
Abstract
Vibrio parahaemolyticus (V. parahaemolyticus) is a naturally-

occurring bacterium found in estuaries, such as the Chesapeake Bay
(USA), that can cause vibriosis, a food - and waterborne illness, in
humans. Tracking the spatial and temporal distribution of V. para-
haemolyticus in the Chesapeake Bay, which varies in part due to
water temperature, salinity, and other environmental variables, can
help identify areas and time periods of high risk. These observations
can support interventions used to reduce the burden of vibriosis.
Spatial and spatiotemporal clusters of high V. parahaemolyticus
abundance were identified among surface water samples in the
Chesapeake Bay between 2007 and 2010. While Euclidean dis-
tances between geographic points in spatial analyses are often used
for cluster detection, non-Euclidean distances should be considered

for cluster detection due to the complex nature of the Chesapeake
Bay shoreline. Comparison of both methods consistently showed
the non-Euclidean cluster detection providing unique and more rea-
sonable clusters than the Euclidean approach. Residuals from uni-
variate and multivariate models were used to identify how clusters
changed after controlling for environmental variables. Most clusters
tended to decrease in space, time, or significance after adjustment,
suggesting these covariates contributed to the original formation of
the clusters and as such are useful observation tools for vibriosis
risk managers. Clusters that remained after adjustment suggest areas
for further study and intervention. These findings reinforce the
importance of using non-Euclidean distances when tracking the spa-
tiotemporal variation of V. parahaemolyticus as well as the benefits
of cluster detection methods for V. parahaemolyticus risk manage-
ment in estuaries.

Introduction
Vibrio parahaemolyticus is a naturally-occurring bacterium

found in estuaries that can cause vibriosis in humans, resulting in
gastroenteritis and septicaemia (Weaver and Ehrenkranz, 1975).
The bacterium is one of the leading causes of seafood-related gas-
troenteritis in the United States (Chen et al., 2017), resulting in
nearly 35,000 domestically acquired foodborne illnesses annually
(Scallan et al., 2011). Exposure commonly occurs from eating raw
or undercooked shellfish such as oysters, which can accumulate V.
parahaemolyticus in high concentrations due to their filter-feeding
behaviour, but infection can also occur in recreational waters via
open wounds (Newton et al., 2012; Davis et al., 2017). Therefore,
the natural presence of V. parahaemolyticus in the Chesapeake
Bay poses a serious public health risk. Oyster landings are expect-
ed to increase over time as Maryland continues to transition from
public harvesting sites to oyster aquaculture (Maryland Sea Grant,
2019). This trend, coupled with evidence that V. parahaemolyticus
abundance is likely to increase given global climate change
(Muhling et al., 2017), may further exacerbate the risk of vibriosis
stemming from the Bay.

The distribution and abundance of V. parahaemolyticus varies
significantly throughout the Chesapeake Bay both temporally and
spatially due to the bacterium’s ability to associate with aquatic
organisms and surfaces (Lovell, 2017). The bacterium has rarely
been isolated from water samples when surface temperatures fall
below 15°C (Johnson et al., 2012), and so is more common in
warmer months while being absent from the water column in win-
ter. V. parahaemolyticus persists in the sediment by entering a
viable but nonculturable (VBNC) state during colder months,
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resuscitating and resuspending into the water column once temper-
atures rise (Oliver, 2010). V. parahaemolyticus abundance is fur-
ther impacted by predatory bacteria (Richards et al., 2012) and
bacteriophages (Bastías et al., 2010) present in the water column.

In a previous study in Chesapeake Bay, V. parahaemolyticus
presence and abundance were positively associated with water
temperature, negatively associated with water clarity, were found
to require at least low levels of salinity, and to have additional
complex interactions with other water quality measures such as
dissolved oxygen and nutrients (Davis et al., 2017). These water
characteristics also vary temporally and spatially throughout the
Bay, with higher salinity levels in the south near the mouth of the
Bay and warmer temperatures in shallower waters. Determining
instances of high V. parahaemolyticus concentrations in space and
time is important for understanding and minimizing the risk of vib-
riosis and helping regulators implement effective control measures
(FDA, 2015).

Spatiotemporal cluster detection is a popular approach to iden-
tify areas and time periods of elevated risk and has been used pre-
viously to identify clusters of infectious disease incidence, such as
cholera (Carrel et al., 2009) and tuberculosis (Touray et al., 2010),
as well as water contamination (Gonçalves and Alpuim, 2011).
Generally, clusters are found by identifying groups of points in
space and time that neighbour each other and are sufficiently dif-
ferent from the rest of the study area. Many spatial cluster detec-
tion methods presented in the literature rely on Euclidean distance
when identifying neighbouring points, which often does not con-
sider the geography of the study area or actual travel distance
between points, and instead simply captures the shortest linear dis-
tance between them. V. parahaemolyticus has been found to attach
to zooplankton (Kaneko and Colwell, 1975) and water column par-
ticles (Blackwell and Oliver, 2008), and is significantly spatially
associated with water quality measures. Therefore, a non-
Euclidean proximity measure, such as distances travelling by water
only, rather than Euclidean distances that can cross both water and
land, would more accurately represent the dynamics of the bacteri-
um. This distinction is particularly important in the Chesapeake
Bay due to its complex shoreline geography with many parallel
tributaries (Davis and Curriero, 2019) (Figure 1). To observe the
impact of this proximity metric disparity on cluster detection in
marine environments, the following study compares the Euclidean
and non-Euclidean distance-based spatial and spatiotemporal clus-
ters of V. parahaemolyticus identified in the Chesapeake Bay
between 2007 and 2010, and examines the impact of adjusting for
well-known environmental determinants of the bacterium on the
identified clusters.

Materials and Methods
The Chesapeake Bay is the largest estuary in the United States

bordering the states of Maryland and Virginia. The Chesapeake
Bay watershed includes over 150 rivers and streams, with the
Potomac, James, and Susquehanna Rivers being the three largest
rivers and providing the majority of fresh water to the Bay
(Chesapeake Bay Program, 2019). The Bay experiences significant
temporal and spatial variation in temperature, salinity, and other
water quality measures given seasonal atmospheric variations cou-
pled with the complex mixing of marine and fresh water. To assist
in interpreting and communicating the results of this analysis, the
Bay tidal waters were split into 19 regional aggregations of  previ-

ously delineated segments (Chesapeake Bay Program, 2019)
(Figure 1). Surface water samples at 148 monitoring locations
throughout the Bay were collected by the Maryland Department of
Natural Resources and the Virginia Department of Environmental
Quality between 2007-2010 and analysed using quantitative PCR
(qPCR) for genetic markers of V. parahaemolyticus. Samples were
taken in April (spring), July (summer), and October (fall) of each
year, resulting in 1,531 samples. As the focus of this work was to
identify clusters of detectable V. parahaemolyticus rather than high
abundance, each sample was assigned a binary indicator depending
on whether V. parahaemolyticus measurements were above or
below the qPCR limit of detection. Sampling methods and micro-
bial analyses are described in more detail elsewhere (Jacobs et al.,
2014; Davis et al., 2017).

Euclidean and non-Euclidean distances were calculated
between all sample locations. Distances were restricted to surface
tidal waters and thus were only calculated across two dimensions
(Davis and Curriero, 2019). In order to calculate non-Euclidean
distances, a polygon shapefile of the Chesapeake Bay was raster-
ized into 1km pixels. Cost distance analysis was used, assigning no
cost between water pixel boundaries, but infinite cost between
water-land boundaries. Least-cost distances were therefore the
shortest distances traversed entirely over water. This procedure
was performed using the gdistance package (van Etten, 2017) from
the R (version 3.4.4.) statistical software (R Development Core
Team, 2018) and has been previously described in more detail
(Murphy et al., 2015; Davis and Curriero, 2019). 

Spatial and spatiotemporal clusters of V. parahaemolyticus
presence (i.e. above the limit of detection) using Euclidean and
non-Euclidean distances were calculated using the SaTScan
(SaTScan, Information Management Services, Inc., version 9.4.4)
software. SaTScan utilizes a moving window of variable size, cen-
tring at each sample location and recording the number of
observed and expected V. parahaemolyticus detects inside the win-
dow. For Euclidean distances, the window is radial and increases
by finding the closest neighbour to the original sample location,
then the second closest neighbour, and so on, until reaching a pre-
determined maximum size. Non-Euclidean cluster detection was
implemented by creating a neighbours file in the SaTScan software
where neighbours were ranked by water distance and window size
increased by the ranking.

The cluster detection analysis used a Bernoulli model, which
implements a likelihood ratio test of the probability of samples
within each potential cluster being a detect vs a non-detect
(Kulldorff, 1997). For each window location and size, the null
hypothesis is that the proportion of detects inside the window is
equivalent to the proportion outside. The likelihood function is
maximized, identifying the cluster that was least likely to occur by
chance, and a P-value is obtained by repeating this process with
Monte Carlo hypothesis testing. In this analysis, 999 Monte Carlo
replications and the default SaTScan P-value calculation was used,
along with circular spatial windows for the Euclidean approach
(Kulldorff, 2018). Given the exploratory nature of this work, with
the focus being more on changes in cluster location and shape
rather than statistical significance, along with the bacterium dataset
having a low proportion of detects (19.4%), α=0.1 was used for all
analyses to determine whether identified clusters were statistically
significant. 

Euclidean and non-Euclidean spatial clusters were calculated
for each season-year combination. Spatiotemporal clusters can
also be identified by varying the moving window across time as
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well as space. Spatiotemporal Euclidean and non-Euclidean clus-
ters were calculated for the entire study period, with sampling sea-
sons across the years defined as equidistant time points. Imputed V.
parahaemolyticus values were included for the winters of 2008-
2010 to avoid skipping a season between fall and spring. Winter
measurements were classified as non-detects, assuming that all V.
parahaemolyticus bacteria were in a VBNC state (Bates and
Oliver, 2004). A maximum window size of 25% of total sample

locations was used for all cluster detection analyses.
All spatial and spatiotemporal cluster analyses were also

adjusted for water temperature, clarity (Secchi disk depth), salinity,
and dissolved oxygen, each of which were recorded at the same
time and place as V. parahaemolyticus. Additional details on these
water quality parameters have been described previously (Jacobs
et al., 2014; Davis et al., 2017). In order to identify adjusted clus-
ters, logistic regression models were calculated in R, and the

                                                                                                                                Article

Figure 1. The Chesapeake Bay regional categories as well as sample locations used in the analysis.
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resulting deviance residuals were imported into SaTScan. Clusters
of these residuals were analysed using the Gaussian (i.e. normal)
model, which is similar to the Bernoulli model described above,
but rather than comparing the probability of samples inside and
outside the cluster, the average continuous deviance residuals are
compared. Since water temperature is frequently associated with V.
parahaemolyticus abundance (Johnson, 2015), and is often
required for Vibrio Control Plans in shellfish harvesting waters
(FDA, 2015), regressions only adjusted for temperature were also
estimated. Finally, to determine whether specific clusters identified
during the spring, summer, or fall seasons persisted in the same
locations over multiple years, data were stratified by season, and
spatiotemporal cluster detection was run with each year set as the
temporal interval and with a minimum window size of 3 years. No
internal SaTScan spatial, temporal, or spatiotemporal adjustments
were used, since no known temporal trends or relative risks were
modelled, and external covariate adjustment was imported into
SaTScan, as described above.

Results
A comparison of Euclidean and Non-Euclidean water distances

between these Chesapeake Bay monitoring stations has been
described previously (Davis and Curriero, 2019). A total of nine
statistically significant spatial Euclidean clusters were identified
across the entire sampling period, compared to ten significant non-
Euclidean clusters (Table 1). Note that several seasons contained
no statistically significant Euclidean or non-Euclidean clusters. No

clusters were identified during the winter season by design.
Differences between Euclidean and non-Euclidean clusters were
observed at every season-year where significant clusters were
identified, though the extent of the differences varied. In three of
the seasons, Euclidean clusters that were found to be significant
had non-Euclidean non-significant clusters identified in similar
locations (fall 2007, fall 2008, summer 2009), in four seasons the
opposite was the case (fall 2007, summer 2008, spring 2010, fall
2010), and significant Euclidean and non-Euclidean clusters were
found in similar locations during three other seasons (summer

                   Article

Table 1. Number of statistically significant spatial Euclidean dis-
tance and non-Euclidean water distance clusters at α=0.1 for
spring, summer, and fall seasons between 2007 and 2010. 

Year                Season                Euclidean            Non-Euclidean 

2007                        Spring                                 0                                        0
                              Summer                               1                                        1
                                   Fall                                    2                                        1
2008                        Spring                                 0                                        0
                              Summer                               1                                        3
                                   Fall                                    1                                        0
2009                        Spring                                 1                                        1
                              Summer                               1                                        0
                                   Fall                                    0                                        0
2010                        Spring                                 0                                        1
                              Summer                               2                                        2
                                   Fall                                    0                                        1

Figure 2. Euclidean distance and non-Euclidean water distance spatial clusters in the fall of 2010. The significant cluster (P<0.1) is
highlighted in red. 
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2007, spring 2009, summer 2010). The differences between
Euclidean and non-Euclidean clusters were all consistent with the
expected behaviour arising from distance measurements that
included both land and water vs water only. For example, in the fall
of 2010, the non-Euclidean method identified a significant
(P<0.05) cluster covering all samples in the Patuxent River (Figure
2). In contrast, the Euclidean method identified a much larger, non-
significant (P=0.33) cluster that included the Patuxent River, as
well as large portions of the main stem Mesohaline region,
Chester, Choptank, and Eastern Rivers, and a portion of the
Tangier Sound. 

The Euclidean vs non-Euclidean difference pattern generally
persisted after adjusting for temperature alone, as well as for tem-
perature, salinity, clarity, and dissolved oxygen. After repeating the
purely spatial cluster analyses while adjusting for temperature
alone, overall results indicated that spatial clusters were not sub-
stantially different from both Euclidean and non-Euclidean unad-
justed clusters. While the exact shape of the clusters changed
slightly in some season-years, the extent of the change was small,
and no trend in the change was identified. Purely spatial Euclidean
and non-Euclidean clusters that were adjusted for water tempera-
ture, salinity, clarity, and dissolved oxygen were also mostly simi-
lar to their unadjusted counterparts, though a general trend of clus-

ters becoming less significant could be seen in several season-
years.  Spatiotemporal Euclidean analysis identified three signifi-
cant clusters (Figure 3). Two occurred between the summer and
fall of 2007, the first located in the Tangier Bay and surrounding
tributaries and the other located in northern Mesohaline of the
main stem as well as Magothy, Severn, and Patuxent rivers. The
third cluster, located in the lower Polyhaline mainstem as well as
James, York, and Elizabeth rivers occurred between the summer
and fall of 2010. The unadjusted non-Euclidean approach identi-
fied two significant clusters, both occurring between the summer
and fall of 2010. One was located in a similar area to the southern
Euclidean cluster, while the other spanned the Mesohaline region
of the main stem along with Tangier Bay and Patuxent river
(Figure 3A). Adjusting for temperature as well as for multiple
environmental variables did not alter the Euclidean clusters sub-
stantially, though the southernmost cluster shifted from the
Polyhaline mainstem further west into the James, York, and
Rappahannock rivers (Figure 3C). Adjusting for temperature split
the same southernmost non-Euclidean cluster into two, located in
James and York rivers (Figure 3B). Further adjustment left only the
York river non-Euclidean cluster significant (Figure 3C). In con-
trast, the non-Euclidean cluster centred in the Mesohaline of the
main stem shrunk only slightly after adjusting for covariates. 
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Adjusted Euclidean and Mult Adjusted Non-Euclidean cluster.
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For season-specific spatiotemporal clusters, a similar trend of
clusters slightly decreasing in size and significance after adjusting
for temperature alone and decreasing further after adjusting for all
covariates was identified. During the summer seasons, the unad-
justed model identified significant non-Euclidean clusters in the
James and York Rivers, as well as the Tangier Sound and
Nanticoke River area (Figure 4). After adjusting for temperature,
only the James River and Tangier Sound clusters remained signif-
icant. After adjusting for all the covariates, only the Tangier Sound
cluster remained significant. Clusters identified in the spring and
fall also showed a pattern of decreased significance after adjust-
ment (data not shown). 

In this study, unadjusted clusters identified via a Bernoulli
model were compared to adjusted clusters identified via a
Gaussian model. As a sensitivity analysis, residuals from intercept-
only (i.e. no covariates) logistic regression models were also cal-
culated and considered for unadjusted cluster detection using the
Gaussian model in order to compare clusters identified via the
same model. The clusters identified using the intercept-only
regression residuals were almost identical to the ones identified via
the Bernoulli model, supporting the approach used in this work.

Discussion
This study compared multiple spatial and spatiotemporal clus-

ter detection analyses using Euclidean and non-Euclidean distance
metrics on V. parahaemolyticus surface water samples in the
Chesapeake Bay. Findings indicate that the difference in the met-
rics was noticeable, often resulting in clusters being identified in
different locations or substantial changes in statistical significance.
Adjusting cluster detection analyses by water quality measures
presented only slight changes in identified clusters, often decreas-
ing the size or the statistical significance of unadjusted clusters.
These results overall indicate that the use of an appropriate prox-

imity metric is necessary for cluster detection of Vibrio bacteria,
particularly in geographically complex marine environments.
Furthermore, providing adjusted clusters to risk managers who are
already accounting for known environmental determinants of the
V. parahaemolyticus will limit the size and scope of clusters that
warrant additional investigation. 

The observed discrepancies between Euclidean distance and
non-Euclidean water distance spatial and spatiotemporal clusters
are all consistent with the differences expected when measuring
the shortest linear distance between sample points vs water dis-
tance. For instance, in the fall of 2010 the non-Euclidean approach
identified a significant cluster in the relatively isolated Patuxent
River, while the Euclidean approach included those samples in a
much larger non-significant cluster by ignoring the peninsula that
separates the River from the main stem of the Bay (Figure 2). The
non-Euclidean water distance-based approach thus better captured
the complex geography of the Bay’s coastline and ultimately iden-
tified a significant localized cluster that was overlooked by the
Euclidean approach. The identified non-Euclidean clusters are
consistently more representative of how water-suspended particles,
or bacteria traveling via the waterways, would behave when com-
pared to the Euclidean clusters. While it might be possible that
Euclidean cluster detection methods for V. parahaemolyticus are
more appropriate in some settings, the suspension of the bacterium
in the water column, as well as its strong association with estuarine
parameters, lead one to expect that spatial variation of the bacteri-
um to be a function of a non-Euclidean water distance. 

Both Euclidean distance and non-Euclidean water distance
results for purely spatial clusters did not substantially change when
adjusting for water quality measures, and there was no difference
in the nature of the change between the two approaches. A slight
decrease in cluster significance when adjusting for all water quali-
ty measures is consistent with previous studies that found these
variables to be associated with V. parahaemolyticus abundance
(Davis et al., 2017), and thus help explain the formation of the
clusters. More substantial changes after adjusting for temperature

                   Article

Figure 4. Spatiotemporal unadjusted, temperature adjusted, and multivariate adjusted non-Euclidean water distance clusters, identified
during the summers of 2007 to 2010. Significant clusters (P<0.1) are highlighted in red.
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alone, as well as for all four of the water quality measures, were
observed for the spatiotemporal clusters. This may be due in part
to the larger sample sizes for the spatiotemporal analyses, as more
statistical power was available to distinguish between significant
and non-significant clusters. The approach of identifying clusters
adjusted for known predictor variables can be useful for
researchers and regulators to identify areas of high V. para-
haemolyticus abundance that would not be expected based on pre-
viously known associations. The existence of clusters that occur
during a particular season and persist in the same area year after
year are also of interest since they might represent areas that
require heightened attention and opportunities for intervention
efforts by regulators. While the full spatiotemporal analyses
(across all seasons and years) were unable to identify sustained
clusters given the seasonal variation of the bacterium, such analy-
ses could still prove useful in predicting clusters that may occur in
the fall based upon clusters observed in the preceding summer.

A limitation of this work is that fixed, geostatistical sample
locations were used to identify clusters, with each sample assigned
a binary indicator based on the quantitative PCR limit of V. para-
haemolyticus detection. However, the fixed sampling locations are
distributed around the Chesapeake Bay fairly uniformly and thus
identified clusters are not likely due to a disproportionate number
of samples in a given area. The monitoring stations used in this
study are also frequently measured to evaluate water quality in the
Bay and therefore are useful locations to perform future cluster
detections for infectious bacteria or other water quality conditions.
Future applications of non-Euclidean cluster detection could also
circumvent this limitation by being applied to interpolated surfaces
of V. parahaemolyticus and related water quality measures. Efforts
to use kriging in the Chesapeake Bay based upon non-Euclidean
distances have already been investigated (Davis and Curriero,
2019), and future work could expand on this effort by performing
space-time kriging in tidal waters. Such statistical interpolations
could also be informed by mechanistic models that can account for
flow and the hydrodynamics of the estuary based upon seasonal
trends and morphometric differences in Bay regions.

Rather than making a binary indicator based on the qPCR limit
of detection, the originally left-censored continuous values of V.
parahaemolyticus abundance could have been used to identify
clusters. Due to the very low proportion of detects with high V.
parahaemolyticus abundance in the current dataset, the binary
approach was deemed to be most appropriate for this study.
However, in areas such as the Puget Sound in Washington state or
the Gulf of Mexico, where high V. parahaemolyticus abundance
samples are more prevalent, a censored regression approach should
be considered. 

While clusters in this analysis could be compared to each
other, there is no standard to determine whether non-Euclidean
water distance-based clusters of V. parahaemolyticus water sam-
ples are genuinely more representative and accurate in identifying
areas that have increased vibriosis risks. Including information
from previous vibriosis cases or outbreaks or measuring V. para-
haemolyticus abundance in oysters could help better evaluate the
public health significance of the difference between Euclidean and
non-Euclidean clusters in future studies. Surveillance systems
intending to identify only clusters of public health concern could
also consider higher binary cutoff thresholds than the qPCR limit
of detection used in this analysis, ideally based on a risk of illness
that is deemed acceptable.

Conclusions
The findings of the spatiotemporal cluster detection analysis

are consistent with the overall inter-annual trends of V. para-
haemolyticus abundance in the Chesapeake Bay that have been
identified previously (Davis et al., 2017). Future sampling efforts
for the bacterium will result in more long-term data, making spa-
tiotemporal cluster detection methods even more useful for identi-
fying persistently high abundance in an estuarine body of water.
Future work will also apply non-Euclidean cluster detection onto
interpolated surfaces informed by mechanistic models to help
account for the complex spatiotemporal dynamics of V. para-
haemolyticus, further improving the quality of detected clusters.

Given the results presented, the non-Euclidean water distance
cluster detection approach should be considered for other studies
that include water-based bacteria or water-suspended particles, or
in other settings where locations of samples are connected by geo-
graphically constrained pathways (roads, pipes, etc.) More accu-
rate identification of V. parahaemolyticus abundance in space and
time is necessary to better understand the spatiotemporal distribu-
tion of vibriosis risk, and for reducing the burden of this illness.
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