur-
pose given the potential impacts that population characteristics –
such as location, number of animals, and the density and clustering
of operations – have on the course of an outbreak and on model
results (Boender et al., 2007; Tildesley et al., 2010; Werkman et
al., 2016; Bonney, et al., 2018; Meadows, et al., 2018; van Andel
et al., 2018). While synthetic datasets simulate operation locations
by placing them in geographic areas considered suitable, tech-
niques using remotely sensed data and artificial-intelligence
methodology (i.e., machine-learning algorithms) can identify the
actual locations of buildings having the characteristic size and
shape of a commercial poultry barn (Maroney et al., 2020).
Remote sensing is the process of detecting and monitoring the
physical characteristics of an area by measuring its reflected and
emitted radiation at a distance from the targeted area (USGS,
2019). Different surface types such as water, bare ground, vegeta-
tion, and buildings reflect radiation differently in various channels
of the electromagnetic spectrum, referred to as the spectral signa-
ture of the features’ surface (ESA, 2009).

Remote sensing classification methods use specialized soft-
ware to identify (via spectral signatures) and map various features,
such as agricultural facilities. Analyst input guides the process of
correctly identifying and mapping the operations. However,
because manually identifying poultry facilities using imagery can
be labor intensive and time consuming over larger geographic
areas, other methods are often needed to map commercial poultry
operations at a multi-state or national scale. Newer remote sensing
techniques use both spectral signatures in remotely sensed data and
object identification methods, such as size and shape of buildings,
to better classify and map human-made structures (e.g., Freire et
al., 2014; Spröhnle et al., 2014; Caggiano et al., 2016).

The objective of this study was to use novel approaches to
develop a national-level poultry operations and population dataset
for the United States with improved locational accuracy suitable
for preparedness and response activities in the event of an avian
disease outbreak. Our goals were to combine simulated and remote
sensing methods in a unique way that leverages the strengths of
both methodologies: realistic poultry production types and inven-

tories and accurate location placements of operations. This novel
approach utilized available baseline national-scale data generated
by the Farm Location and Agricultural Production Simulator
(FLAPS) and high-resolution imagery from the USDA National
Aerial Imagery Program (NAIP). The approach and methodology
are repeatable with moderate time and effort to allow for timely
updates as new data become available.

Materials and methods

Overview
To develop a national-level poultry operations and population

dataset, we first used a combination of remote sensing and proba-
bilistic modelling methods to map the locations (latitude and lon-
gitude) and define the production type and number of poultry on
individual commercial poultry operations throughout the cotermi-
nous United States (minimum bounding rectangle coordinates
(WGS 1984): [-124.586288, 50.925292], [-66.808444,
47.875751], [-68.053058, 24.294786], [-125.830902, 27.344327].
In poultry-intensive counties (> 100,000 birds), we used a remote-
sensing methodology and machine-learning algorithms to detect
actual commercial poultry operations from aerial imagery. This
output was integrated with probabilistic models and synthetic data
from the FLAPS (Burdett et al., 2015), which allowed us to iden-
tify erroneous operations and apply simulated demographic
attributes to the actual operation locations. This is referred to as the
“hybrid model”. Next, in non-poultry-intensive counties (≤
100,000 birds), we used synthetic location and demographic data
from the FLAPS model. We also used FLAPS output to map back-
yard poultry operations (< 1,000 birds) in all U.S. counties. The
final national-level domestic poultry operations dataset was devel-
oped by combining the hybrid model for poultry-intensive counties
with FLAPS output for all non-poultry-intensive U.S. counties.
Figure 1 provides an overview of the methods used to develop this
national-level poultry operations and population dataset, described
in detail below.

FLAPS overview
FLAPS is a stochastic, spatially-explicit, microsimulation

model that simulates the distribution and populations of individual
poultry and livestock operations across the coterminous United
States using USDA-NASS CoA data (Burdett et al., 2015). CoA
data represent the most comprehensive agricultural production
data for the United States; however, to maintain confidentiality,
CoA data are aggregated at the county- or state-level, and data are
redacted from counties or states with few operations. FLAPS con-
tains algorithms to simulate the redacted CoA and then disaggre-
gates the county- or state-level data to produce synthetic datasets
depicting the locations and populations of individual poultry and
livestock operations. Initially developed for swine, the develop-
ment of FLAPS modules for poultry is discussed in Supplement 1.

Hybrid model for poultry-intensive counties
Based on subject matter expertise, knowledge of the poultry

industry, and historical avian influenza outbreak data, poultry-
intensive counties were defined as those with > 100,000 birds (the
total number of commercial layers, broilers, pullets, and turkeys)
based on 2012 NASS CoA data (Figure 2).

                                                                                                                                Article
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Remote sensing to identify commercial poultry barns
The first step of the hybrid model was the application of

remote sensing methods to NAIP imagery (collected 2014-2017)
(USDA, 2016). Collected by USDA Farm Services Agency, the 3-
band, true color NAIP aerial imagery has 1-m resolution sufficient
to detect commercial poultry barns. A NAIP image was download-
ed for each of the poultry-intensive counties which summed to a

total of 484 GB of data. The ArcGIS Feature Analyst (FA) exten-
sion (Textron Systems) was used to classify and map commercial
poultry operations within the NAIP imagery. We used a FA proto-
col developed in an earlier pilot study (Maroney et al., 2020)
where commercial poultry operations were identified from aerial
imagery. The study area for the pilot covered thirty-five counties
with varying poultry densities and production types across differ-

                   Article

Figure 1. Overview of methods to develop the U.S. national-level poultry operations and population dataset. 

*Poultry-intensive counties are defined as having > 100,000 birds; **Non-poultry-intensive counties are defined as having ≤ 100,000 birds; NAIP = National Aerial Imagery Program; NASS = National Agricultural
Statistics Service; FLAPS = Farm Location and Agricultural Production Simulator; CoA = Census of Agriculture; NPIP = National Poultry Improvement Plan.
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ing ecoregions in seven states in the southeastern United States. In
the pilot study, FA used a supervised learning algorithm to identify
objects in imagery, driven by user-defined samples and inputs
(Blundell, 2008). This supervised learning routine was an iterative
process that leveraged spectral inputs from imagery, training sam-
ples identified by the analyst, additional object parameters (length
and width of buildings), and predefined software input patterns
(Figure 3). An analyst performed iterative-processing runs in FA to
improve results.

In the current study, we developed state-specific models in FA
to expedite the remote sensing process for the poultry-intensive
counties. Specifically, for each state having at least one poultry-

intensive county, a single county was selected to create a training
set of commercial poultry barn features. Results from each state-
specific training county were then applied in FA to the remaining
poultry-intensive counties within each state. These state datasets
included poultry barn features, which were combined for further
processing. This dataset included many accurate poultry barn fea-
tures, but also misclassified features, such as non-barn buildings,
fallow fields, patches of bare ground, and river sand bars. These
misclassified features, referred to as false positives, were filtered
or removed from the dataset using the steps described below.
Analogous processes were previously performed manually by an
analyst in the pilot study (Maroney et al., 2020). To improve the

                                                                                                                                Article
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Figure 2. Map of counties in the coterminous United States with ≤ 100,000 (yellow) or > 100,000 (green) total commercial birds as
reported in the NASS 2012 Census of Agriculture. Total poultry includes layers, broilers, pullets and turkeys.

Figure 3. Example of NAIP imagery of a commercial poultry operation in the United States.
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remote sensing output, we developed a Python script to automate
these processes (South, 2020a; 2020b).

Filtering remote sensing results
First, a masking process was implemented to remove poultry

barn features from areas where they would not likely be found.
Using 2012 and 2014 Environmental Systems Research Institute
(ESRI) Base Data, masking layers were developed for urban areas
(United States Defense Mapping Agency, 2014), streets (with a 20-
m buffer) (TomTom Inc., 2012), lakes and reservoirs (USGS,
2014), and rivers (with a 10-m buffer) (USGS, 2014). Features
within these masked areas were removed from the dataset. Second,
length thresholds were used to remove misidentified commercial
poultry barns from the datasets where the barn “footprint” (poly-
gon) lengths were greater than 500 m or less than 50 m, substan-
tially outside the standard length of a commercial poultry barn
(Bell and Weaver, 2002; Fairchild, 2005).

We then used the probability surface from FLAPS that estimat-
ed the probability of occurrence of poultry operations to further
eliminate false positives (Burdett et al., 2015). In brief, the proba-
bility surface is a spatially-explicit raster dataset that maps a logis-
tic regression model. The inputs to the logistic regression model
included a binary response variable of places where poultry oper-
ations were both present and absent, and predictor variables that
included distances to classified land-use (e.g., forest, urban), dis-
tance to roads, and topography that were associated with the distri-
bution of poultry operations. After the logistic regression results
were mapped in a GIS, the output raster layer was standardized to
a range of 0 to 1, which represented a gradient of increasing like-
lihood of poultry operation presence. A more detailed description
of the probability threshold surface and its development are avail-
able in Supplement 1.

We assigned the value from the probability surface to a dataset
of poultry operations from the 35 counties that were mapped with
a manual methodology in the pilot study (Maroney et al., 2020).

The value of this pilot dataset is that it identified the actual loca-
tions of poultry operations retained after manual review (i.e., true
positives), and the locations that the analyst removed during man-
ual review (i.e., false positives), and those that the analyst added
during manual review (i.e., false negatives, or barns that were not
identified with the machine-learning algorithm). This allowed us to
identify whether the probability surface values for actual poultry-
operation locations differed from the set of false-positive locations
that the machine learning algorithm identified as possible opera-
tion locations but were removed during the manual review because
they were not barns. Each point (latitude and longitude) in the pilot
dataset was assigned a number between 0 and 1 from the probabil-
ity threshold surface described in Supplement 1. After plotting the
probability values on a histogram, we found a large number of
false-positive operations fell below a 0.1 threshold. Therefore,
these locations were removed from our dataset because they were
less likely to be actual poultry operations (Figure 4).

Aggregate barns into operations
After the removal of misclassified features from the remote

sensing output, the Python script was used to combine multiple
nearby features or barns into a single commercial poultry opera-
tion. The FA protocol established the location of individual barns
or buildings rather than farms or operations, which often include
multiple barns. Geographic centroids were calculated from fea-
tures (individual barns) within 100 m of each other. The individual
barns were converted into a single point feature where the output
represented the approximate latitude and longitude of each opera-
tion (Figure 5). A barn count (from the remote sensing steps) was
generated that calculated the number of barns present at the oper-
ation and added to the attribute table.

Adjudication of hybrid operations 
The remote sensing methodology was only capable of identi-

fying commercial poultry operations due to the characteristic size,

                   Article

Figure 4. Distribution of values from the probability threshold surface for ground truth poultry operations.
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shape, and spectral signature of commercial poultry barns. We
defined commercial poultry operations as those with ≥ 10,000
broilers, layers or pullets, or ≥ 2,000 turkeys. These populations
are the approximate number of birds housed in the commercial
style poultry barns detected by the FA protocol and were based on
industry standards that ensure humane conditions with adequate
space per bird (Bell and Weaver, 2002; Aviagen Turkeys, 2018;
Penn State Extension, 2018).

We adjudicated the remote sensing dataset with the number of
expected commercial operations in each poultry-intensive county
using the FLAPS probability surface and ground truth data derived
from the 35 counties in the pilot study (Maroney et al., 2020), uti-
lizing the pattern previously found in the histogram of the pilot
study dataset (explained in Burdett et al., 2015). Whereas previ-
ously we were using the histogram to identify locations unlikely to
be poultry operations, here we used the histogram to guide the
selection of the same number of operations identified for a given
county in the CoA. First the operations from the remote sensing
dataset were sorted into a frequency distribution according to the
value of the FLAPS probability surface at the location of each
point. These data were further sorted into a series of 10 bins, rang-
ing from 0 to 1.0 at intervals of 0.1. Points from the remote sensing

dataset were selected, sampled randomly without replacement,
proportional to the number of ground truth points observed. The
number of points selected for each bin from the remote sensing
dataset was calculated with the following equation:

Yb=E*Pb                                                                              (Eq. 1)

where Yb is the number of points to select for each bin, E is the
expected number of commercial operations for each county, and Pb
is the percentage of ground truth points observed for each bin
(Table 1). Note that P1+P2+⋯+P8+P9=100%. This process ensured
that the hybrid dataset would retain the locational accuracy from
the remote sensing dataset, while leveraging patterns in the ground
truth data to ensure the hybrid dataset would match the expected
number of operations in each county, as derived from the CoA.

Assigning poultry production types and population estimates
For poultry-intensive counties, the commercial poultry opera-

tions data (latitude and longitude) from the hybrid process were
assigned demographic information (production type, number of
birds) using output from the FLAPS model. Population sizes were
allocated to the commercial operations based on the barn count field.

                                                                                                                                Article

Figure 5. Individual barn features within 100 m of each other were converted to a single point representing the centroid of a poultry
operation.
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Table 1. Percentage of ground truth operations assigned to each bin of the FLAPS probability surface.

Bin number          Range of FLAPS probability surface values                        Percentage of operations observed in ground truth data

1                                                                               < 0.1                                                                                                                                   4.01*
2                                                                        > 0.1 - ≤ 0.2                                                                                                                              3.88
3                                                                        > 0.2 - ≤ 0.3                                                                                                                              7.69
4                                                                        > 0.3 - ≤ 0.4                                                                                                                             11.95
5                                                                        > 0.4 - ≤ 0.5                                                                                                                             19.64
6                                                                        > 0.5 - ≤ 0.6                                                                                                                             23.34
7                                                                        > 0.6 - ≤ 0.7                                                                                                                             20.09
8                                                                        > 0.7 - ≤ 0.8                                                                                                                             11.08
9                                                                        > 0.8 - ≤ 0.9                                                                                                                              2.23
10                                                                        > 0.9 - 1.0                                                                                                                               0.09
* Features in the < 0.1 bin were excluded from the model.
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Operations with larger numbers of barns were allocated a larger
number of birds with randomization among operations with identical
barn counts. Additionally, location and demographic data for small
enterprise operations (broilers, layers, or pullets with < 10,000 birds,
and turkeys with < 2,000 birds) and backyard operations (operations
with ≤ 1,000 birds) were generated by FLAPS and added to the final
population model for completeness.

Merging the hybrid model and FLAPS data to prepare
the final dataset

For the remainder of the coterminous U.S. counties (those with
≤ 100,000 birds defined as non-poultry-intensive), the unaltered
FLAPS output (locations, numbers of birds, poultry production
types) for commercial, small enterprise, and backyard operations
was used. The FLAPS output was then combined with the final out-
put from the hybrid model to create a national-level poultry opera-
tions and population dataset for the coterminous United States.

Finally, all commercial and small enterprise operations were
then assigned to either a production or breeding category. Data from
the National Poultry Improvement Program (NPIP) were used to
establish an overall percentage of breeding facilities in each state.
These proportional data were subsequently distributed according to
a frequency distribution of population sizes known to occur on poul-
try operations in the breeding sector. Full details of the assignment
of operations into production and breeding sectors are discussed in
Supplement 2.

Validation
The spatial accuracy, distribution, and clustering patterns of the

output of both the hybrid and FLAPS models were assessed for a
subset of 41 U.S. counties using ground truth commercial poultry
operation location data manually digitized from aerial imagery or
locally-available actual operation data. The validation methods were
executed using a custom Python script in ArcGIS 10.5.1, and includ-
ed three primary methods referred to as “buffer capture”, “grid den-
sity”, and “ellipse overlap”. The county-level outputs generated by
the custom Python script were imported into R 3.5.1 (R Core Team,
2015) for data cleaning and statistical analyses using a custom R
script.1

Validation: buffer capture 
The buffer capture method assessed the spatial location accuracy

of the hybrid and FLAPS models in identifying commercial poultry
operation locations relative to the ground truth data (Figure 6a).
Spatial accuracy was represented by the proportion of true operation
locations that were within a given distance of hybrid or FLAPS mod-
elled points. Using ArcMap’s Buffer tool, circular buffers were gen-
erated around each ground truth operation location at varying radii
(100 m, 500 m, 1,000 m, 2,000 m, 5,000 m). The Spatial Join tool
was then used to select and count the number of hybrid or FLAPS
model points that were completely contained within a ground truth
operations buffer. Buffers were assigned a binary “yes/no” outcome
if they did or did not contain a hybrid or FLAPS model point. A
ground truth operation was assigned a “yes” outcome if it captured a
modelled point at the specified radius, indicating that the modelled
point was spatially accurate at that resolution. A difference of propor-
tions test was used to compare the percent of ground truth operations
buffers that captured a hybrid model point to the percent that captured
a FLAPS point at each of the buffer sizes generated.

Validation: grid density 
To determine how the distribution patterns of the hybrid and

FLAPS models’ operation locations compared to those of the true
operation locations, root mean square error (RMSE) values for the
simulated points compared to true operations were calculated
(Figure 6b). For each of the 41 counties, grids of 32 different sizes
(varying from 500 m to 60 km) were generated using ArcMap’s
Fishnet tool. Ground truth, hybrid model, and FLAPS model points
were counted within each grid cell using the Spatial Join tool.
RMSE values were calculated using two different approaches, 1) 

                                    

(Eq. 2)

where Ti is the number of true operations within a cell of a given
size, Mi is the number of hybrid model or FLAPS points within the
same cell, and n is the total number of cells of that size within the
dataset (modified from Tildesley and Ryan, 2012); and 2) 

                                    

(Eq. 3)

where TT is the total number of true operations within the dataset and
MT is the total number of modelled points within the dataset. The
resulting RMSE values reflected the error in the difference of the
proportion of modelled points (hybrid or FLAPS) and the proportion
of ground truth points within grid cells of a given size. The RMSE
values of the hybrid model were then compared to those of the
FLAPS model for each grid cell size to determine the error associat-
ed with each model’s distribution patterns relative to the distribution
of true operations.

Validation: ellipse overlap 
The ellipse overlap method quantified the differences in cluster-

ing patterns between the hybrid and FLAPS models’ points and the
ground truth point locations (Figure 6c). First, grid layers were
developed at four different resolutions: 500 m, 1000 m, 2000 m, and
5000 m. For each model, operations were assigned and grouped by
grid id. Within each grid, standard deviational ellipses were generat-
ed using the Directional Distribution tool in ArcMap. The
Directional Distribution tool resulted in ellipses of varying sizes
based on the clustering and spatial distributions of the underlying
operations. Portions of modelled operations (hybrid and FLAPS)
ellipses that overlapped with the ground truth ellipses were extracted
using the Intersect tool in ArcMap. The proportions of the areas of
the ellipses that overlapped between the hybrid or FLAPS models
and the ground truth operations were calculated as: 

                                                                
(Eq. 4)

where  PO is a measure of the proportion of the areas of the ground
truth operations ellipses and modelled ellipses that overlap; Ai is the
area of the intersection of ground truth operations ellipses and mod-
elled ellipses (hybrid or FLAPS) within grid cells of a given resolu-
tion; AM is the area of the modelled ellipses (hybrid or FLAPS) at the
same size; and AT is the area of the ground truth operations ellipses

                   Article
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at the same resolution.
A simpler proportion of the area of the ground truth operations

ellipses that overlapped with hybrid or FLAPS ellipses (i.e., the sec-
ond term of the PO formula) was also calculated and used to conduct
difference of proportions testing to compare the hybrid and FLAPS
models at each of the varying grid resolutions.

Results

National-level poultry operations and population dataset
A total of 594 counties in 34 states, covering an area of approxi-

mately 1,062,365 km2, were identified as poultry-intensive counties by
our definition. Generally, these counties were concentrated in the
southeastern and upper central United States. Very few poultry intense
counties occurred in the western United States. The hybrid methods

were applied to all of the counties meeting the criteria as poultry inten-
sive. The remaining 2,515 U.S. counties, about 6,727,358 km2 in area,
had ≤ 100,000 birds as reported in the 2012 CoA, and estimates of loca-
tions and population demographics in these counties relied on synthe-
sized data from the FLAPS model. After applying FA to the NAIP
imagery for the 594 poultry-intensive counties, we had over 1.2 million
features (Table 2). A total of 784,378 features were removed by
masking, 11,590 by geometry, and 222,760 by the probability sur-
face (Figure 7). After removing false positives, 255,473 barn fea-
tures remained. These were collapsed to 145,489 operations in
comparison to 60,839 operations in the 2012 NASS CoA data.
Following the adjudication step, the hybrid model output was
reviewed and updated to include latitude and longitude locations
for 60,839 individual operations. Demographic information (pro-
duction type, number of birds) was then assigned to each hybrid
operation using output from the FLAPS model. An anonymous
example of hybrid model output is shown in Figure 8.

                                                                                                                                Article

Table 2. For each step of the hybrid model, counts of features in the dataset and percentages of features removed. 

Hybrid model step                                                                              Count of features in the dataset      Percentage of features removed

Initial classification by FA                                                                                                                         1,274,201                                                                   n/a
Filter: masking                                                                                                                                             489,823                                                                    61.6
Filter: length threshold                                                                                                                             478,233                                                                     0.9
Filter: FLAPS probability surface                                                                                                             255,473                                                                    17.5
Collapse features                                                                                                                                        145,489                                                                     8.6
Hybrid model operations adjudicated with NASS 2012 CoA operations                                          60,839                                                                      6.6
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Figure 6. Spatial accuracy, distribution, and clustering patterns of the output of both the hybrid and FLAPS models were assessed by
three methods. a) Buffer capture to quantify spatial accuracy of hybrid points relative to ground truth operation locations, 2000 m; b)
Ellipse overlap to compare the clustering patterns of hybrid points relative to ground truth operation locations, 10,000 m; c) Grid den-
sity to compare the distribution of hybrid points relative to ground truth operation locations, 10,000 m.
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Validation
Overall, validation showed improved accuracy in the spatial

location, density, and clustering patterns of hybrid model opera-
tions relative to poultry operations modelled by FLAPS.

Validation: buffer capture
At all buffer sizes evaluated, the hybrid model showed statisti-

cally significant improvements in the spatial locational accuracy of
operations relative to the FLAPS model (Figure 9a). On average,
the hybrid model operations were twice as likely to be placed near

                   Article

Figure 7. Anonymous example of filtering of the remote sensing results to remove misclassified features through masking, length thresh-
olds, and the FLAPS probability surface.

Figure 8. Anonymized example of output from the hybrid model. Imagery source: ESRI, DigitalGlobe, GeoEye, Earthstar Geographics,
CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
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the ground truth operation locations, evident in the number of
operations “captured” in each buffer. Approximately 57% of the
1,000-meter ground truth buffers captured hybrid model opera-
tions, compared to a 29% capture of the FLAPS operations (P<
0.01). In short, at the 1,000-m resolution, the hybrid model, was
twice as likely as the FLAPS model to place an operation in the
same location as a ground truth operation.

Validation: grid density
At all grid cell sizes, the RMSE for FLAPS was greater than

for the hybrid model. For example, at a grid size of 30 m, the
RMSE for the hybrid model was 18.62, which was a 20.07%
decrease in error from the FLAPS model’s RMSE value of 23.29
(Figure 9b). Therefore, the distribution of the hybrid model points
was more similar to that of the ground truth operations than the dis-
tribution of FLAPS model points.

Validation: ellipse overlap
At all ellipse sizes, the product of the proportion of overlap

with the hybrid or FLAPS ellipses and the proportion of overlap
with the ground truth operation ellipses (PO) was higher for the
hybrid model than the FLAPS model. For example, for 
the ellipses that were generated within a 10,000-meter grid, PO
for the hybrid model was 0.31, which was 42.2% greater 
than the PO for FLAPS, which was 0.18 (Figure 9c). This 
suggests that the clustering patterns of hybrid model points are 
a closer representation of the ground truth operations clustering

patterns than those of the FLAPS model.
A difference of proportions test was conducted on the propor-

tion of the ground truth operations ellipses that were overlapped
with the hybrid or FLAPS ellipses (i.e., the second term of the PO
formula). At all ellipse sizes, this test revealed that the hybrid
model ellipses had significantly greater overlap with ground truth
operation ellipses than the FLAPS model ellipses (P<0.01), which
confirmed the trend that was observed for PO.

Discussion
Effective planning and response to animal disease outbreaks

relies on knowledge of the livestock and poultry industries in the
area of interest (Sanson 1993; Tomassen et al., 2002; Stevenson et
al., 2007; Porphyre, et al., 2013). Population data are a critical
input for epidemiologic models that are often used to facilitate
decision making before and during outbreaks (e.g., Stevenson et
al., 2013; Bradhurst et al., 2015). In cases where operation demo-
graphic data are scarce, unavailable, or aggregated, synthetic
datasets are needed to carry-out preparedness and management
activities. The impacts of population data on model uncertainty
and results are often not explicitly assessed. However, a few stud-
ies have reported that population demographics and the choice of
a population dataset used in a model can result in statistically sig-
nificant differences in model outputs and therefore have implica-

                                                                                                                                Article
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Figure 9. Validation results using three methods. a) Plot of the percent of buffers at varying sizes that capture a hybrid or FLAPS mod-
elled operation and the number of modelled operation captured by a buffer using the buffer capture method to assess spatial location
accuracy; b) Root mean square errors (RMSE) for the difference in operation distribution between the FLAPS or hybrid models and
the ground truth poultry operation distributions; c) Plots show the proportion of standard deviational ellipse area overlap for the
hybrid and FLAPS models with the ground truth data at 3000 m, 10,000 m, and 20,000 m.
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tions for decision making (Reeves, 2012; van Andel et al., 2018).
Several methods have been used to generate synthetic animal

populations. In the United States, the aggregated CoA data have
been used to estimate suppressed data, predict the locations of
operations, and estimate operation types by rule-based and proba-
bilistic modelling approaches (Melius et al., 2006; Melius, 2008;
Bruhn et al., 2012; Burdett et al., 2015). In New Zealand, counts
of animals and livestock units have been assigned to known farm
polygons using models of environmental and socioeconomic vari-
ables (van Andel et al., 2017). Prosser et al. (2011) developed
national-level poultry distribution maps for China based on statis-
tical relationships between poultry census data and agro-ecological
predictor variables, and Khan et al. (2018) modelled the domestic
swine population in Ontario, Canada, based on publically available
Canadian agricultural census data and geospatial information for
factors thought to influence swine operation locations. Livestock
operation locations have also been predicted in Europe and
Australia using models based on land and climate factors
(Emelyanova et al., 2009; Neumann et al., 2009). To our knowl-
edge, this study is unique in its methods to combine remotely
sensed and simulated data to generate a database of poultry opera-
tion locations, including production demographics, on a national
scale.

The objective of this study was to combine two approaches to
create an improved spatially-explicit database of individual poultry
operations in the United States. We expanded the smart placement
concept through the combined use of remote sensing and a proba-
bility surface. Our results demonstrate significant improvements in
locational accuracy, distribution and density patterns as compared
to use of the FLAPS probability surface alone (Table 1). While
tools such as masking reduce the likelihood of placing operations
in improbable locations, remote sensing classifies actual features
characteristic of poultry barns, to identify operations based on real-
ity. Utilizing our knowledge of actual operation locations from the
35 ground truth counties in combination with the probability sur-
face to quantify the numbers and distributions of operations across
the poultry-intensive counties improved the overall realism of the
hybrid dataset. Further, validation demonstrated that our methods
resulted in a comprehensive dataset with improvements in com-
mercial poultry operation location accuracies, density estimates,
and spatial distribution patterns relative to actual operation loca-
tions. The resulting detailed maps of poultry operations and animal
densities improve our knowledge of high-risk poultry-producin-
gareas within the United States. These outcomes can be used to
improve our understanding of avian influenza transmission within
domestic poultry populations, to evaluate risk at the interface of
wild birds and domestic poultry, to improve our abilities to design
risk-based surveillance, minimize the risk of disease introduction,
and respond to and control future outbreaks. For example, the
resulting dataset can be immediately applied in epidemiologic
models upon first detection of infection of a reportable avian dis-
ease in the United States to allow for rapid estimation of spread
and economic consequences for consideration in response mea-
sures.

Although the FLAPS model simulates operation locations by
placing them in areas similar to true operation locations, remote
sensing methods can identify the actual locations of buildings.
Ideally, we would have performed remote sensing on all counties
in the United States. The demand that this effort would have had
on both personnel and computational resources is, however, still a
limiting factor. Therefore, we chose to conduct remote sensing on

poultry-intensive counties given the historical outbreak risk asso-
ciated with high-density poultry-producing regions. Several
thresholds (bird numbers per county) to define poultry-intensive
counties were explored. The 100,000 birds per county cut-off was
chosen after consultation with subject matter experts and included
key poultry producing regions and states while accounting for
logistic constraints. Improved technologies and additional
resources may make remote sensing across a larger geographical
area more feasible in the future.

We acknowledge several limitations to our methods. Although
remote sensing techniques can identify actual barn locations, it is
important to consider the assumptions made in this study. Remote
sensing approaches were used to identify buildings having the
characteristic size and shape of commercial poultry barns; howev-
er, key operation characteristics such as production type and num-
bers of animals, cannot be directly derived from the imagery.
Specifically, production practices, husbandry, and biosecurity mea-
sures vary among different production types. These differences as
well as information about the number of animals on an operation
are important because these factors influence susceptibility to dis-
ease, potential for introduction, frequencies and types of direct and
indirect contacts, and transmission within and between operations
(Bessell et al., 2010; van Andel et al., 2017; van Andel et al.,
2018). Further, production type differences and the numbers of
animals on operations are considered in outbreak planning and
response and are accounted for in epidemiologic and economic
modelling. The hybrid approach taken in this study was critical in
being able to apply the strengths of the two methods to generate a
dataset with both location information (remote sensing) and infor-
mation about production type and population size (FLAPS). Where
remote sensing had knowledge gaps in operation characteristics,
information from FLAPS provided those details in a non-random
fashion.

We attempted to capture the breadth of possible sizes and
shapes of barns in our input criteria for remote sensing, but it is
possible that small operations or alternative poultry production
systems such as those which allow birds to have outdoor access or
where birds are pasture raised, were not identified by our methods.
Additionally, while remote sensing can identify a barn, it is unable
to distinguish barns in active production from those no longer in
use, or to distinguish poultry barns from other agricultural struc-
tures. Finally, older imagery may not capture poultry production
dynamics such as construction of new barns or demolition of older
structures.

The hybrid model focused on commercial poultry operations,
as those are most readily identified by remote sensing. Several
studies and retrospective analyses of HPAI outbreaks have report-
ed that backyard flocks have a marginal role in HPAI outbreaks,
but their contributions to outbreaks should be considered
(Terregino et al., 2007; Bavinck et al., 2009; Smith and Dunipace,
2011; Souvestre et al., 2019). The number of pet poultry alone has
been estimated at 15.4 million in 1.4 million households in 2016 in
the United States, although actual numbers are difficult to deter-
mine especially given the dynamic and often transient nature of the
backyard population (AVMA, 2018). While some demographic
data may be available on a smaller scale (e.g., state, city or county
level) particularly following response to an animal disease out-
break, data on backyard flocks does not exist on a national scale in
the United States. The CoA captures information from any place
from which ≥ $1,000 USD of agriculture products were produced
or sold, or normally would have been sold during the census year
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(NASS, 2012). Therefore, the CoA captures commercial and
small-scale poultry operations and incidentally some hobby poul-
try (premises generating agricultural revenue from other sources
which also have poultry). We included backyard and small enter-
prise poultry operations from FLAPS (i.e., CoA) in our final
dataset for completeness, but these estimates likely greatly under-
estimate the true numbers of these flocks.

Despite the constraints and potential limitations discussed, val-
idation demonstrated that our methods resulted in a comprehensive
dataset with improvements in commercial poultry operation loca-
tion accuracies, density estimates, and spatial distribution patterns.
Given these results, we consider the hybrid approach an improve-
ment over FLAPS and other fully synthetic population datasets, yet
this comprehensive approach still does not reflect the locations and
distributions of commercial poultry operations with complete cer-
tainty. Additionally, we only had the opportunity to do the hybrid
approach in poultry-intensive counties. We did not evaluate hybrid
model performance in non-poultry-intensive counties and there-
fore performance in low poultry-dense areas is unknown. If addi-
tional data for true poultry operation locations become available in
the future, these data would provide opportunities for further vali-
dation.

Opportunities for future work include updating data sources as
new information is released. For example, the NASS CoA is con-
ducted every five years. At the time this study was conducted, the
2012 CoA data were the most current. New CoA data will reflect
any changes in the industry such as the addition or loss of opera-
tions, changes in the size of operations, or changes in the geo-
graphic locations of operations. In particular, there may be some
industry changes as a result of the recent HPAI events in the United
States which merit updates to our model. Also, given the known
importance of wild birds in the etiology of avian influenza, this
national hybrid model allows us to build on previous efforts to
explore transmission dynamics at the wildlife domestic poultry
interface (Stenkamp-Strahm et al., 2020). Finally, these methods
could be applied in other countries lacking comprehensive com-
mercial poultry population data given the availability of appropri-
ate imagery.

Conclusions
Poultry disease outbreaks have the potential to result in sub-

stantial losses and impacts to producers, poultry and allied indus-
tries, and economies, at local, regional, and national levels.
Knowledge of the susceptible population is required for disease
managers to adequately prepare for outbreaks and to respond dur-
ing a disease event; however, a comprehensive poultry population
database is lacking in the United States. We developed a novel
approach to meet this need which makes use of current technolo-
gies and the best available data. This approach could be repeated
as new data become available, and the resulting dataset can be
applied in epidemiologic models, for planning surveillance activi-
ties, estimating resource needs, and for effective decision-making
during an outbreak. 
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