
Abstract
South Africa is experiencing an increasing burden of non-

communicable diseases (NCDs). There is evidence of co-morbid-

ity of several NCDs at small geographical areas in the country.
However, the extent to which this applies to joint spatial autocor-
rections of NCDs is not known. The objective of this study was to
derive and quantify multivariate spatial autocorrections for NCD-
related mortality in South Africa. The study used mortality
attributable to cerebrovascular, ischaemic heart failure and hyper-
tension captured by the country’s Department of Home Affairs for
the years 2001, 2007 and 2011. Both univariate and pairwise spa-
tial clustering measures were derived using observed, empirical
Bayes smoothed and age-adjusted standardised mortality rates.
Cerebrovascular and ischaemic heart co-clustering was significant
for the years 2001 and 2011. Cerebrovascular and hypertension
co-clustering was significant for the years 2007 and 2011, while
hypertension and ischaemic heart co-clustering was significant for
the year 2011. Co-clusters of cerebrovascular-ischaemic heart dis-
ease are the most profound and located in the south-western part
of the country. It was successfully demonstrated that bivariate spa-
tial autocorrelations can be derived for spatially dependent mortal-
ity rates as exemplified by mortality rates attributed to three car-
diovascular conditions. The identified co-clusters of spatially
dependent health outcomes may be targeted for an integrated
intervention and monitoring programme. 

Introduction
Global mortality attributed to non-communicable diseases

(NCDs) has become so grave in recent times that NCDs have been
included as one of the 17 sustainable developmental goals (SDGs)
targets where premature mortality (before 70 years of age)
attributed to the diseases have to be reduced by one third by the
year 2030 according to the World Health Organization (WHO)
(WHO, 2015). NCDs killed 41 million (71%) of the 57 million
people who died in the world in 2016 (WHO, 2018). About 44%
(17.9 million) of the NCD deaths were attributed to cardiovascular
diseases (CVDs) making them the leading NCD killers in the
world (WHO, 2018). A review of progress towards the 2030 target
of a one-third reduction suggest the target is going to be missed
(WHO, 2018). Thus, individual countries need to increase efforts
if the target is to be met. South Africa is one country where NCDs
are currently the leading burden of diseases (Groenewald et al.,
2014). Cardiovascular diseases (CVDs) contribute the highest
proportion (48%) of South Africa’s NCD deaths (Bradshaw et al.,
2006). Thus containing CVDs will contribute significantly
towards reaching the SDG target for South Africa. CVDs are
known to cluster geographically, depending on levels of depriva-
tion (Ford and Highfield, 2016). In South Africa, the previously
disadvantaged or deprived communities are exhibiting higher
prevalence levels of metabolic syndrome (a collection of risk fac-
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tors for CVDs and diabetes; Alberti and Zimmet, 2005) than the
advantaged communities, putting areas populated by a majority of
Blacks at high risk of mortality due to CVDs. This is attributed to,
among other factors, a nutritional transition taking place in the
country. It is of great importance to understand, and monitor the
changing spatial patterns of CVDs and identify cluster areas of
high mortality risk of NCDs if the SDG target is to be met. It is the
objective of this study to assess pairwise common spatial co-clus-
tering (joint clusters) of the three major CVD-related mortality in
South Africa.

Investigation of the spatial variation and clustering of mortality
in South Africa is not new. Descriptive risk maps have been used
to describe the geographic variation of NCD mortality (Bradshaw
et al., 1995, 2006; Groenewald et al., 2014) while univariate spa-
tial autocorrelation measures have been used to determine the pres-
ence of spatial heterogeneity or variation in an area and to detect
clusters of human immunodeficiency virus/acquired immune defi-
ciency syndrome (HIV/AIDS) mortality (Tanser et al., 2009),
infant mortality (Sartorius et al., 2011) and all-cause mortality
(Sartorius et al., 2010). Univariate global indicators of spatial auto-
correlation (GISA) are used to detect spatial heterogeneity or vari-
ation of cause-specific mortality for an area. They test the extent to
which neighbours are similar or different in the region of study.
They can be used to confirm if there is any form of clustering but
they do not reveal actual clusters (Waller and Gotway, 2004).
Actual clusters are detected using local indices of spatial autocor-
relation (LISA). Using univariate LISA to identify clusters entails
investigating if high mortality risk of a single disease in a given
area extend to neighbouring areas. Areas of high mortality risk that
extend to nearby areas form a cluster known as hotspots, while
areas of low mortality risk that extend to nearby areas form
coldspots for the disease in question.

Joint mapping of multiple disease outcomes has also been done
in South Africa using the shared-spatial component method to
establish ecological associations between HIV/AIDS and syphilis
(Manda et al., 2012) as well as for some CVDs (Kandala et al.,
2014). This method only shows that multiple diseases spatially co-
exist but does not explore the influence of the existence of a dis-
ease in an area on the spread of the disease in adjacent areas and/or
the influence of one disease in an area on the spread of other dis-
eases in neighbouring areas. Sometimes, when dealing with inter-
related diseases like CVDs it is important to determine how they
influence each other spatially. Univariate spatial autocorrelations
cannot do this, and neither can the spatial component method.
However, multivariate spatial autocorrelation techniques can give
more insight into the spatial dependency of two or more interrelat-
ed disease outcomes. This study considers the application of
bivariate spatial autocorrelation measures by Lee (2001), Anselin
et al. (2002) and Dray et al. (2008) in order to detect high mortality
risk pairwise co-clustering of three interrelated CVDs around local
municipal neighbourhoods of South Africa.

Bivariate spatial dependence between mortality rates due to
three leading cardiovascular conditions of cerebrovascular, hyper-
tension and ischaemic heart failure was determined using South
African data for the years 2001, 2007 and 2011with the local
municipality as the unit of measurement. Both raw rates and
smoothed rates (Clayton and Kaldor, 1987) were used and results
compared. The later rates would be preferable as a number of
municipalities had sparse data in both counts and populations  that
may result in rates instability when using crude rates (Marshall,
1991). This study set out to use bivariate spatial autocorrelation

measures to detect pairwise co-clustering in two ways. Firstly, in a
given period, to test if the existence of high risk of mortality of a
disease in an area extend to nearby areas for a related disease. The
hypothesis being tested here is that interrelated diseases co-cluster.
Identifying co-clusters of CVDs is important if a unified approach
is to be employed in the prioritisation, prevention of the spread,
diagnosis and cure of the related diseases. Secondly, it was used to
test if the spatial patterns of a disease differ between two time
points. It is important to do this second test in order to establish if
the spatial dynamics of a disease are changing with time. If the
spatial dynamics of a disease are stable it is much easier to predict
the spatial patterns of the disease over time for planning and mon-
itoring purposes.

Materials and Methods

Data
Causes of death (COD) data from South Africa’s vital registra-

tion system were used in this study. The data are collected using
the death notification forms (DNFs). Medical personnel and other
approved certifying authorities are allowed to complete the DNFs.
Information collected is kept by the South African Department of
Home Affairs, who in turn allow Statistics South Africa (Stats SA)
to collate the COD data for onward distribution to the public. Stats
SA uses revision number ten of the International Statistical
Classification of Diseases and Related Health Problems (ICD-10)
to code and classify the COD data as stipulated by the WHO
(WHO, 2004).

This paper only considers ICD-10 defined broad groups of
COD data due to three leading CVDs causing mortality in South
Africa. These are cerebrovascular heart diseases (CVAs), hyperten-
sive heart diseases (HHDs) and ischaemic heart diseases (IHDs)
for the years 2001, 2007 and 2011. Table 1 shows the total deaths
due to IHD increased the most for the period under review from
10769 in 2001 to 15609 deaths in 2011. An increase of 45%. CVA
deaths increased by 14% from 22 590 to 25983, while IHD
increased by only 2% (11779 to 12023) over the same period.
Generally, the national mean mortality rates were constant over the
period for the three CVAs.

Joubert et al. (2013) outlined the data quality issues associated
with DNF data. Problems associated with these data include,
among others, garbage codes, misclassification and incomplete-
ness of death registration. Adjustments were made to these data to
minimise bias that may be attributed to misclassification and
incompleteness of death registration. Firstly, the death data per
municipality were adjusted for incompleteness of death registra-
tion using provincial percentages that were derived by Pillay-Van
Wyk et al. (2014) . The assumption we make is that completeness
of death registration is the same throughout the province for each
cause of death. The completeness of death registration for the age
group 5-14 years was derived through interpolation for each
province by assuming a linear relationship between the ages 1-4
and 15+ as advised by Pillay-Van Wyk et al. (2014). Appendix
Table A1 shows the completeness of death registration values used
for adjusting for underreporting of deaths in each province for the
given age groups. 

Misclassification of deaths is another common problem with
South African cause of death data (Birnbaum et al., 2011; Joubert
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et al., 2013; Groenewald et al., 2014; Pillay-Van Wyk et al., 2014).
The extent of misclassification of cardiovascular mortality is
unknown in South Africa. In order to correct the rate of cardiovas-
cular mortality, the vital registration data for the years 2001, 2007
and 2011 were pooled to get aggregate distributions of deaths by
cause and age for the whole of South Africa. These data were then
used to derive the national cause-specific death rates by age.
Similarly, cause-specific death rates by age for the years 2001,
2007 and 2011 were computed for each of South Africa’s 213
municipalities.

Assuming that national specific-mortality rates by age groups
are more accurate at national level than at local level (Joubert et
al., 2013), municipality-level standardised mortality rates (SMRs)
were computed using indirect standardisation. Using global specif-
ic mortality rates by age groups as in Birnbaum et al. (2011) pro-
duced similar  municipality-level SMRs. Thus in this paper, three
mortality rates were used for analysis, namely, raw mortality rates,
SMRs and empirically Bayes (EB) smoothed rates (Marshall,
1991; Leyland and Davies, 2005).

A descriptive summary of the original data, raw rates, EB rates
and SMRs used is given in Table 1. The effects of EB smoothing
and indirect standardisation of the raw mortality rates differ by dis-
eases and year. In the case of EB rates, maximum values are lower
than those of the raw rates in all instances. Further investigations
revealed that the municipalities with the smallest populations are

also the ones with the highest (as well as smallest) mortality rates.
The raw rates are sensitive to small population counts resulting in
instability. This is a well-documented problem when using raw
mortality rates and the Empirically Bayes smoothed rates alleviate
these problems inherent in most crude or raw rates (Marshall,
1991; Leyland and Davies, 2005).

Spatial statistics methods
The COD data are recorded at local municipal level prompting

municipalities to be considered as fixed and countable areal units.
Subsequently, areal data spatial autocorrelation measures were
considered for analysing the data. Univariate and bivariate spatial
autocorrelations are presented in this section.

Global indexes of spatial autocorrelation

GISA are used to determine the extent to which neighbours are
similar in the region of study. They can be used to confirm if there
is any form of clustering but they do not reveal actual clusters
(Waller and Gotway, 2004). There are a number of Global tests
such as the quadrat method, the nearest neighbour method, Geary’s
C and the global Moran’s I test. The most popular of the Global
measures of spatial autocorrelation is the global Moran’s I statistic
and is the one we discuss here.

                                                                                                                                Article
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Table 1. Distribution of number and death rates across municipalities by year, South Africa.

Variable                      Rate type                                 Mean                             Min                             Max                Total number of deaths

CVA01                                   Raw Rate                                                  56                                             0                                          274                                          22,590
                                             EB Rate                                                     56                                             0                                          231                                                
                                             SMR                                                           64                                             0                                          245                                                
CVA07                                   Raw Rate                                                  57                                             0                                          186                                          25,391
                                             EB Rate                                                     58                                             3                                          183                                                
                                             SMR                                                           59                                             0                                          202                                                
CVA11                                   Raw Rate                                                  59                                             0                                          318                                          25,893
                                             EB Rate                                                     58                                             5                                          310                                                
                                             SMR                                                           57                                             0                                          256                                                
IHD01                                   Raw Rate                                                  29                                             0                                          270                                          11,779
                                             EB Rate                                                     29                                             1                                          254                                                
                                             SMR                                                           31                                             0                                          236                                                
IHD07                                   Raw Rate                                                  26                                             0                                          132                                          12,489
                                             EB Rate                                                     26                                             0                                          119                                                
                                             SMR                                                           25                                             0                                           99                                                 
IHD11                                   Raw Rate                                                  25                                             0                                          154                                          12,023
                                             EB Rate                                                     34                                             3                                          137                                                
                                             SMR                                                           23                                             0                                          128                                                
HHD01                                  Raw Rate                                                  24                                             0                                           93                                           10,769
                                             EB Rate                                                     25                                             2                                           90                                                 
                                             SMR                                                           29                                             0                                           98                                                 
HHD07                                  Raw Rate                                                  29                                             0                                          110                                          13,379
                                             EB Rate                                                     30                                             2                                          106                                                
                                             SMR                                                           30                                             0                                          108                                                
HHD11                                  Raw Rate                                                  34                                             0                                          146                                          15,609
                                             EB Rate                                                     25                                             1                                          130                                                
                                             SMR                                                           33                                             0                                          116                                                

CVA, cerebrovascular heart disease; IHD, ischaemic heart disease; HHD, hypertensive heart disease; EB, empirically Bayes; SMR, standardised mortality rates.
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Global Moran’s I
The global univariate Moran’s I statistic measures the extent of

the linear relation between the observed geo-referenced data
x=[x1,…, xn] and their corresponding spatial lags (or weighted
mean values for the geographical contiguous areas) measured in
terms of their deviations from their average. The global univariate
Moran’s I is given by:

where V=[vij] is the spatial weight matrix, which is a measure of
the spatial proximity between municipality i and j; and

a vector of the centred values of x that have 
been normalised (standardised). In significance testing of the null
hypothesis of spatial randomness or no spatial autocorrelation one
can assume that one is sampling from areas whose spatial process
realisations are normally distributed with constant mean and con-
stant variance for each area. Otherwise, a randomisation approach
is implemented.

Lee (2001) also proposed a global univariate spatial associa-
tion measure given by: 

The only difference between these two measures is that the
spatial weights used in Lee’s S is row-sum standardised, 

while that in Moran’s I is double standardised . 

These univariate spatial autocorrelation measures were calculated
for the three cardiovascular conditions and compared using infer-
ential properties of the significance testing using Monte-Carlo sim-
ulations.

Local indices of spatial autocorrelation
Having established the presence of an underlying pattern or

spatial clustering in the data using Global measures such as the
Moran’s I discussed in the section above, one may be interested in
detecting hotspots of increased rates or coldspots of reduced rates
that could have caused the global statistic to be significant.
Furthermore, one can also identify outliers using LISA. Hotspots
and coldspots are associated with positive spatial autocorrelation.
Outliers are identified when the sign for local spatial autocorrela-
tion negates that of the global spatial autocorrelation. For instance,
when the global statistics are saying there is positive spatial auto-
correlation then local areas with negative spatial autocorrelations
will be spatial outliers. Although there are various LISA applica-
tions (Anselin, 1995) here we only consider the most widely used
local Moran’s I statistic given by:

Limitations of univariate spatial autocorrelation measures
Univariate spatial autocorrelation measures come short when-

ever there is a need to investigate spatial dependence between two
or more interrelated diseases. In univariate spatial autocorrelation
analysis it means that one is assuming that the response variable is
influenced only by itself in its immediate neighbourhood. By find-
ing the linear relationship between a variable and its spatial lag,
then one is looking at testing the hypothesis that as the disease out-
come in an area rises then the disease outcome also rises in the
nearby areas. The assumption here is that the only factor influenc-
ing the rise of a disease outcome in an area is the rise of the disease
outcome among its nearest neighbours. But in reality, a rise in dis-
ease outcome in an area is due to a multiple of factors. In the case
of interrelated diseases like CVDs it may be due to the presence of
common biomarkers or related disease outcomes in the nearby
areas. Univariate spatial autocorrelations are not able to establish
such relationships, thus the need to consider bivariate and multi-
variate spatial autocorrelation measures. 

Bivariate spatial autocorrelation measures
Bivariate spatial association measures were used in this study

to test spatial dependence between two diseases as well as to test if
there is a difference in the spatial distribution of a disease over
two-time points. The bivariate methods applied in this study are
variants of the formulation by Wartenberg (1985) and were derived
using the popular Moran’s I univariate spatial autocorrelation mea-
sure to detect clustering for one disease. The method suggested by
Wartenberg (1985) for extending Moran’s I to multivariate spatial
analysis involves the derivation of a matrix of bivariate spatial
autocorrelations. This matrix is, in turn, analysed using spatial
principal component analysis (sPCA) resulting in a set of spatial
factors that represent the total spatial pattern. While it is preferable
to use the row-sum standardised weights in the formulation of
Wartenberg (1985), it was found to be problematic as it leads to an
asymmetric matrix of bivariate spatial association measures to be
diagonalised which is complex to solve, as finding eigenvalues of
such a matrix is difficult (Lee, 2001). 

Lee (2001) gave conditions that must be satisfied by a bivariate
spatial association (SAC) measure to be used for diagonalisation:
a bivariate SAC measure must be a function of the respective indi-
vidual univariate spatial autocorrelations and the point to point cor-
relation of some sort between the two variables as measured by
Pearson’s correlation coefficient. Lee (2001) used the idea of a first
order spatial lag (the weighted mean values for the immediate
neighbours j of an area i) given by to show
that the Moran’s I, when applied with a row-sum standardised
matrix, can be rewritten as:

            

where SSSX is a spatial smoothing scalar. It implies that the

                   Article
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Moran’s I is a product of a spatial smoothing scalar, SSSX, and the
correlation of a variable and its spatial lag, and can be written as

Deductively, the bivariate Moran’s I between two variables X and Y
was shown to be:

and Y was shown to be:
         Eq. 1

Eq. 1 is a product of a spatial smoothing scalar (SSS) of a vari-
able and the correlation of the variable and the spatial lag of the
other variable. Clearly, the bivariate Moran’s I does not satisfy the
conditions set out by Lee (2001) as it is a function of only one uni-
variate spatial association measure and a point-to-point association
of two variables. Thus, Lee (2001) concluded that Wartenberg’s
(1985) formulations are inadequate and should not be used in mul-
tivariate analysis. He went on to derive a bivariate spatial autocor-
relation measure for use as a basis for multivariate spatial analysis:

                                                                                               Eq. 2

Eq. 2 by Lee (2001), known as Lee’s L, is not only in line with
his conditions for a bivariate SAC measure, but also produces a
symmetric bivariate SAC matrix to be used for deriving total mul-
tivariate spatial autocorrelations. The Pearson’s correlation part of
Lee’s derivation, is between the spatial lags of the two 
variables that will be considered. One problem that may arise is
that this correlation between the lagged values may differ signifi-
cantly from that between the original values of the two variables
and may have different signs (Dray et al., 2008; Lee, 2001). This
was not the case with the data used in this study as correlations
between lagged values did not have different signs and had close
values to the original values.

Additionally, Lee (2001) showed that if X=Y then:

                            
Eq. 3

Eq. 3 is often referred to as Lee’s S and can be used to measure
univariate spatial autocorrelation just like Univariate Moran’s I
(Lee, 2004).

In spite of the criticism of the ideas of Wartenberg (1985), the
approach has remained popular, with Anselin et al. (2002) expand-
ing the formulation to visual analysis of bivariate Moran’s I spatial
association measure. This expansion was done for both global and
local indexes using a standardised weight matrix (W). This bivari-
ate measure does not meet the conditions set out by Lee (2001) as
noted earlier. In order to overcome this difficulty, Dray et al.
(2008) noted that instead of using W in his formulations, Lee
(2001) should have used W+WT, as originally suggested by De
Jong et al. (1984). Dray et al. (2008) then went on to use the trans-
formation by De Jong et al. (1984) to develop a bivariate spatial
association measure:

                            
Eq. 4

The bivariate spatial association measure in Eq. 4 is not only
symmetric, but satisfies the conditions of Lee (2001). In addition,
the measure is a function of the correlation of one variable and the
lag of the second variable, thus indirectly connecting it to the
regression formulations by Anselin et al. (2002) The global uni-
variate Moran’s I and Lee’s S were calculated to determine the
presence of clustering for each of the three CVDs of HHD, CVA
and IHD in South Africa, while global bivariate association was
determined using bivariate Moran’s I, Lee’s L and Dray’s H. A
comparison was made to establish if the three bivariate association
measures give similar results based on the significance test. The
LISA were used to determine the clusters and co-clusters which
were, in turn, mapped on choropleth maps. A full description of
LISA methods has been given elsewhere (Anselin et al., 2002) and
is not included in this paper. A permutation approach was used to
determine the significance of the test, and the framework of this
significance testing is discussed in the next section.

Framework for significance testing
A total of 99 permutations were run during significance testing

for each of the test statistics to determine the presence of global
spatial autocorrelations. Research has shown that 99 permutations
should suffice when testing at 5% significance level. Lee (2004)
provided a framework for significance testing of indicators of spa-
tial association measures. In this framework an indicator of spatial
association measure, sayΓ(obs), was determined for the deaths due
to the three cardiovascular conditions. Simulation was done 99
times, by randomly assigning observed values to the locations and
each time determining Γ. The 99 Γ values were then arranged in
ascending order and the number of times, sayl, that Γ>Γ(obs) was
determined. The P-value was then determined by finding
P(Γ>Γ(obs). This is equivalent to dividing l by 100, where the one
that was added to the 99 simulations to get 100 is for the observed
statistic, Γ(obs). The results are provided in the next section.

Results
The quantile maps of crude and smoothed mortality rates at

municipal level, for each of the three studied CVD conditions in
South Africa for the years 2001, 2007 and 2011 are shown in
Figures 1 and 2. Municipalities in the upper quantile indicate areas
that experienced high rates of mortality while those in the lower
quantile indicate areas with low rates of mortality.  The higher the
quantile the darker the colour (ranging from quantile 1 in white to
quantile 5 in black). It follows that areas with the darker shade
indicate areas of higher mortality than a relatively lighter shade.

Generally, the maps of variations in CVD condition show some
clear clustering; for example, areas with higher risk of CVA and
IHD deaths are in the centre of the country stretching to the south
west part of the country while areas with higher risk of HHD mor-
tality are numerous pockets of clusters in the central part of the
country.

Figure 2 shows the quantile maps of the same CVDs in Figure
1 but now using EB rates. The effects of smoothing are clear with
CVA and IHD showing even darker shade from the middle of the
country stretching to South West of the country. The HHD01 and
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HHD11 EB rates maps are also showing a more continuous, darker
shade in the middle of the country stretching to the south of the
country than the raw rates quantile maps revealing potential clus-
ters of high hypertension risk in these regions. It seems the effects
of stabilising the crude rates with the EB approach has been, based
on the evidence of the quantile maps, an improved ability to dis-
cern areas of higher risk. A fact that was confirmed in the next sec-
tion by statistical significance tests of spatial autocorrelations.
Unfortunately, the SMRs maps (not shown here) did not do the
same especially with CVA maps becoming lesser dark in areas of
potential clustering.

Univariate cluster analysis

Univariate global spatial autocorrelation
The previous assessment of geographical variations for both

crude and smoothed rates has shown evidence of clustering in
CVD outcomes. In order to formally investigate spatial associa-
tion, we measured the association in a formal way by using uni-
variate (in this section) and bivariate clustering statistics (see
Bivariate analysis section for details). Table 2 presents the derived
values for each CVD for the whole of South Africa for the years
2001, 2007 and 2011. For comparison purposes, the derivations

were done using raw rates and EB rates and indirectly standardised
rates. CVAzy, IHDzy and HHDzy represent mortality due to cere-
brovascular, ischaemic and hypertensive heart conditions in the
year zy, respectively. Here zy takes values 01, 07 and 11, represent-
ing the years 2001, 2007 and 2011, respectively.

The univariate Moran’s I and Lee’s S in Table 2 both confirm
that the distribution of the three CVDs of IHD, CVA and IHD vary
geographically, using the three rates. This geographic variation is
highly significant for EB rates with P-values less than 0.001 and is
persistent over the ten-year period for all three conditions. In all
the cases, the calculated statistics for both Lee’s S and Moran’s I
are all positive and significant across the years except for CVA01
SMRs map which is insignificant. This means that the likelihood
of the spatial patterns generated by mortality due to each of the
three CVDs being due to random chance is negligibly small (less
than 5%). Thus, one can conclude that the probability is high that
municipalities that are nearer to each other have a tendency of hav-
ing comparable baseline mortality rates than the distant municipal-
ities. In other words, there is some form of clustering exhibited by
all three CVDs at the 5% significance level. The EB rates have the
highest Lee’s S and Moran’s I values suggesting more clustering
for the EB data than the raw data. This is a reflection of what is
seen in the quantile maps in Figures 1 and 2.

                   Article

Figure 1. Quartile maps showing the distribution of raw mortality rates due to each of the three cardiovascular conditions for the years
2001, 2007 and 2011.
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Univariate hotspot analysis
The local indicators of autocorrelation (LISA) based on

Moran’s I were used to determine the actual clusters at municipal
level. The resulting univariate LISA maps for raw rates and EB
rates are shown in Figures 3 and 4, respectively. Hotspots, which
are municipalities of high mortality incidences that are surrounded
by municipalities with high mortality incidences, are indicated by

a High-High key on the map, while the coldspots, which are
municipalities of low mortality incidences that are surrounded by
municipalities with low mortality incidences, are indicated by a
Low-Low key. In addition, there are outliers indicated by High-
Low, which are municipalities of high mortality incidences that are
surrounded by municipalities with low mortality incidences, and
Low-High, which are municipalities of low mortality incidences
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Table 2. Univariate global spatial autocorrelations for the mortality rates due to cerebrovascular heart disease, ischaemic heart disease
and hypertensive heart disease in 2001, 2007 and 2011.

Variable                                              Lee’s S                                                                                                   Moran’s I
                        Raw rate                   EB rate                   SMR                                           Raw rate              EB rate                       SMR

CVA01                      0.298***                           0.345***                      0.264***                                                        0.116**                     0.189***                           0.058INS
CVA07                      0.289***                           0.327***                      0.326***                                                        0.100**                     0.191***                            0.155**
CVA11                      0.313***                           0.332***                      0.288***                                                        0.125**                      0.157**                             0.092**
IHD01                      0.576***                           0.627***                      0.490***                                                      0.408***                    0.466***                           0.295***
IHD07                      0.529***                           0.605***                      0.437***                                                      0.411***                    0.531***                           0.295***
IHD11                      0.478***                           0.528***                      0.418***                                                      0.351***                    0.426***                           0.239***
HHD01                     0.316***                           0.401***                      0.338***                                                        0.147**                     0.300***                           0.170***
HHD07                     0.331***                           0.410***                      0.319***                                                        0.169**                     0.291***                            0.152**
HHD11                     0.317***                           0.373***                      0.318***                                                        0.163**                     0.253***                            0.169**
CVA, cerebrovascular heart disease; IHD, ischaemic heart disease; HHD, hypertensive heart disease; EB, empirically Bayes; SMR, standardised mortality rates. ***P<0.001; **P<0.05; INS, no significant association at
5% level.

Figure 2. Quartile maps showing the distribution of empirically Bayes smoothed mortality rates due to each of the three cardiovascular
conditions for the years 2001, 2007 and 2011.
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that are surrounded by municipalities with high mortality inci-
dences. The hotspots are of major concern as they represent clus-
ters of high risk of mortality due to the CVDs.

It can be seen in Figure 4A-C that the number of municipalities
with CVA hotspots have slightly reduced with hotspots being
found more towards the middle of the country and less easterly.
The cluster of high CVA mortality hotspots span over four
provinces: Northern Cape, KwaZulu-Natal, Free State and Eastern
Cape. The district with the most identified hotspots of high CVA
mortality in 2011 is Pixley ka Seme in Northern Cape with six
identified hotspots (Emthanjeni, Kareeberg, Siyathemba,
Thembelihle, Umsobomvu, Ubuntu).

Figure 4D-F shows the change in IHD clusters over time.
These LISA maps reveal that the spatial dynamics of IHD are sta-
ble over the period under study, with hotspots located in the centre
and spanning all the way to the south-west coast of the country.
Districts with municipalities hit hard by IHD deaths are Central
Karoo, Cape Winelands, Eden, Overberg, West Coast (Western
Cape Province), Cacadu (Eastern Cape), Namakwa and Pixley ka
Seme (Northern Cape).

The LISA analysis for HHD, shown in Figure 4G-I, depicts
unstable spatial dynamics over time with respect to hotspots but
coldspot clusters have remained fairly constant along the eastern
coast and north-eastern part of the country. There is no clear expla-

nation for this phenomenon at this point in time. To aid the analysis
of Figures 3 and 4, the number of municipalities forming clusters
(hotspots or coldspots) are presented in Table 2. Only hotspots and
coldspots are shown as the other clusters (high-low and low-high)
are very few and do not change the general trend.

There are more municipalities forming clusters when EB rates
are used than when using raw rates. This explains why Lee’s S and
Moran’s I values for raw rates are smaller than those derived from
EB rates. This reflects, once again, the effect of EB smoothing on
increased detection of mortality risk in an area. The stabilising
effect of EB smoothing is more evident in the number of hotspots
formed for each year for HHD. When raw rates are used the num-
ber of hotspots jumps from 8 in 2001 to 16 in 2007 (a 100% jump)
then drops again to 8 in 2011 (a 50% drop). But when EB rates are
used the number of HHD hotspots in the country are almost con-
stant over time moving up by 11% from 18 in 2001 to 20 in 2007
before decreasing by 20% to 16 in 2011. 

Bivariate analysis

Mapping bivariate association of individual cardiovascular dis-
eases over time

Table 2 shows that geographical variation of mortality due to
each CVD is highly significant over the years and the clusters have

                   Article

Figure 3. Trends in raw rates based univariate Moran’s I local indices of spatial autocorrelation clusters for each of the cardiovascular
conditions for the years 2001, 2007 and 2011.
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been shown in Figure 4 using EB data.  It has not been shown,
however, whether or not the variation in the distribution of each
CVD risk is the same over the years. In this section, bivariate spa-
tial autocorrelation measures are used to determine if there is a dif-
ference in spatial distribution of mortality risk due to each of the
CVDs between two time points. This will shed light on whether or
not the geographical distribution of individual CVDs is changing
over time. The stability of spatial dynamics in the distribution of a
disease is important if there is to be some semblance of predictabil-
ity. This may be helpful when deciding the course of action to be
taken when faced with an epidemic as intervention programmes
are conceived. Changing spatial dynamics in the distribution of the
disease may make it quite complex to contain the disease.
Generally, one would not expect spatial dynamics of CVDs to
change much within a short period of time as the factors and habits
contributing to the emergence of these diseases take time to con-
trol. Thus, one would expect the bivariate spatial dependency of
the distribution of each CVD over two time periods to be signifi-
cantly positive.

The dependence of CVD rates in space for each of the studied
conditions was tested for two different periods using bivariate
Lee’s L, Moran’s I and Dray’s H. The analysis was conducted on
each CVD for the following comparative periods: 2001 vs 2007;
2001 vs 2011; and 2007 vs 2011. Results are provided in Table 3.

Generally, the three indicators of bivariate spatial autocorrela-
tion show that there is significant spatial dependency in how each

                                                                                                                                Article

Figure 4. Trends in empirically Bayes rates based univariate Moran’s I local indices of spatial autocorrelation clusters for each of the
cardiovascular conditions for the years 2001, 2007 and 2011.
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Table 3. Number of municipalities forming hotspots and
coldspots clusters for the mortality rates due to cerebrovascular
heart disease, ischaemic heart disease and hypertensive heart dis-
ease in 2001, 2007 and 2011.

Variable      Rate type          Hotspots        Coldspots          Total

CVA01               Raw Rate                        12                           18                         30
                         EB Rate                           16                           23                         39
CVA07               Raw Rate                        14                            9                          23
                         EB Rate                           14                           22                         36
CVA11               Raw Rate                        15                           13                         28
                         EB Rate                           14                           17                         31
IHD01               Raw Rate                        29                           39                         68
                         EB Rate                           36                           41                         77
IHD07               Raw Rate                        30                           28                         58
                         EB Rate                           38                           33                         71
IHD11               Raw Rate                        27                           41                         68
                         EB Rate                           30                           46                         76
HHD01             Raw Rate                         8                            21                         29
                         EB Rate                           18                           26                         44
HHD07             Raw Rate                        16                           23                         39
                         EB Rate                           20                           27                         47
HHD11             Raw Rate                         8                            18                         26
                         EB Rate                           16                           21                         37
CVA, cerebrovascular heart disease; IHD, ischaemic heart disease; HHD, hypertensive heart disease; EB,
empirically Bayes.
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disease is spatially distributed between two time periods. It can,
thus, be concluded that the spatial distribution of the risk of mor-
tality due to each CVD has not significantly changed over the
course of the ten-year period under review. The EB rates show
higher values of the three bivariate measures than both the raw rate
and SMR data. This indicates that bivariate association is more
pronounced in maps derived from EB rate data than the other two
datasets. The bivariate LISA analyses of the combinations in Table
3 derived from the EB rates are presented in Figure 5.

In Figure 5D, as an example, observed hotspots are areas of
high mortality of IHD in 2001 whose neighbourhood in 2007 also
exhibit high mortality of IHD to form a co-cluster of high mortality
for the two-time points in the south-western part of the country.
Figure 5E and F reveals that the joint cluster is stable for the years
2001/2011 and 2007/2011. As for HHD, Figure 5G-I shows stable
clusters of coldspots along the east coast and the north-eastern part
of the country and some hotspots scattered in the middle of the
country. 

Bivariate spatial association between two cardiovascular dis-
eases at one point in time

We also looked at determining spatial dependency between

two different CVDs at a cross-section. One can hypothesise that
CVDs should co-cluster or show spatial dependency at a point in
time as they share risk factors. Table 4 presents the bivariate asso-
ciation measure values calculated for the possible combinations of
the three CVDs for the years 2001, 2007 and 2011 to determine
spatial dependence based on raw, indirectly standardised and EB
rates data.

The bivariate Moran’s I and Dray’s H show similar results.
This is not surprising as the methods are based on the same deriva-
tion. All three methods agree, based on the EB rates, that there is
spatial dependence between the following maps: CVA and IHD for
the years 2001, 2007 and 2011; IHD and HHD for the year 2011;
and CVA and HHD for the years 2007 and 2011. Lee’s bivariate L
differs with the other two methods when EB rates are used only
once: CVA01-HHD01. In this instance Lee’s L reveals highly sig-
nificant spatial dependency between the two maps while the
Moran’s I says it is insignificant. There are more of such instances
when raw rates and SMR s are used (see CVA-HHD). Here the raw
rates and indirectly SMRs fail to reveal spatial dependency
between CVA and HHD maps for the years 2001, 2007 and 2011
when Moran’s I is used but says otherwise when Lee’s L is used.
Furthermore, Lee’s L obtained similar results for raw, SMR and EB
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Figure 5. The empirically Bayes rates based Bivariate Moran’s I clusters between cerebrovascular heart disease, ischaemic heart disease
and hypertensive heart disease deaths for the years 2001, 2007 and 2011.
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smoothed data except for the relationship between CVA07 and
IHD07 for which the SMR is insignificant. All this evidence sug-
gest that the Lee’s L is more robust to small changes in the spatial
data being. It also seems Lee’s L is more adept at detecting co-clus-
tering where Moran’s I would say otherwise. The two methods

may be used to complement each other such as when we chose to
use EB rates where both methods are generally in agreement.

The joint local hotspots of the CVDs, based on EB data, are
shown in Figure 6. The CVA-IHD maps show the most pronounced
clusters of hotspots and coldspots. The hotpots (municipalities of

                                                                                                                                Article
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Figure 6. The empirically Bayes rates based Bivariate Moran’s I local indices of spatial autocorrelation maps between two cardiovascular
disease at a point in time for the years 2001, 2007 and 2011.

Table 4. Bivariate global spatial autocorrelations measuring spatial dependence of individual cardiovascular disease rates between two
time periods for the years 2001, 2007 and 2011.

Association(X-Y)                            Lee 2001 (LX,Y)                                       Anselin 2002 (IX,Y)                                    Dray 2008 (HX,Y)
X                 Y                     Raw rate      EB rate         SMR                  Raw rate     EB rate        SMR                 Raw rate     EB rate       SMR

CVA01             CVA07                    0.171***         0.201***        0.147***                       0.063**          0.116**         0.025INS                      0.061INS           0.112**         0.029INS

CVA01             CVA11                    0.163***         0.184***        0.114***                       0.125**          0.162**          0.078**                     0.119***        0.155***       0.072**
CVA07              CVA11                    0.197***         0.221***        0.222***                       0.128**          0.170**          0.148**                     0.125***        0.168***      0.144***
IHD01             IHD07                    0.502***         0.555***        0.407***                      0.406***        0.491***       0.293***                    0.409***        0.492***      0.306***
IHD01              IHD11                    0.419***         0.458***        0.323***                      0.388***        0.437***       0.268***                    0.383***        0.445***      0.275***
IHD07              IHD11                    0.405***         0.473***        0.321***                      0.377***        0.458***       0.276***                    0.374***        0.459***      0.272***
HHD01            HHD07                   0.231***         0.315***        0.211***                       0.160**         0.271***        0.143**                     0.160***        0.268***      0.141***
HHD01            HHD11                   0.198***         0.276***        0.167***                       0.154**         0.269***        0.149**                     0.146***        0.258***       0.134**
HHD07            HHD11                   0.258***         0.321***        0.245***                      0.200***        0.291***       0.197***                    0.191***        0.284***      0.188***
CVA, cerebrovascular heart disease; IHD, ischaemic heart disease; HHD, hypertensive heart disease; EB, empirically Bayes; SMR, standardised mortality rates. ***P<0.001; **P<0.05; INS, no significant association at
5% level.
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high CVA deaths that are surrounded by municipalities of high
IHD deaths) are located at the centre of the country spreading
south-west of the country. The co-clustering is generally concen-
trated in the sub-districts of the Western Cape Province, Northern
Cape and Eastern Cape Province with Eden, Pixley ka Seme and
Central Karoo having the highest number of municipal joint
hotspots for the year 2011. Co-clustering of high mortality
between HHD and IHD occurs in the centre of the south-western
part of the country, while coldspots are on the eastern coast and
north-east of the country.

Discussion
This study has analysed very important health data concerning

mortality in South Africa to assess spatial dependence in mortality
outcomes attributed to the emerging and rising CVDs. The study
has used novel spatial statistical techniques to measure both global
and local spatial clustering of multiple CVD outcomes jointly
across municipalities. This has offered better insights into the dis-
ease aetiology over the usual univariate spatial clustering mea-
sures. 

There was a high level of heterogeneity exhibited in the spatial
distribution of mortality rates due to each of the three CVDs stud-
ied. In these cases, on one hand, the inequalities in the risk of dying
gave rise to hotspot municipalities with high levels of incidence of
mortality surrounded by municipalities of high incidence of mor-
tality, and on the other hand, they gave rise to coldspots of low
incidences surrounded by municipalities of low incidences. The
LISA maps have shown that CVD hotspots are generally located in
the south-west of the country. It is not surprising that CVD deaths
are located in these areas as reports by Stats SA have previously
shown that IHD was the leading cause of deaths in Namakwa
District of the Northern Cape in 2007 (Statistics South Africa,
2009) while CVA was reported as the leading cause of deaths in
Eden and Overberg Districts in 2011 (Statistics South Africa,
2014). In addition, Groenewald et al. (2014) showed that the NCD
problematic districts with YLLs between 45% and 56% are all
located in the south-west of the country, and these are Namakwa,

West Coast, Cape Winelands, Overberg and the City of Cape
Town.  Those that had YLLs between 39% and 45% are in different
provinces and include, Central Karoo and Pixley ka Seme, also in
the south-west of the country. It is in these districts and surround-
ing districts that the hotspots of CVDs and their co-clusters have
been detected by this study. Additionally, the work by Kandala et
al. (Kandala et al., 2014) revealed that cardiovascular diseases are
distributed in the south-west part of the country, which is in line
with our findings.

Bivariate analysis was used to answer the two main objective
functions of whether two interrelated diseases co-cluster and to test
if the spatial patterns of a disease differ between two time points.
The results of bivariate analysis revealed that the spatial distribu-
tion of mortality risk attributed to CVA and IHD has been stable
over the years with minimal changes. Thus, the government and
other civil organisations may want to formulate intervention pro-
grammes knowing fully well that the identified clusters of high
risk will still be there unless some intervention of some sort has
been done. In addition, bivariate analysis has revealed significant
co-clustering between CVA and each of the other two CVD condi-
tions (IHD and HHD), but co-clustering between IHD and HHD
was found to be significant for the year 2011 only. Thus, any inte-
grated approach that can be mooted will need to target the high
mortality risk joint clusters of either CVA and IHD or CVA and
HHD or IHD and HHD or all of them simultaneously. These joint
clusters, presented in Figure 6, are found in the central part of the
country for CVA and HHD and in the central part of the country
stretching to the south-west part of the country for CVA and IHD
and also for IHD and HHD (2011). 

The bivariate Moran’s I and Dray’s H are direct extensions of
the approach by Wartenberg (1985), and they both generally gave
similar results. Thus, one can use Dray’s bivariate association mea-
sure in bivariate analysis in the knowledge that it can yield similar
results to the original approach by Wartenberg (1985) while at the
same time addressing the flaws of the latter as espoused by Lee
(2001). Results in this study suggest using Lee’s approach and
Moran’s approach to complement each other. The next step in this
study is to develop multivariate spatial clustering measures that
can be used for three or more health outcomes.
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Table 5. Bivariate global spatial autocorrelations between two cardiovascular diseases at a point in time for the years 2001, 2007 and
2011.

Association(X-Y)                            Lee 2001 (LX,Y)                                       Anselin 2002 (IX,Y)                                    Dray 2008 (HX,Y)
X                 Y                     Raw rate      EB rate         SMR                  Raw rate     EB rate        SMR                 Raw rate     EB rate       SMR

CVA01             IHD01                    0.296***         0.338***        0.188***                      0.184***        0.228***        0.074**                       0.194**         0.241***       0.078**
CVA07              IHD07                     0.144**          0.171***          0.040INS                         0.056INS          0.103**         -0.055INS                       0.068INS           0.117**        -0.046INS

CVA11              IHD11                    0.255***         0.261***        0.142***                       0.142**          0.166**          0.007INS                       0.144**          0.166**         0.009INS

CVA01             HHD01                   0.130***         0.148***        0.135***                        0.011INS           0.057INS          0.002INS                       0.012INS           0.055INS         0.004INS

CVA07             HHD07                   0.127***         0.176***        0.123***                        0.049INS          0.116**          0.050INS                       0.052INS           0.122**         0.050INS

CVA11              HHD11                   0.165***         0.200***        0.140***                        0.053INS          0.107**          0.030INS                       0.050INS           0.106**         0.028INS

HHD01            IHD01                      0.056INS            0.059INS           0.024INS                         -0.026INS         -0.008INS         -0.060INS                      -0.036INS          -0.013INS        -0.066INS

HHD07            IHD07                      0.032INS            0.075INS           -0.005INS                         0.007INS           0.045INS          -0.042INS                       0.011INS           0.050INS         -0.036INS

HHD11           IHD11                   0.108***          0.130**           0.072**                         0.064**          0.097**          0.012INS                       0.061INS           0.096**         0.012INS

CVA, cerebrovascular heart disease; IHD, ischaemic heart disease; HHD, hypertensive heart disease; EB, empirically Bayes; SMR, standardised mortality rates. ***P<0.001; **P<0.05; INS, not significant association at
5% level.
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Conclusions
The results of this study have shown that it is possible to iden-

tify clusters and co-clusters of high risk CVD mortality. Thus,
using both univariate and bivariate spatial autocorrelation mea-
sures in identifying high risk clusters of CVD mortality is a viable
strategy for monitoring, prevention and control of CVDs individu-
ally and jointly in South Africa. An integrated approach in the
diagnosis, treatment and care of patients suffering from diverse
cardiovascular conditions may reduce the effects of a number of
NCD related mortality in the municipalities that are at elevated risk
of mortality attributed to the three diseases.
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