
Abstract
The ecology of the aquatic snails that serve as obligatory inter-

mediate hosts of human schistosomiasis is driven by climatic and
hydrological factors which result in specific spatial patterns of
occurrence and abundance. These patterns in turn affect, jointly
with other determinants, the geography of the disease and the tim-
ing of transmission windows, with direct implications for the suc-
cess of control and elimination programmes in the endemic coun-

tries. We address the spatial distribution of the intermediate hosts
and their seasonal population dynamics within a predictive ecohy-
drological framework developed at the national scale for Burkina
Faso, West Africa. The approach blends river network-wide infor-
mation on hydrological ephemerality which conditions snail habi-
tat suitability together with ensembles of discrete time ecological
models forced by remotely sensed estimates of temperature and
precipitation. The models were validated against up to four years
of monthly snail abundance data. Simulations of model ensembles
accounting for the uncertainty in remotely sensed products ade-
quately reproduce observed snail demographic fluctuations
observed in the field across habitat types, and produce national
scale predictions by accounting for spatial patterns of hydrological
conditions in the country. Geospatial estimates of seasonal snail
abundance underpin large-scale, spatially explicit predictions of
schistosomiasis incidence. This work can therefore contribute to
the development of disease control and elimination programmes.

Introduction
Spatio-temporal modelling of the ecology of intermediate

hosts or vectors of water-associated infectious diseases has been
applied to malaria and other mosquito-borne diseases, in particular
in terms of temperature suitability for Anopheles spp. (Weiss et
al., 2014, 2015), and on the effects of rainfall on seasonal varia-
tions of mosquito densities (Bomblies et al., 2008; Bomblies and
Eltahir, 2009; Tompkins and Ermert, 2013; Rumisha et al., 2014;
Diboulo et al., 2015). Much less work has focused on the aquatic
snails that serve as intermediate hosts of Schistosoma spp. which
cause human schistosomiasis for which more than 220 million
people are in need of preventive chemotherapy, most of which in
sub-Saharan Africa (Garba Djirmay and Montresor, 2017). The
availability of information on the spatio-temporal patterns of snail
abundance could be leveraged with spatially-explicit models of
disease transmission to provide insight into the timing of transmis-
sion windows and their epidemiological effects, with implications
for the design and deployment of national surveillance-response
strategies for disease elimination (Bergquist et al., 2015; Perez-
Saez et al., 2015).

Spatial studies on the intermediate hosts of the two main
Schistosoma species in sub-Saharan Africa, Schistosoma mansoni
and Schistosoma haematobium causing the intestinal and urogen-
ital forms of the disease, respectively, have principally focused on
the determination of their ecological ranges using historical pres-
ence/absence in species distribution models (SDMs) (Stensgaard
et al., 2013, 2016; Pedersen et al., 2014). Following similar lines
but with recent malacological surveys at multiple times during the
year, Manyangadze et al. (2016) took into account seasonal varia-
tion in snail occurrence in South Africa by partitioning SDMs by
season (cold/dry, hot/dry, rainy, post-rainy), thus producing sea-
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son-dependent suitability maps. The inclusion of seasonality in
spatial estimations of snail occurrence was an innovative step;
however, their approach did not account for variations in snail
abundance – only presence/absence – and did not incorporate tem-
poral auto-correlation in snail abundance from one season to the
other, while temporal ecology modelling has focused only on local
snail population dynamics in specific habitats (Woolhouse and
Chandiwana, 1990; Perez-Saez et al., 2016; Gurarie et al., 2017).

Here, we propose a methodology aimed at bridging the gap in
spatio-temporal predictions of snail population dynamics for use in
schistosomiasis risk mapping and incorporation into spatially-
explicit models of disease transmission. We extend previous work
concerning three experimental sites across the climatic regions in
Burkina Faso (Perez-Saez et al., 2016, Perez-Saez, Mande, Zongo,
Rinaldo, Comparative analysis of time-based and quadrat sam-
pling in seasonal population dynamics of intermediate hosts of
schistosomiasis, unpublished data) by building monthly discrete-
time models of snail demography forced by remotely sensed esti-
mates of key environmental covariates. The models are calibrated
to reproduce multi-season ecological data, and are properly region-
alised by using spatial estimates of hydrologic ephemerality.

Materials and Methods

Snail abundance data and ecological models
The field sites and protocols for the collection of field ecolog-

ical and environmental data have been described elsewhere (Perez-
Saez et al., 2016, Perez-Saez et al., unpublished data)

Briefly, snail sampling was carried out in three villages in
Burkina Faso covering the country’s climatic regions from May
2014 to December 2017. We focused on two sites in which natural
habitats were studied, including a temporary pond and an ephemer-
al stream in the Centre-East region of the country (Lioulgou), and
a permanent stream in the South-West (Panamasso) (Figure 1). The
Sudanian climate in Panamasso is characterised by annual rainfall
of around 1100mm with a longer rainy season stretching from June
to October, and the Sudano-Sahelian climate experienced by
Lioulgou characterised by annual rainfall less than 900mm per
year and a shorter rainy season from July to September (Sivakumar
and Gnoumou, 1987). Two types of sampling schemes were per-
formed, one time-based using a weekly frequency and one quadrat-
based using a monthly frequency. In the perspective of providing
spatially consistent predictions of snail abundance, the use of time-
based sampling has the disadvantage of being subject to observer-
dependent frailty and can only yield relative abundance counts
which cannot be compared across sites (Hairston et al., 1958).
Quadrat sampling can provide estimates of absolute snail densities,
subject to the suitability of the type of habitat to this method.
However, it is possible to establish the correspondence between
the two methods which then enables the transformation of one type
of counts into the other (Perez-Saez et al., unpublished data).

Following accepted methods (Perez-Saez et al., 2016), the
Malthusian, Ricker and Gompertz discrete time models are here
used to describe snail population dynamics, allowing for piecewise
linear effects of the covariates on the natural rate of increase (Toms
and Lesperance, 2003). The use of piecewise linear models was
motivated by the need to account for sharp changes in population
growth and collapse that characterise snail ecological dynamics in

the absence of environmental data gathered at high temporal reso-
lutions as it has been the case in other studies as in Perez-Saez et
al. (2016), in which data on air temperature, humidity, water tem-
perature, level and conductivity had been collected at a 5min tem-
poral resolution throughout the study period. The regionalisation
of the predictions to the rest of the country needs to rely on remote-
ly sensed estimates of environmental variables (section 1 of the
Appendix). Specifically, the change of the relative snail abundanceNt between time points t and t + 1, with a Ricker-type density
feedback, was modelled as (Eq. 1):

                                                                                               
Eq. 1

where: b<0 is the negative density-feedback parameter, and
denotes the coefficient of environmental covariate 

feature multiplied by the indication function I (·) of covariate

being larger than the covariate- and lag-specific threshold

, taken at non-negative integer time lags .

Given the monthly time step, only lags of 1 month were con-
sidered. Lagged covariate features were taken in all possible com-
binations up to a maximum of mi + mj = 5, yielding a total of≈500,000 models to test for each habitat/species combination. The

thresholds were fit for each covariate combination using the 

Nelder-Mead algorithm (Nelder and Mead, 1965). Product interac-

tions of the type were not considered. As proposed by 

Perez-Saez et al. (2016), the Gompertz-type density feedback,
where Nt is substituted by log(Nt) on the right hand side of Eq. 1,
and the Malthusian model b=0 were also tested. The time-series of
monthly mean time-based counts was used for model calibration.
This choice was due to the fact that quadrate-based counts present-
ed gaps due to logistical constraints during the summer of 2016 in
Panamasso during which logistical constraints prevented the col-
lection of quadrat data during two months. Time. Time-based
counts were collected throughout the study period. The functional
relationships between time- and quadrat-based counts identified by
Perez-Saez et al., unpublished data, where then used to transform
model outputs back to absolute densities with the latter as basis for
the analysis of spatio-temporal patterns of snail abundance.

Remote sensing
Remotely sensed data were used for the regionalisation of pre-

dictions with respect to snail intermediate host population dynam-
ics throughout the country. The choice of which covariates to
include in the spatial models of snail ecology took previous iden-
tification results into consideration (Perez-Saez et al., 2016) as
well as the availability of relevant remotely sensed products pro-
viding estimates at suitable spatial and temporal resolutions.
Among the six environmental covariates measured in situ (air tem-
perature, water temperature, conductivity, level, precipitation
amounts and number of intense rainfall events), only precipitation
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and air temperature were retained due to their systematic appear-
ance in the model identification process and the availability of cor-
responding remotely sensed products. For both covariates, the lat-
ter were selected among possible candidates, corrected against
ground measurements and their uncertainty characterised by fitting
appropriate error models. According to common approaches in
hydrology (Hong et al., 2006; Moradkhani and Sorooshian, 2009),
such fitting is a necessary step as it accounts for the propagation of
uncertainty in estimated environmental covariates into the outputs
of snail demography models. A detailed account of the selection of
remotely sensed products, contrasting against ground measure-
ments, de-biasing (for precipitation), estimation (for temperature),
and the quantification of associated errors are given in the
Appendix. Briefly, for precipitation we retained Rainfall Estimate,
v. 2.0 (RFEV2) of the Climate Prediction Centre’s decadal esti-
mate at ≈10 km spatial resolution (Xie and Arkin, 1997) which we
contrasted to monthly precipitation measurements from the
Burkina Faso meteorological agency (Direction Générale de la
Météo, Ouagadouguo, Burkina Faso) for the period 2006-2016 and
quantified uncertainty multiplicative error models according to
McMillan et al. (2011) and Tian et al. (2013). For temperature, we
estimated monthly mean maximum and minimum daily tempera-
ture with the MODIS Aqua/Terra temperature products
(MYD11A2) 8-day composites at 1-km spatial resolution (Wan et
al., 2015) using ground measurement from the meteorological
agency of Burkina Faso following the multivariate regression
methodology proposed by Garske et al. (2013) for temperature-
dependent modelling of malaria transmission.

Model implementation and regionalisation
The ecological model fitting procedure was analogous to the

one presented previously by Perez-Saez et al. (2016). The model
fitting procedure consisted in computing the residual sum of
squares for each combination of covariates and model type (con-
sidering density feedbacks or lack thereof). Model fitting for the
ephemeral habitats in Lioulgou was done for the data up to
December 2016 when sampling was interrupted due to logistical
constraints, and up to December 2017 in the permanent habitat in
Panamasso. The ecological models were calibrated using the mean
estimated covariates from remote sensing. Ecological models were
ranked using the compensated Akaike information criterion (AICc;
Burnham and Anderson, 2002) and combined into an ensemble
model using a weighted sum of model outcomes, where the weight𝑤𝑖 assigned to model i is a function of the difference between its
AICc score and the smallest one obtained in the model set, ΔAICi
as expressed in the equation by Burnham and Anderson (2002)
(Eq. 2):

                                                                                                  

                                                                      
Eq. 2

Model ensemble predictions were realised by performing 1000
simulations of model outcomes using perturbed remotely sensed
estimates of rainfall and temperature drawn from their respective
error models, which depended on climatic region and month (sec-
tion 2 of the Appendix). Model simulations were run for the entire
available observation window for each habitat. Initial conditions
for the simulation were drawn from a uniform distribution whose
bounds correspond to the minimum and maximal sampled snail
density in the first sampling month in each species/habitat dataset.

After comparison with observed ecological time series in the
experimental sites, the simulation methodology was applied to the
pixel-based prediction of snail abundance at the national scale. The
resolution of the pixels in the simulations was of 10 km2. All
covariates were resampled to the simulation resolution using a
bilinear interpolation. For the intermediate host of S. mansoni in
Burkina Faso, Biomphalaria pfeifferi, the species probability of
presence, based on hydrological ephemeral regions as previously
delineated by Perez-Saez et al. (2017), were used as a mask for
snail presence. The intermediate hosts of S. haematobium, from the
genus Bulinus, are known to be present in both permanent and
ephemeral rivers (Poda et al., 2004). Each type of habitat has their
corresponding ecological model ensemble (i.e. the models fits to
the ephemeral stream in Lioulgou, and the permanent stream in
Panamasso). The two model ensembles were each applied to their
respective hydrological ephemeral region as defined in Perez-Saez
et al. (2017) (Figure 1). As done in the epidemiological analysis by
Perez-Saez et al. (2017), we assumed that at least one Bulinus
species can be present in all hydrological ephemeral conditions in
Burkina Faso (Poda et al., 2004). Simulations for the permanent
and ephemeral river habitats were extracted for each river stretch
of the national river network. Accurate maps of the location of
small temporary ponds that sustain Bulinus spp. are not available
despite advances in remotely sensed approaches to small water
bodies (Amitrano et al., 2017). Simulations for snail ecology in
temporary ponds were therefore presented by pixel for the whole
country.

Results
The simulated population dynamic models forced by remotely

sensed covariates captured observed seasonal fluctuations of snail
abundance well in all three habitats in the two sampling villages
(Figure 2). Overall, 85%-100% of the 95% confidence intervals
(CIs) of the mean time-based snail densities were within the 95%
model simulation envelopes. Moreover, 79%-100% of the
quadrate-based CIs of mean snail abundance where within the
transformation of model simulations into absolute densities. We
recall that the models were fitted against the mean monthly time-
based relative abundance counts, and simulations were trans-
formed to equivalent, absolute-density counts for comparison with
quadrat-based snail density measurements (Perez-Saez et al.,
unpublished data). The simulations reproduced the seasonal
dynamics of Bulinus spp. well in the temporary ponds and
ephemeral streams, including their population bursts during the
rainy season. The variability in the predicted onset of snail popula-
tion is well captured by the temperature and precipitation error
models, with some models greatly overshooting and some under-
estimating the initial population growth in June after the first rains
in the temporary ponds. Although the median simulation tends to
under-estimate initial growth, the latter falls within the 95% simu-
lation envelopes (Figure 2). The dry-season peak in the permanent
river in Panamasso was also well followed by the median simula-
tions. The marked wet-season dips in the abundance of Bulinus
spp. were particularly well simulated with little sensitivity to
uncertainty with regard to precipitation and temperature (average
width of the 95% simulation envelope of 1.78 of the simulation
median in the months of October and November). Models of Bi.
pfeifferi are more sensible to covariate variations, in particular in
the March-April population increase (average width of the 95%
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Figure 1. Situation map of snail research in Burkina Faso. A) The capital of Burkina Faso (white dot) and two study sites (red dots)
located in both permanent (all year-round river flow, blue lines) and ephemeral (more than six months of dry bed conditions, orange
lines) hydrological conditions. B) Temporary pond sampled in Lioulgou. C) Ephemeral river sampled in Lioulgou. D) Permanent
stream sampled in Panamasso. E) Time series of monthly snail abundance estimates with the time-based and quadrat protocols (error
bars: 95% confidence interval).

Figure 2. Ecological predictions using remote-sensing covariates. Comparison between observed (points) and simulated (median: black
line, shading: 95% simulation envelopes (SE) of 1000 simulations) monthly population dynamics using remotely sensed covariates in
terms of whether 95% confidence interval (CI) of the monthly mean snail densities intersects 95% SE (purple points) or not (green
points), with the fraction of data points that do so given for each snail species-habitat combination.
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simulation envelope of 2.77 of the simulation median), although
the median simulation tracks the observed population fluctuations
well. Overall the median simulations were in good agreement with
the observed monthly abundance counts, in particular when con-
sidering simulation envelopes in addition to the median simulation.

Simulating habitat and species-specific ecological models
using the remotely sensed covariates enabled the exploration of
spatio-temporal patterns of snail abundance at the national scale
(Figure 3). Overall Bulinus spp. presented the largest abundances
in the permanent river network in the south-western part of the
country (mean seasonal densities: 35 snails/m2), followed by pop-
ulations in temporary ponds (peak mean seasonal densities: ≈20
snails/m2), with simulated densities in the ephemeral streams being

the lowest (peak mean seasonal densities: ≈10 snails/m2). Bi. pfeif-
feri presented similar simulated abundances than Bulinus spp. in
permanent streams (peak mean seasonal densities: ≈30 snails/m2).
Seasonal mean abundances highlighted the differences, both in
timing and magnitude of snail abundance peaks among the habitat
types. Bulinus spp. showed similar patterns with peak densities
during the rainy season (July-September), with declining popula-
tions in the winter season (October-January) and close to zero in
the dry season (February-June). Interestingly, the populations in
the temporary ponds were not predicted to reach such low values
during the dry season in very southern and south-western regions
of the country, possibly due to the more abundant rainfall in the
Sudanian climate in Panamasso with respect to the Sudano-

                   Article

Figure 3. Seasonal means of simulated snail population dynamics for each species and habitat. Results are shown in terms of absolute
snail density (snails/m2) according to the occurrence of the snail species in specific hydrological conditions (grey lines indicate rivers in
which the snail species are not found).
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Sahelian climate experienced by Lioulgou. The simulated popula-
tion dynamics of Bulinus spp. in the permanent stretches of the
river network suggest that local environmental conditions yield
different density patterns depending on location. The mean snail
abundances in the winter period are high in all permanent river
stretches, however the patterns differ for the dry and wet periods of
the year. Strong densities were predicted in the rainy season in the
West, with higher densities during the dry season in the most
south-western parts of the country. Simulated spatio-temporal pat-
terns of Bi. pfeifferi were more homogeneous across suitable habi-
tats, with maximum densities during the dry season and low densi-
ties during the rainy and winter seasons.

The extraction of the timing of peak densities for each species
and across habitats provided an additional perspective on the dif-
ferences between snail population dynamics in the country (Figure
4). In the ephemeral aquatic habitats, the simulations indicated that
the population peaks of Bulinus spp. in the temporary ponds are
between August and September throughout the country. On the
other hand, the peaks appeared earlier, around July, in the
ephemeral streams in most regions, with some parts in the centre
of the country and the most northern regions exhibiting a later peak

at the same time as the temporary ponds (September). Bulinus spp.
in permanent streams presented a much more heterogeneous tim-
ing with respect to peak density which was already visible from the
seasonal means, with an overall East-to-West gradient of timing in
the dry season extending into the early rainy season with peak den-
sities occurring from January to June. In rare cases in the South-
West, the timing of peak densities occurred in September. The tim-
ing of Bi. pfeifferi peak densities was homogeneous and occurred
during the dry season (around March).

Discussion and Conclusions
Together, the outputs of the simulations highlight the species

and habitat-specific heterogeneity in the population dynamics of
the snail intermediate hosts at the national scale. The proposed
methodology supports an objective evaluation of spatio-temporal
fluctuations in the abundance of the schistosomiasis snail host
across the highly seasonal climate of Burkina Faso. Model simula-
tions forced by remotely sensed estimates of temperature and pre-
cipitation were, in fact, capable to reproduce observed snail popu-

                                                                                                                                Article

Figure 4. Timing of seasonal peak in simulations for each snail species and habitat type (grey lines indicate rivers in which the snail
species are not found).

                                                                              [Geospatial Health 2019; 14:796]                                                           [page 311]

gh-2019_2.qxp_Hrev_master  04/11/19  13:26  Pagina 311

Non
-co

mmerc
ial

 us
e o

nly



[page 312]                                                            [Geospatial Health 2019; 14:796]                                          

lation dynamics across species, habitat types and hydrological con-
ditions. The regionalisation of the results at the national scale
enables the visualisation of the heterogeneity of the magnitude
snail abundance seasonal means, as well as the timing of the peaks
of the strongly seasonal population dynamics of these snails of
medical importance.

Our methodology builds on a novel combination of ecological
models fitted to in situ snail abundance time series, together with
a national-scale categorisation of hydrological conditions to deter-
mine the spatial occurrence of distinct snail species as a function
of their requirements in terms of aquatic habitat characteristics. It
is important to note that the results presented in Figure 2 are full
simulations in the sense that they are run for the entire simulation
window fixing only the initial conditions, as opposed to 1-step
ahead predictions (Perez-Saez et al., 2015).

Possible extensions of the modelling framework could consist,
on the one hand of incorporating discharge estimates in the ecolog-
ical models for rivers, and on the other of extending the pond mod-
els to account for snail ecology in man-made reservoirs and lakes.
Regarding rivers, incorporating predicted monthly discharge into
the ecological models, instead of rainfall alone, would allow the
differentiation of snail population dynamics between tributaries
and the main branches of river networks. National-scale predic-
tions of discharge at the river-stretch level poses non-trivial chal-
lenges due to the issue of data scarcity and the time series hetero-
geneity in length, accuracy, and reliability (Perez-Saez et al.,
2017). However, a hydrologic modelling approach based on the
Budyko framework has shown good results for monthly discharge
predictions (Zhang et al., 2008) providing an avenue for discharge
prediction in data-scarce regions.

Regarding the extension of the ecological modelling frame-
work to man-made reservoirs and lakes, the main factor which
needs to be taken into account is the duration of surface water pres-
ence, which can support snail populations that typically extends
beyond that of temporary ponds in small topographic sinks. This is
well illustrated by the historical data in a small reservoir in the cen-
tre of Burkina Faso (Poda et al., 1996). Estimation of the retention
capacity of these small reservoirs using remote sensing could pro-
vide the necessary information for generalising our approach to
these types of habitats (Amitrano et al., 2016, 2017; Peckel et al.,
2016). This water-availability extension of the modelling frame-
work would bring it closer to the resource-based models (Gurarie
et al., 2017), though allowing for density feedbacks and tempera-
ture effects.

The main limitation of the current simulation of snail popula-
tion dynamics at the national scale is the application of the models
fitted at only two locations (Lioulgou and Panamasso) to the rest
of the territory with no contemporary validation points. However,
this does not affect the methodological framework, but model-
guided validation of the simulations presented in this work could
involve the confirmation of the different timing of peak abun-
dances of Bulinus spp. in permanent rivers in the south-western
part of the country. Moreover, the abundance and seasonality of
Bulinus spp. should be validated in the Sahelian climatic zone in
the North of the country, and area for which we have no available
data, and where transmission of urogenital schistosomiasis is the
most intense (Perez-Saez et al., 2017). In addition, the realisation
of validation sampling campaigns is hindered by important logisti-
cal difficulties and financial costs of long-term ecological monitor-
ing efforts, such as the one that yielded the data for this analysis.
In this perspective, the guidance provided by the model may great-

ly help in minimising the amount of resources needed to validate
the modelling results we present in this work. Another limitation of
the study is that interactions between snail genera where ignored in
the ecological models, in particular in the permanent rivers, such
as at the site of Panamasso where both Bulinus globosus and Bi.
pfeifferi are known to co-occur (Poda et al., 2004). To our knowl-
edge there is no evidence for direct competition between the gen-
era of the two species, despite anecdotal accounts of its role for the
substitution of S. haematobium by S. mansoni in South-Western
Burkina Faso (Colette et al., 1982). However, this has not been
tested directly and This hypothesis could be the matter for future
work using the available time series of abundances in Panamasso.

Leveraging remotely sensed data and hydrological insight we
here provide a first example of national-scale predictions of the
abundance fluctuations of the snail intermediate hosts of schistoso-
miasis in strongly seasonal climates. The spatio-temporal simula-
tions of snail population dynamics presented in this work are rep-
resent a unique opportunity for the development and deployment
of spatially explicit models of schistosomiasis transmission (Perez-
Saez et al., 2015). As such, the ability to simulate snail demogra-
phy at any specific location with reasonable accuracy paves the
way for the implementation of national-scale model-based surveil-
lance response systems to support schistosomiasis elimination
activities in endemic countries.
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