
Abstract
Both epidemiology and health care planning require analytical

tools, especially for cluster detection in cases with unusually high
rates of disease incidence. The aim of this work was to extend the
application of the CutL method, which is used for detecting spatial
clusters of any shape, to detecting space-time clusters, and to
show how the method works compared to Kulldorff’s scan statis-
tic. In the CutL method, clusters with disease incidence rates high-
er than the one entered by the researcher are searched for. The way
in which the space-time version of that method works is illustrated
with the example of data simulating the distribution of people
affected by health problems in Polish counties in the period 2013-

2017. With respect to detection of irregularly shaped space-time
clusters, the CutL method turned out to be more effective than
Kulldorff’s scan statistic; for cylinder-shaped space-time clusters,
the two methods produced similar results. The CutL method has
also the important advantage of being widely accessible through
the PQScut and PQStat programmes (PQStat Software Company,
Poznan, Poland).

Introduction
In epidemiology, everything happens in a particular place at a

particular time, which means that the collected data have express
both a spatial and a temporal context. The search for environmen-
tal risk factors related to the occurrence of a disease can be more
precise if the search area is narrowed down with respect to time
and space. The tools for locating clusters with an increased disease
incidence rate are an indispensable element of epidemiological
analyses. Currently, a number of spatial cluster detection methods
are used in epidemiology, to indicate geographic cluster bound-
aries. However, there are fewer useful methods for space-time
cluster detection than methods indicating either the geographic or
the temporal boundaries of clusters (Robertson et al., 2010; An et
al., 2015).

Depending on the type of data, and on the aim of the analysis,
specific approaches to cluster detection analyses are advised. In
model-based approaches, Bayes’s methodology, for example, one
can easily take into account the influence of covariates such as
age, sex or smoking with respect to the risk for a certain disease to
develop. Bayes’s models in spatial analyses, mainly developed by
Lawson (2013), are used in many studies on disease mapping as
mentioned by Robertson et al. (2010). Estimations based on those
models, however, require that previous distributions be deter-
mined for every component of a given model and that samples of
posterior distribution be collected with the use of Markov chain
Monte Carlo methods (Lawson, 2013; Wakefield and Kim, 2013),
which is time-consuming. For that reason, those methods are not
popular for longitudinal supervision of disease incidence rates.
Having said that, they represent a set of tools that are effective for
the investigation of large sets of rare cases, where there are few
other techniques that work (Khana et al., 2018).

In approaches based on statistical tests, the ones that offer the
widest spectrum of adaptability, are Kulldorff’s scan statistic, first
applied to spatial analyses (Kulldorff, 1997) and later expanded by
the addition of time (Kulldorff et al., 1998, 2005; Kulldorff,
2001). The scan approach proposes cluster analysis for distribu-
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tions based on various models, not only those developed by
Bernoulli, Poisson and Gauss, but also permutation and multino-
mial models. The efficacy of these programmes results from the
mechanism of its algorithm; space-time clusters are found with the
use of circular or elliptic scanning windows of different diameters,
which makes Kulldorff’s scan statistic particularly suited to deal-
ing with circular or ellipse-shaped clusters. The scanning windows
are connected with a 3-D, cylindrical view whose height gives the
period of time during which the cluster exists. The statistical sig-
nificance of the proposed cluster is examined with the use of
Monte Carlo simulations, which is a rather quick process when a
circle-shaped window is used, but a much slower one when the
window is elliptical. The main driving force behind the fast devel-
opment and application of Kulldorff’s scan statistic is the SaTScan
programme developed by him {XE “software:SatScan”}
(https://www.satscan.org) (Martin Kulldorff, Harvard Medical
School, Boston,  and Information Management Services Inc,
Calverton, Maryland, USA), which makes it possible to make
modifications and run a test, also devised by him, and a part of
their modifications. However, the programme lacks the capability
of searching for clusters of freely selected shapes and their inten-
sity cannot be taken into account, as the tests fail to indicate which
incidence rate of a given disease is typical and which should be
viewed as too high. For that reason, sometimes clusters indicated
with the use of that method are not characterised by a disease inci-
dence rate which would qualify as unusually high in the eyes of an
epidemiologist. Besides, when looking for clusters, the scan statis-
tic compares the disease incidence rate within the scanning win-
dow with the rate outside of that window. Since there can also be
clusters outside of the scanning window, it is difficult to locate
potential clusters precisely and to indicate their statistical signifi-
cance (Zhang et al., 2010). That, in turn, obstructs the interpreta-
tion of the located clusters which do not, in such a case, constitute
a sufficient narrowing down of the search for all environmental
risk factors.

Another method that lends itself for cluster detection based on
statistical testing is the CutL method (Więckowska and
Marcinkowska, 2017) made available in the PQScut (http://pqs-
cut.ump.edu.pl) and PQStat (http://www.pqstat.pl/en) programmes
(Barbara Więckowska, Poznan University of Medical Sciences,
Poznań, and PQStat Software Company, Poznań, Poland). It con-
sists in searching for clusters with a disease incidence rate which
is statistically more significant than the rate defined by the
researcher. This approach provides the researcher with a unique
level of control in defining the cut-off level in a given analysis.
Furthermore, the possibility to define the cut-off level by the inves-
tigator allows for searches in areas where the frequency of an event
is not alarmingly high but higher than the researcher expectation.
That method allows searching for spatial clusters. In this work, an
extension of the CutL method is presented which make it possible
to look for space-time clusters. Also, the results of the use of the
CutL method and of Kulldorff’s scan statistic are compared, on the
basis of simulation data.

Materials and Methods

The CutL method
The CutL method operates based on the population size ni and

data concerning the number of ill people di for particular Oi (i=1,…
m) administrative areas. The method is used to search for clusters
according to the cut-off level (XCutL), which is set to the overall
incidence rate by default if not given by the investigator. In case
the investigator is interested in identifying clusters compared to the
specified incidence rate, different areas or wider areas than those
under study (e.g., those reported in other countries), then the pro-
posed cut-off level should be the incidence rate of the wider/differ-
ent area. In the first step, anchoring points of the cluster structures
can be found with the help of the cut-off level. They are those areas
(countries) where the disease incidence rate is significantly higher

than the cut-off level. In those calculations, the raw rate ratio 

is replaced with the smoothed coefficient based on local empirical
Bayes smoothing. For the Bayes method, we assumed independent
Poisson distribution for the observed count of events (conditional
upon the risk parameter), and independent Gamma distribution for
the prior of the risk parameter. In the Empirical approach, values
for α and β of the prior Gamma distribution are estimated from the
actual data. As a result, the rates for small counties (i.e. those with
a small population at risk) tend to change/adjust considerably,
whereas the rates for larger counties will barely change (Clayton
and Kaldor, 1987; Anselin et al., 2006). Next, clusters are con-
structed around the anchoring points. When overlapping, they later
combine to form greater cluster agglomerates.

In order to extend the CutL method from spatial to space-time,
particular steps of the spatial analyses have to change. The main
change pertains to the definition of neighbourhood. In spatial anal-
ysis, object neighbourhood in space is indicated by a two-dimen-
sional weight matrix, Wspace=[wij], where the value 1 means that
objects are neighbours, and 0 the opposite. For the purpose of the
space-time analysis, matrix Wspace was extended to three dimen-
sions – not only space, but also time Wspace-time=[wijt], where i=1,…
m, j=1,…m, t=1,…,T with m represents the number of spatial
objects and T the number of time layers. Neighbouring of objects
in time is understood as direct neighbouring, that is if time is con-
sidered in years, then particular years (t1, t2, …, tT) constitute time
layers, and the objects that are neighbouring in time are the same
objects, only located a year earlier or a year later on the time axis.

That matrix modification also demands that the smoothing
method, that is the local empirical Bayes smoothing, be extended
from two-dimensional to three-dimensional. In that way, the value
of the smoothed incidence rate ratio of the event with respect to the
object under study is made dependent on the value of the rates in
the neighbouring objects and on the value of the rates in the phe-
nomenon studied directly before and after the period for which the
smoothing is performed (Eq. 1):

                                                                                         Eq. 1

where smooth(rit) – smoothed incidence rate within a county (i) in
time (t),
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Cit – shrink factor for county (i) in time (t).
The statistical significance of the clusters formed in that way is

examined with the use of the binomial exact test for one propor-
tion. That test compares the actual (unknown) incidence rate with-
in a cluster (Rcluster), with the cut-off level (Eq. 2):

H0 : (Rcluster) = XCutL                                                                  Eq. 2

based on the known incidence rate within the cluster,
where dcluster is the number of people affected by

disease within the cluster, and ncluster the population size within the
cluster. Because of the multiple testing, P-value of the detected
clusters is corrected in accordance with the Benjamin-Hochberg
correction (Benjamini and Hochberg, 1995).

A simulation for Polish counties of the number of peo-
ple affected by disease 

We use the population of Poland in 2013-2017
(N=192,278,050) as given by the Central Statistical Office of
Poland (GUS, 2019) as the basis for the analysis. Poland has 380
counties. That division, in combination with a geographic informa-
tion system, forms the basis of regional planning and health care.
The administrative units differ greatly with respect to the number
of inhabitants. The capital has the highest number of inhabitants:
around 1,700,000 which only changes marginally. The least popu-
lated county has 20,000 inhabitants on average.

A simulation of the space-time distribution of the number of
people who had very recently fallen ill was conducted. In order to
ensure sufficiently great power to the analyses, the total number of
recently affected people was set at the level d=19228. With that

assumption, the overall incidence rate for Poland was = 0.0001.

Three different space-time distributions were designed as fol-
lows:
1. No cluster, data distributed randomly in accordance with the

multinomial distribution.
2a. Two separate clusters: a relatively circular one in central west-

ern Poland (2013-2015), which included 6.2% of the popula-
tion in 2013 but gradually disappeared to include only 3.3% in
2015; and an oblong one, located in the South along the south-
ern border of the country (2015-2017) that encompassed 1.5%
of the population in 2015, while gradually growing to encom-
pass 2.5% in 2017.

2b. A cluster following the course of the river which flows through
the capital of Poland (2013-2017), which included 4.7% of the
population but was not present the whole study period. It moved
from the southern border in 2013 to the northern border in 2017.
The counties belonging to clusters 2a and 2b in the y e a r s

indicated were accorded the status of true clusters. In order to
obtain data illustrating those distributions, data concerning the num-
ber of affected people were generated on the basis of the multinomial
distribution, according to the formula (Eq. 3):

                                                                                       Eq. 3
where dit is the number of affected people in the ith county in year
t; d the total number of affected people in counties m in years  

=192228, Rit the relative risk for county i in 

year t, depending on the indicated spatial distribution. Assuming
that there were no clusters (1), that is, that the null hypothesis
about constant relative risk is true, RRit=1 for every county, each
year. Assuming the presence of clusters (2a) and (2b), that is the
truthfulness of the alternative hypothesis about differing risks, RRit>1
was assumed for counties belonging to the clusters defined in a given
year, that is for the clusters here defined as true.

In order to obtain distribution (1) and distributions (2a) and
(2b), the data simulation procedure was repeated 500 times for
each of the assumptions about the location and intensity of the
clusters. For distributions representing clusters (2a) and (2b), the
relative risk (RR) for the clusters was RR=1.5 and RR=2.5 and
RR=4, respectively.

Cluster recognition
The planned space-time clusters in Poland in 2013-2017 were

searched on the basis of a simulated number of affected people and
of the population size in particular counties for each year. The tools
for the search were the CutL method and Kulldorff’s scan statistic
based on Poisson’s model, applied with the use of the PQStat pro-
gramme and the SaTScan programme, respectively. Since a
researcher usually does not know the size or shape of clusters
being looked for, we used the default settings of Kulldorff’s scan
statistic. The only change was the maximal time of the existence of
a cluster, which was increased from 50% to 60% in the case of the
detection of the 2a clusters because one of the planned clusters
existed for 3 years, which is 60% of the period of time analysed. In
the CutL method, we have used a standard Queen adjacency
matrix, and we have assumed the default settings with the cluster
cut-off threshold selected on the basis of the overall incidence rate
which was 0.0001 for the collected data. The counties with P-val-
ues smaller than the 0.05 significance level was classified as
belonging to particular clusters with the use of the selected meth-
ods.

Summary of the cluster outcomes
The main goal of the analyses presented here was to determine

the precision of the location and the size of the indicated clusters.
To that end, we checked the degree to which the clusters
located/found with the CutL method and Kulldorff’s scan statistic
overlap with the planned clusters (that is, the counties here called
true clusters). Traditionally we mark true-positive values by TP,
true-negative values by TN, false-positive values by FP and false-
negative values by FN. The measures which described the accura-
cy of the detected clusters were: sensitivity = TP/(TP+FN), that is
the ability of the method to correctly detect counties within the
planned clusters; specificity =  TN /(TN+FP), that is the ability of
the method to correctly exclude the belonging of a given counties
to a given cluster; positive predictive values (PPV),
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PPV=TP/(TP+FP), that is proportions indicating which part of the
counties assigned to the clusters by the given method really would
have the status of a true cluster; negative predictive values (NPV),
NPV=TN/(TN+FN), that is proportions indicating which part of
the counties excluded by the given method from the clusters really
would not have the status of a true cluster, and accuracy
=(TP+TN)/(TP+TN+FP+FN), that is the general proportion of cor-
rectly classified counties. In the formulas making it possible to
determine those measures, TP signified the number of counties
indicated as belonging to the clusters and, at the same time, consti-
tuting true clusters, FP – the number of counties indicated as
belonging to the clusters but not constituting true clusters, TN – the
number of counties indicated as not belonging to the clusters and
not constituting true clusters, and FN – the number of counties
indicated as not belonging to the clusters but constituting true clus-
ters.

The percentage of counties classified as clusters when the rel-
ative risk was 2.5 times higher within the planned true clusters (2a)
and (2b) is presented on the maps with the use of the PQScut pro-
gramme. Both simulated data and the files with maps and the
obtained results can be downloaded from http://pqscut.ump.edu.pl.

Results
The simulated data obtained in this study allowed the creation

of a situation in which the location of the space-time clusters was
known, as well as the RR for people falling ill within the planned
clusters. That made it possible to use both the CutL method and
Kulldorff’s scan statistic, and to determine their precision with the
use of sensitivity, specificity, PPV, NPV, and accuracy (Table 1).

If a researcher wants to confirm that an area, in this case a
county, belongs to a cluster (to detect true clusters but not to
exclude that possibility of belonging), then the most important
measures for evaluating the capability of the cluster detection
methods are sensitivity (first) and PPVs (second).In the presented
analyses of the simulated data, the values differed greatly for par-
ticular values of the RR, which made it possible to compare the
methods used for cluster detection. In each case, the PPVs were
higher for the CutL method, while the sensitivity of that method
was lower than that of Kulldorff’s scan statistic, but only for
RR=1.5. The specificity and the NPVs responsible for the exclu-
sion of a county from the clusters remained at a high level –
exceeding 97% – for the whole time.

Both methods turned out to be highly effective for detecting
two simultaneously existing clusters for RR≥2.5. The sensitivity

and PPV for the CutL method exceeded 90%, but these scores were
only a little lower for Kulldorff’s scan statistic. The location of the
two planned clusters in space and time as well as the results illus-
trating the precision of the indication of those clusters with the
CutL method and Kulldorff’s scan statistic for RR=2.5 are shown
in Figure 1. However, the CutL method showed a clear advantage
in the case of clusters located along the river where, for RR≥2.5,
the obtained sensitivity and PPV at >90% were nearly twice as
high as those obtained with Kulldorff’s scan statistic. The CutL
method correctly indicated the planned shape of the clusters, while
Kulldorff’s scan statistic mainly indicated cities within the area of
the planned clusters, such as Cracow in 2013 and Warsaw, the cap-
ital city, in 2015 (Figure 2).

Discussion
Because of the great computational complexity of spatial and

space-time analyses, they cannot be used on a large scale if not
offered in computational tools. According to Robertson and Nelson
(Robertson and Nelson, 2010), the SaTScan programme, which
offers analyses of spatial cluster detection and space-time cluster
detection, would be the best for an automated surveillance system.
The field of spatial and space-time analyses is developing with
increasing speed, which means that there is a need for new user-
friendly methods. As has been noted in the summary of the article
cycle on software for spatial analyses Software for Spatial
Statistics (Pebesma et al., 2015), the focus is free-license software,
which indicates that that field is still in its early stages of develop-
ment. In this work, we used the Polish version of the proprietary
PQScut programme (also available in English) with the CutL
method, which allows the detection of spatial and space-time clus-
ters. The results obtained with both the CutL method and
Kulldorff’s scan statistic are of direct practical use when presented
on a map.

The results of the comparison of the CutL method with
Kulldorff’s scan statistic for two regularly-shaped clusters were
similar. For the use of Kulldorff’s scan statistic, it is beneficial if
clusters exist invariably in the same place. However, this method
ignores the fact that the clusters grow or diminish over time
(Figure 1), which is not a problem for the CutL method that man-
ages to locate fragments of clusters regardless of population size
and irregular cluster shape. Kulldorff’s scan statistic had a big
problem with locating the irregular shape of clusters, when they
contained only counties with a small population. On the other
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Table 1. Comparisons between the CutL method and Kulldorff ’s scan statistic for cluster detection based on 500 replications.

Cluster - RR                       Sensitivity                    Specificity                             PPV                                     NPV                          Accuracy
                                     CutL            Scan*       CutL            Scan*          CutL                Scan*          CutL             Scan*       CutL           Scan*

(1)°                     1.0                  -                          -               0.999                   0.999                    -                               -                       -                            -                   -                        -
(2a)#                    1.5              0.279                   0.665           0.999                   0.988                0.891                       0.703               0.970                    0.986           0.969                0.974
                             2.5              0.903                   0.859           0.998                   0.984                0.951                       0.701               0.996                    0.994           0.994                0.979
                             4.0              0.991                   0.878           0.999                   0.981                0.985                       0.667               1.000                    0.995           0.999                0.977
(2b)§                    1.5              0.200                   0.385           0.998                   0.977                0.774                       0.360               0.973                    0.979           0.972                0.957
                             2.5              0.909                   0.572           0.997                   0.972                0.923                       0.416               0.997                    0.985           0.994                0.959
                             4.0              0.900                   0.589           0.999                   0.967                0.981                       0.383               1.000                    0.986           0.999                0.955
RR, relative risk; PPV, positive predictive values; NPV, negative predictive values; *Kulldorf’s scan statistic; °null hypothesis with no clustering; #two clusters; §clusters located along the river.
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hand, when the clusters included heavily populated counties (such
as the country capital in 2016), this method built wrongly too large
clusters – far exceeding the planned scope (Figure 2).

The lack of flexibility of Kulldorff’s scan statistic has been
noticed and discussed many times. Among the first analyses based
on this statistic but with more flexible scanning windows have
been proposed by Tango and Takahashi (2005), who developed a
method together with the FleXScan software (Tango, 2008; Tango
and Takahashi, 2012). Efforts have been made to extended this
approach was for use with space-time clusters (Takahashi et al.,
2008), but the extension is not made available in the FleXScan
software. As regards purely spatial data, flexible scan statistic is
used for searching for relatively small clusters because when
greater cluster sizes are desired, the time needed for running the
test rapidly mounts with the size targeted.

Assunção et al. (2006) also tried to make Kulldorff’s scan
statistic more flexible by use of information about the neighbour-
hood structure, e.g., adding subsequent neighbours through a com-
mon boundary. The method adds neighbours sequentially to the
cluster whenever a neighbour maximizing the likelihood function
is detected, and the process is repeated until the maximal cluster
size is reached. This procedure usually creates large clusters which
are close to the maximal cluster size and with very high probability

values and thin geometric connections known as the octopus effect
(Duczmal and Assunção, 2004).

Kulldorff himself has been looking for a way to extend the
scan statistic (Duczmal et al., 2006), presenting an idea for chang-
ing Assunção’s algorithm in such a way that clusters do not grow
to their maximal sizes if the connections among them are weak,
that is based on a possibly small number of connections with the
constructed cluster (Costa et al., 2012). That is the double-connect-
ed spatial scan statistic – which has a weaker punishment function
allowing greater loosening up of clusters, and a maximum linkage
(Mlink) to spatial scan statistic, which has a stronger punishment
function and thus capable of detecting tighter clusters. Choosing
the size of the punishment function is not easy as the user needs to
know the tightness of the detected clusters. Like flexible scan
statistic, the Mlink was later extended to include the space-time
aspect, but this extension is only available for the permutation
model (Costa and Kulldorff, 2014), which can be used for examin-
ing very short periods of time (usually <1 year) because it only
takes into account the number of cases of the given illness, as it can
be assumed that the population size does not change in such a short
time. The methods of making scanning windows more flexible
proposed by Kulldorff are decidedly slower than the methods using
a round or elliptical window, although they are faster than the flex-

                   Article

Figure 1. Simulation results comparing the CutL method and Kulldorff ’s scan statistic based on 500 replications when applied to two
separate clusters. The percentage of counties classified as clusters when the relative risk is 2.5 times higher within the planned true clus-
ters (2a).
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ible scan statistic (Costa et al., 2012), which means that they are
slower than the CutL method. Unlike the latter, neither of those
two tests – although they had been tested by their author and
designed in the C++ language – were not generally available in the
programme, for example SaTScan, and have not come into general
use. Iyengar (2005) has suggested, on the basis of his research on
the influence of the use of flexible shapes on the located clusters of
people suffering from brain cancer in New Mexico, that a more
flexible shape of the window should result in greater insight into
the clusters. On the other hand, irregular shapes are natural for ran-
dom data distribution, so when clusters of any shape are looked
for, clusters with test probabilities <0.05 can often be detected by
accident. Our studies, however, did not justify those fears. In every
possible case, PPVs and specificity, that is measures which take
into account the number of falsely detected clusters (FP), were
higher for the CutL method than for Kulldorff’s scan statistic based
on round windows. Therefore, the development of space-time clus-
ter detection methods for detecting clusters of any shape appears to
be a move in the right direction.

In addition to the methods of scanning space when searching
for space-time clusters, other lattice-based local cluster methods
have been extended. Examples include Local Indicators of Spatial
Association (LISA) advanced by Anselin (1995), statistics includ-
ing local Moran’s statistic - extended from univariate to bivariate
analysis of which space-time association is a special case (Anselin

et al., 2002) and the Geary’s C method (Anselin, 2019) – extended
to multi-dimensions analysis. In contrast to the Kulldorff’s scan
statistic, these methods do not assume a specific shape of future
clusters, thus they can detect time-spatial clusters with greater
accuracy. Therefore, further research is needed to compare meth-
ods CutL also with those techniques.

The CutL method, although it is much more effective than
Kulldorff’s scan statistic when irregularly-shaped clusters are
searched for, and although the two methods yield comparable
results in the case of tight clusters, is clearly weaker when it comes
to detecting clusters of small intensity, that is for RR=1.5.
Kulldorff’s scan statistic is more than twice as sensitive as the
CutL method. That is because, with the CutL method, the cluster
construction begins from a county with an appropriately incidence
rate ratio, together with its confidence interval. In the case of RR
as low as 1.5, the CutL method may not be strong enough to begin
the needed construction. Improvement of the efficacy of the CutL
method will be attempted in further research.

Conclusions
Identification of geographical spatial clusters characterised by

an excessive incidence of disease allows for narrowing the field of
searching for environmental factors that can cause disease in these
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Figure 2. Simulation results comparing the CutL method and Kulldorff ’s scan statistic based on 500 replications for a cluster following
the course of the river through the country capital. The percentage of counties classified as clusters when the relative risk is 2.5 times
higher within the planned true clusters (2b).
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clusters. The results of this study show the high efficacy of the new
CutL method in the detection of time-space clusters of any shape.
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