
Abstract
Hand, Foot, and Mouth Disease (HFMD) is a common and

widespread infectious disease. Previous studies have presented
evidence that climate factors, including the monthly averages of
temperature, relative humidity, air pressure, wind speed and
Cumulative Risk (CR) all have a strong influence on the transmis-
sion of HFMD. In this paper, the monthly time-lag geographical-
ly-weighted regression model was constructed to investigate the
spatiotemporal variations of effect of climate factors on HFMD
occurrence in Inner Mongolia Autonomous Region, China. From
the spatial and temporal perspectives, the spatial and temporal
variations of effect of climate factors on HFMD incidence are
described respectively. The results indicate that the effect of cli-
mate factors on HFMD incidence shows very different spatial pat-
terns and time trends. The findings may provide not only an in-
depth understanding of spatiotemporal variation patterns of the

effect of climate factors on HFMD occurrence, but also provide
helpful evidence for making measures of HFMD prevention and
control and implementing appropriate public health interventions
at the county level in different seasons.

Introduction
Hand, Foot and Mouth Disease (HFMD) is a common, acute

infectious disease resulting in millions of cases and even death
among children under five years old. It is caused by different
species of enteroviruses, most commonly Coxsackievirus A16 and
Enterovirus 71 (Yang et al., 2011; Zeng et al., 2015) that may
change with the variation of climate. In addition, human activity
and contact frequency may greatly determine the eventual disease
occurrence (Cheng et al., 2018). China is one of the most affected
countries where HFMD has been made statutorily notifiable in
May 2008 (Xing et al., 2014). The intensity and frequency of the
HFMD outbreaks are also different from place to place due to the
extensive area where the disease occurs in China, as there may be
very different climatic and environmental conditions.

Various research approaches have been used to investigate the
spatial and temporal patterns of HFMD outbreaks and the risk fac-
tors, such as climate factors and socio-economic environment. In
the state of Sarawak in Malaysia, spatial and temporal distribu-
tions of HFMD were studied based on Geographical Information
Systems (GIS), (Sham et al., 2014). In China, time series analysis
methods were adopted to achieve a short-term epidemic prediction
for HFMD occurrence (Lai et al., 2016; Wang et al., 2018), and
space–time scanning was applied for the detection of spatiotempo-
ral clusters and the identification of high-risk locations (Hong et
al., 2017; Qian et al., 2016) revealing that HFMD occurrence
shows autocorrelation characteristics. Using linear regression
model, Ma et al. (2010) demonstrated that climate factors play
important role in predicting HFMD activity, which could assist in
explaining the winter peak detected in recent years. The geograph-
ical detector method was implemented to test the association
between HFMD with a single climate factor and their interaction
(Wang et al., 2013), while a distributed lag non-linear model was
used to quantify the effect of the Average Temperature (AT) and
relative Humidity (AH) on HFMD incidence in Huainan and
Hefei, China, respectively (Xu et al., 2016; Yang et al., 2017). The
boosted regression tree model, combining the advances of the tra-
ditional regression models and the machine-learning methods,
were employed by Zhang et al., 2016 to determine the optimal lag
for the climate factors at which the variance of HFMD occurrence
was most explained, and to evaluate the effects of these climate
factors on HFMD occurrence at the optimal lag. A Bayesian spa-
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tiotemporally varying coefficients model was used to detect the
effect of climate factors on HFMD incidence in Sichuan, China
(Song et al., 2019). The results showed that the epidemic patterns
of HFMD are closely related to climate factors. Meanwhile, the
impact of climate factors on HFMD is significantly different across
space and time. Therefore, the study on spatiotemporal variation
patterns of the effect of climate factors on HFMD activity is of
great importance to understand the transmission mechanism of
HFMD and take proper protection measures against HFMD at dif-
ferent regions and times. 

The Geographically Weighted Regression (GWR) model, orig-
inally proposed by Brunsdon et al. (1996), is a popular and power-
ful tool in exploring spatial nonstationarity of a regression relation-
ship. Subsequently, GWR models with their variants have been
applied to various fields for geo-referenced data analysis. In addi-
tion of the recent applications in, for instance, hedonic house price
modelling (Lu et al., 2014), geology (Duan and Li, 2016), ecology
(Song et al., 2016) and public health (Wabiri et al., 2016), GWR
models with their various variants have also been employed to
detect the association between HFMD incidence and climate fac-
tors, social and economic factors, air pollutants, etc. (Hu et al.,
2012; Dong et al., 2016; Wang et al., 2017; Hong et al., 2018; Yu
et al., 2019). In the GWR model, temporal effects are assumed to
be constant over space because the weighting matrix is calculated
only based on spatial information. In fact, however, there is possi-
bility that the effect of explanatory variables on the response vari-
able is not only spatially non-stationary, but also temporally so,
meaning that the underlying process is spatiotemporally non-sta-
tionary. Time is also an essential dimension relating to various
physical processes that often provides valuable information. To fill
this gap, Huang et al. (2010) proposed a so-called Geographically
and Temporally Weighted Regression model (GTWR) by incorpo-
rating the time factor into the GWR model. Fotheringham et al.
(2015) also extended GWR to a new version of GTWR (here called
TL-GWR) by separating the selection of the optimal spatial band-
width from that of the temporal bandwidth. Only previous time
(lag time) neighbours are taken into account and their impact on
the current state are estimated in the TL-GWR model. This model
is useful because a set of spatial bandwidths are selected adaptive-
ly at different time points. In contrast to GWR models, the TL-
GWR model considers the interaction of space and time and make
it possible to simultaneously explore the spatial and temporal non-
stationarity of a regression relationship based on the constructed
spatiotemporal weight matrix. As mentioned above, the transmis-
sion and dispersal of HFMD are closely associated with climate
factors and the effect of these parameters on HFMD incidence may
change over space and time. To the best our knowledge, the TL-
GWR model has not yet been applied to the analysis of HFMD
data. Therefore, this model is of great potential in analysing the
spatiotemporal variation patterns of the effect of climate factors on
HFMD incidence by providing useful evidence for finding disease
epidemic patterns that could indicate suitable control measures.

Materials and Methods
HFMD data based on the 102 counties from January to

December in 2016 were provided by the Inner Mongolia
Autonomous Region’s Center for Disease Control and Prevention
(CDC). Of the total 13,928 reported HFMD cases, we retained
13,416 cases of the children under 9 years old in 2016 for analysis.

These data from each county were provided by the Inner Mongolia
Autonomous Region Statistics Bureau. The climate data, consist-
ing of the monthly Average Temperature (AT), relative humidity
(AH), Air Pressure (AP), wind speed (AW) and monthly cumula-
tive precipitation (CR) for each county, came from the Ecological
and Agricultural Meteorology Center of Inner Mongolia
Autonomous Region. In addition, the geographic information of
each county, including name, code, and longitude and latitude,
came from the National Catalogue Service for Geographic
Information.

Preliminary hand, foot and mouth disease data processing
Consideration that the number of reported HFMD cases in

each county is closely associated with the size of the exposed pop-
ulation in that county, it was felt suitable to use the monthly
Cumulative Incidence (CI) in each county as the response variable
to model the relationship to the climate factors. The monthly CI is
defined by the ratio of the number of monthly reported HFMD
cases O(i) under 9 years old to the size of the total population P(i)
of this age group at risk in that county. However, the crude CI may
suffer from the problem of zero CI values, mainly caused by the
geographic coded error or missing reports. Here, we adopted a
hierarchical Bayesian model with both structured and unstructured
random effects (Haining 2003; Huang et al., 2014) to adjust the
crude CI of HFMD. Subsequently, the adjusted monthly CI was
used as the response variable for analysis. The adjusting process is
described as follows illustrating the spatial distribution and tempo-
ral trend of the values of the adjusted CI:

Let r(i)  be the risk probability that a child in the ith county
infects HFMD. The hierarchical Bayesian model is then formulat-
ed as:

                    (Eq. 1)

where m represents the mean effect of disease risk; e(i) indepen-
dently and identically distributed N(0,σ2

e) and captures the spatial
unstructured nonstationarity; and υ(i) a spatial structured random
variable describing the spatial dependence of the relative risk and
defined by the intrinsic Gaussian spatial autoregression process
with the conditional distribution given υ(j) being:

                 
(Eq. 2)

where j denotes the neighbour of site i with the spatial contiguity
weights wij for a given i defined as wij = 1 if there is a common
edge between j and i; 0 if otherwise; and wii = 0, w*

ij = wij /Σn
j=1wij.

The gamma distributions are taken as prior distributions of 1/σ2
e

and 1/σ2
v , namely, 1/σ2

e∼ γ(0.001,0.001) and 1/σ2
e∼ γ(0.5,0.0005)

with a non-information prior assumed for m. By means of the
WinBUGS 1.4 package, the Markov chain Monte Carlo (MCMC)
simulation was used to solve the hierarchical Bayesian model,
where the length of burn-in sequence was set at 6,500. The outputs
of the hierarchical Bayesian model were the adjusted CI values for
the 102 counties at a given month. Figure 1 shows the spatial dis-
tributions of the adjusted CI (1/100000) values of the counties
averaged by the cold season (from May to September) and the
warm season (from November to April), respectively, and the tem-
poral trend of those values averaged over the 102 spatial units. It

                   Article

gh-2020_2  DEF.qxp_Hrev_master  14/01/21  23:37  Pagina 338

Non
-co

mmerc
ial

 us
e o

nly



was observed that, on average, the adjusted CI values exhibited
both significant spatial non-stationarity and notable temporal non-
stationarity.

TL-GWR model and bandwidth optimization
Fotheringham et al. (2015) proposed a geographically and

temporally weighted regression, called the TL-GWR model, in
which the spatial bandwidths are adaptively selected at different
time periods. That is, the TL-GWR model is of the form:

yi=β0 (ui,vi,t)+∑p
j=1 βj (ui,vi,t) xij+εi, i=1,2,⋯,nt                   (Eq. 3)

where {yi;xi1,xi2,⋯,xip}nt
i=1 are the observations of the response vari-

able Y and the explanatory variables X1, X2,⋯, Xp at a set of spatial
locations [(u1,v1), (u2,v2),⋯,(unt

,vnt
)], where nt is the number of spa-

tial locations of data observations at time period t; and q the num-
ber of time lags in addition to those from the same time period. {βj

(ui,vi,t)}p
j=1 represent the unknown coefficients of local coordinates

and the time for describing spatiotemporally varying patterns of
each explanatory variable. {εi}nt

i=1 denote errors assumed to be inde-
pendent and identically distributed random variables with zero
mean and the same variance σ2>0.

The calibration method of GWR model proposed by Brunsdon
et al. (1996) can still be used to estimate the coefficients {βj

(ui,vi,t)}p
j=1, but in this case, in addition to those from the time peri-

od t, while the data collected at prior time periods are named t-1,t-
2,⋯,t-q, with q being the number of time lags is incorporated in
the GWR model, in which the weight matrix W is constructed in a
different way in order to capture simultaneously both spatial and
temporal non-stationarities.

Using the locally weighted Ordinary Least Squares (OLS) pro-
cedure, the estimator of the coefficient vector β(ui,vi,t)=(β0 (ui,vi,t),
β1 (ui,vi,t),⋯, βq (ui,vi,t))T at (ui,vi,t) can be computed by,

(Eq. 4)

where X is the design matrix of the explanatory variables and Y is
the observation vector of the response variable

(Eq. 5)

is the weight matrix with the segregated spatial bandwidths over
time, where

(Eq. 6)

The elements in wit0 (bst0
,bT) can be generated by the Gaussian

spatiotemporal kernel function, that is

                                                                                                                                Article

Figure 1. Spatial distribution of the adjusted CI values averaged by time (A) in the cold season; (B) in the warm season; (C) temporal
trend of those values averaged over the counties in Inner Mongolia in 2016.
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(Eq. 7)

where is the Euclidean distance between
(ui,vi) and (uk,vk); and dtik

=|ti-tk| the distance in time between the
regression point i and the data point k. The data point k can be
located at any set St,St-1,⋯,St-q.

A set of separated spatial bandwidths bst
,bs(t-1)

,⋯bs(t-q)
and the

temporal bandwidth bT can be determined by minimizing the Cross
Validation (CV) function. That is, select bst

,bs(t-1)
,⋯bs(t-q)

and bT that
minimizes

(Eq. 8)

Taking the time period t as an example, the procedure of select-
ing the optimal spatial/temporal bandwidth according to
Fotheringham et al. (2015) is described in detail as follows. Given
a temporal bandwidth, for example, bT =1, the spatial bandwidth bst
is first i) calculated by using data points only from time t. 

In this case, the weight matrix

and can be obtained using the calibration method of the
GWR model by setting wt

iiS,T
= 0,(i=1,2,⋯,nt). The optimal spatial

bandwidth b*
st

is confirmed by minimizing the CV score,

Furthermore, the first  diagonal elements of the weight matrix
in Eq. 5 have been kept fixed by setting b*

st
in Eq. 6 as t0=t.

Then ii) the data points at time period t – 1 are incorporated
into the model. In this case, the observations of the response vari-
able and explanatory variables are from t and t – 1 time periods. As
for time period t – 1,  dtik 

= 1 and 

The weight matrix is  

The optimal spatial bandwidth b*
s(t-1)

is obtained by minimizing

Then, the second set of n_{t-1} diagonal elements can be derived
and kept fixed. Then iii) the above described process is repeated by
incorporating one-by-one data points from the past time t–2,
t–3,⋯,t–q to derive in turn optimal spatial bandwidths, denoted by
bS{(t-2)}

* b*
s(t-3), b

*
s(t-q) 

for these time periods, and finally iv) the process 
is repeated described from i) to iii) for the other q–1 possible tem-
poral bandwidths according to the number of time lags in the
model, that is for bT equal to 2,3,⋯, or q temporal unit in the past.

Thus, a set of CV scores are obtained, say, CVbT=1,CVbT=2, CVbT=q,.
Now the optimal temporal bandwidth can be selected as follows

Statistical outcome

Model specification
We used CI×105, as a common practice in HFMD analysis,

namely the adjusted CI (1/100000), taking its logarithm as the
response variable in the TL-GWR. The model is described as:

(Eq. 9)

where time t=1,2,⋯,12, namely from January to December in
2016, (u,v)  is the spatial coordinate denoting the spatial location
of each county (the total 102 counties in Inner Mongolia) and AT,
AH, AP, CR and AW standing for the monthly average tempera-
ture, relative humidity, air pressure, cumulative precipitation and
wind speed, respectively.

Selection of spatial and temporal bandwidths
In this paper, because of the HFMD data availability from

January to December in 2016, local coefficients for regression
points located at months April, March, February, and January were
estimated using only 3, 2, 1, and 0 time lag periods respectively.
The number of time lags was taken as 4 months because data
points located more than 4 months away from the regression
month in which the regression point is located would have little or
negligible influence on the estimation of local coefficients at the
regression point.

A set of optimal spatial bandwidths and the optimal temporal
bandwidth for each regression month are listed in Table 1. A tem-
poral bandwidth of value 0 would mean that only a spatial band-
width is used, for example, January. As shown in Table 1, in gen-
eral, a decreasing trend of the optimal spatial bandwidths is exhib-
ited when the data points incorporated into model were located far-
ther away in time from the regression month. However, the
decreasing trend of the optimal spatial bandwidths was interrupted
for regression months March, April and November.

Tests for non-stationarity of parameter estimation
For each regression month (from January to December), a spe-

cific TL-GWR model was constructed by incorporating data from
lag time period into GWR model. The spatial non-stationarity of
parameter estimates was assessed by comparing twice the standard
errors (2sd) of the global ordinary OLS estimates with the interquar-
tile (IQ) of parameter estimates for the TL-GWR model. The larger
values of IQ mean that there was significantly spatial nonstationarity
at the corresponding time period (Fotheringham et al., 2002). The
testing results are summarized in Table 2, in which the statistically
significant factors are marked with “*”. As shown in Table 2, the sta-
tistical significance of effects of climate factors on HFMD incidence
mainly concern occurrences in the cold season.

Evaluation of the TL-GWR model
It is worth comparing the performance of the TL-GWR model,

in which data points from previous time periods were incorporated
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Table 1. Optimal temporal and spatial bandwidths January-December in 2016.

                               Dec.      Nov.        Oct.      Sep.     Aug.          Jul.          Jun.        May           Apr.            Mar.             Feb.               Jan.

b*T                                        3               2                 3               4              2                   3                    2                  4                      3                       2                        1                          -
b*s12                                   311              -                 -                -              -                    -                    -                  -                      -                       -                        -                           -
b*s11                                      35            359               -                -              -                    -                    -                  -                      -                       -                        -                           -
b*s10                                      17             33              850             -              -                    -                    -                  -                      -                       -                        -                           -
b*s9                                     0.01            38               44            559            -                    -                    -                  -                      -                       -                        -                           -
b*s8                                        -               50               20             17           803                  -                    -                  -                      -                       -                        -                           -
b*s7                                        -                -                22             22            27                886                  -                  -                      -                       -                        -                           -
b*s6                                        -                -                20             18            25                 47                635                -                      -                       -                        -                           -
b*s5                                        -                -                 -                -             26                 20                 22               645                    -                       -                        -                           -
b*s4                                        -                -                 -                -              6                0.001             1.17               9                    890                     -                        -                           -
b*s3                                        -                -                 -                -              -                    -                 0.00             0.00                  54                    303                      -                           -
b*s2                                        -                -                 -                -              -                    -                    -                  -                      7                    13.8                   665                        -
b*s1                                        -                -                 -                -              -                    -                    -                  -                     25                     24                      19                       432
*The unit of bandwidth b*si is kilometers (km). The unit of bandwidth b*T is month. 

Table 2. Non-stationarity test of parameters for the TL-GWR model January-December in 2016.

                  Jan.                        Feb.        Mar.                       Apr.
Variable               IQ                 2sd                         IQ                 2sd                      IQ                   2sd                        IQ                   2sd

Inter                          0.442*                  0.258                              0.058                   0.124                        0.395*                    0.242                            0.038                      0.237
AT                               0.65*                   0.615                              0.259                   0.336                        1.062*                    0.567                            0.124                      0.534
AH                               0.283                   0.629                              0.125                   0.339                          0.539                     0.603                            0.083                      0.534
AP                                0.29                    0.355                              0.044                   0.168                        0.399*                    0.255                            0.052                      0.272
CR                               0.29*                   0.279                              0.107                   0.158                        0.596*                    0.296                            0.063                      0.252
AW                              0.121                   0.262                              0.048                   0.126                          0.091                     0.260                            0.051                      0.290
                May.                       Jun.                      Jul.                       Aug.
Variable               IQ                 2sd                         IQ                 2sd                      IQ                   2sd                        IQ                   2sd

Inter                           0.049                   0.284                              0.079                   0.310                          0.041                     0.272                            0.046                      0.232
AT                                0.283                   0.502                              0.137                   0.511                          0.089                     0.510                            0.118                      0.275
AH                               0.446                   0.551                              0.245                   0.588                          0.058                     0.531                            0.089                      0.351
AP                               0.120                   0.372                              0.115                   0.427                          0.045                     0.428                            0.059                      0.266
CR                               0.099                   0.386                             0.424*                  0.415                          0.170                     0.359                            0.051                      0.314
AW                              0.154                   0.348                              0.162                   0.358                          0.052                     0.319                            0.086                      0.274
                 Sept.                        Oct.                     Nov.                      Dec.
Variable               IQ                 2sd                         IQ                 2sd                      IQ                   2sd                        IQ                   2sd

Inter                           0.081                   0.215                              0.043                   0.235                        0.344*                    0.271                          0.411*                     0.282
AT                                0.219                   0.373                              0.111                   0.294                        0.815*                    0.568                          1.938*                     0.620
AH                               0.285                   0.468                               0.06                    0.329                          0.228                     0.570                            0.218                      0.589
AP                               0.161                   0.415                              0.062                   0.279                        0.530*                    0.332                          0.710*                     0.352
CR                               0.170                   0.315                              0.051                   0.335                        0.365*                    0.354                          0.620*                     0.305
AW                              0.071                   0.250                              0.077                   0.262                        0.341*                    0.290                          0.289*                     0.285

Evaluation of the TL-GWR model
It is worth comparing the performance of the TL-GWR model,

in which data points from previous time periods were incorporated
into the GWR model, against the GWR model, in which the local
parameters were estimated at each time point only using data
points from this time period. The CV scores for each month of both
TL-GWR and GWR are described in Figure 2, where it can be seen

that there is a similar trend of the CV score of the both model
(GWR and TL-GWR). However, the CV score of the TL-GWR
model was lower than that of the GWR model. The result means
that the performance of the TL-GWR is superior to that of the
GWR for all months of the study except for January where it had
the same CV score.
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Results and discussion

Spatial patterns of the estimated coefficients
Figures 3 to 8 shows the spatial variation patterns of the effect

of each explanatory variable including the intercept term on the
response variable for the two seasons (cold and warm seasons).

Figure 3 reflects the basic spatial variation patterns of HFMD
incidence in different seasons. It can be shown that, HFMD inci-
dence varies obviously in the two seasons with the largest values
takes place over space in the warm season.

Figure 4 shows the choropleth maps of the estimated coeffi-
cient of the AT in cold and warm seasons. From Figure 4A, it can
be observed that, in the cold season, AT has a negative influence on
HFMD incidence in a number of counties (almost all) of the north-
eastern and eastern parts of the region with the strongest negative
influence in Genhe City, Hailaer District, Ewenki Autonomous
Banner, Arhorqin Banner and Wengniute Banner. This influence

turns to be positive in the south-western area, which is relatively
consistent with the region of the higher HFMD incidence in Figure
1A. However, in the warm season, AT influences HFMD incidence
in all counties positively (Figure 4B), which is consistent with the
results of existing literatures (Zhang et al., 2016; Xu et al., 2016;
Song et al., 2019).

The seasonal maps of the coefficient estimator of AH are
depicted in Figure 5. The negative influence of AH on HFMD inci-
dence in almost all counties, except for the middle part of the
region and some other counties, appears in the cold season (Figure
5A). In the warm season, the influence turns to be positive in
almost all counties (in Figure 5B), which is relatively consistent
with the study results of Onozuka and Hashizume (2011) and Yang
et al. (2017; 2018).

Figure 6 reflects the spatial variation characteristics of the esti-
mated coefficient of monthly average AP in different seasons. As
can be observed in Figure 6, from cold season to warm season,
except for the north-eastern area, the significant variation where
the positive influence turns into negative, appears in the other
counties. In addition, except for the slightly positive effect in a few
of counties, Figure 6B shows that the AP has basically a negative
influence on HFMD incidence in the warm season. In these two
seasons, the negative influence of the AP on HFMD incidence is
upheld in the north-eastern part of whole region, which might
mean that the AP is a protective factor for the epidemic of HFMD
in these counties.

From the choropleth maps of the coefficient estimator of CR in
Figure 7A, it can be seen that, in the cold season, except for the
slightly positive influence in the north-eastern part of the area, the
negative effect of the CR on HFMD incidence takes place in most
of counties of Inner Mongolia. The results shown in Figure 7B
indicate that the CR influences HFMD incidence positively in the
whole region with the intensity increasing from east to west, with
the strongest positive impact of the CR on HFMD incidence in the
south-western part of the region.

                   Article

Figure 2. Cross Validation (CV) score from GWR and TL-GWR
in 2016 (January to December). 

Figure 3. Spatial variation of the estimated intercept averaged by the seasons: (A) in the cold season; (B) in the warm season.
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Figure 8 depicts the choropleth maps of the estimated coeffi-
cient of AW. As seen in Figure 8A, in the cold season, except for
the strongest negative effect in the middle counties, the impact in
the other counties is positive with the strongest positive impact of
the AW on the CI appearing in the north-eastern area and the west-
ern-most counties. However, because there are relatively sparse

sample points in the extreme West, the explanation should be taken
as cautious. From Figure 8B, in the warm season, the areas influ-
ence by the negative effect of the AW on HFMD incidence gradu-
ally extend from the middle sideways. The slight positive influence
mainly appears in the north-eastern area, while the strongest posi-
tive influence is observed in the westernmost counties.

                                                                                                                                Article

Figure 4. Spatial variation of the estimated coefficient of the AT averaged by the seasons: (A) in the cold season; (B) in the warm season.

Figure 5. Spatial variation of the estimated coefficient of the AH averaged by the seasons: (A) in the cold season; (B) in the warm season.
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Temporal patterns of the estimated coefficients
Figure 9A depicts the temporal trend of the logarithm HFMD

incidence adjusted by climate factors and is relatively consistent
with the trend of HFMD incidence shown in Figure 1C. From the
temporal trend chart of the AT in Figure 9B, it can be seen that it
positively influences the CI from January to December. The largest

intensity appears in June and December, approximately corre-
sponding to the highest incidence in Figure 1C. Combined with the
findings in Figure 4, we may draw the conclusion that AT is a risk
factor of HFMD transmission and dispersal during the warm sea-
son. In addition, in the cold season, the AT may be a risk factor for
the epidemic of HFMD in the south-western part. Figure 9C illus-

                   Article

Figure 6. Spatial variation of the estimated coefficient of the AP averaged by the seasons: (A) in the cold season; (B) in the warm season.

Figure 7. Spatial variation of the estimated coefficient of the CR averaged by the seasons: (A) in the cold season; (B) in the warm season.
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Figure 8. Spatial variation of the estimated coefficient of the AW averaged by the seasons: (A) in the cold season; (B) in the warm season.

Figure 9. Temporal variation of the estimated intercept and coefficients of climate factors averaged over the counties: (A) Intercept; (B) Average temperature;
(C) Average relative humidity; (D) Average air pressure; (E) Cumulative precipitation; and (F) Average wind speed.
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trates that the AH has the strongest positive effect in September
and the strongest negative influence in March. Figure 9D shows
that the influence of the AP is consistently negative from February
to June with the largest intensity appearing in June and it has a pos-
itive effect on the CI in the other months with the largest intensity
appearing in December. Figure 9E illustrates that the effect of CR
shows a temporal “∩-formed” trend in the warm season with the
strongest positive effect taking place in July and August, approxi-
mately corresponding to the highest incidence of HFMD in Figure
1C. Combined with the findings shown in Figure 7, it might mean
that the CR is a risk factor for HFMD transmission in the summer.
Figure 9F shows that the effect of the AW is consistently negative
from April to July with the largest intensity appearing in April.
Except for the negligible influence in March and July, the effect in
the other months is positive with the largest intensity taking place
in December.

Conclusions
Previous investigations found significant relationships

between climate factors and HFMD incidence (Cheng et al., 2018;
Dong et al., 2016; Hong et al., 2018; Ma et al., 2010; Onozuka and
Hashizume, 2011; Song et al., 2019; Wang et al., 2017; Xu et al.,
2016; Yang et al., 2017; Yang et al., 2018). The relationship of cli-
mate factors and the transmission of HFMD is spatiotemporally
non-stationary. The GWR model incorporating the time factor
(TL-GWR) in this paper was used for analysing the spatial and
temporal non-stationarities of the impact of climate factors on the
occurrence of childhood HFMD in Inner Mongolia, China. The
detailed spatiotemporal variation patterns of the effect of climate
factors on HFMD incidence were uncovered based on the outputs
of the TL-GWR model.

The results presented here are not only useful for a full under-
standing of the relationship between climate factors and HFMD
occurrence, but also helpful in making measures for protecting and
controlling HFMD at the county level in different seasons. This
study also demonstrates the strengths and potentials of the TL-
GWR model in detecting spatiotemporal non-stationarity of a
regression relationship. However, there are still much room for the
improvement of the TL-GWR model. First, one of the important
issues for the TL-GWR model is to develop the optimal spatial and
temporal bandwidth selection procedure to deal with the computa-
tional complexity, especially for big datasets. Second, the local
tests would be developed to judge the statistical inferences of spa-
tiotemporal characteristics shown by the estimated coefficients.
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