
Abstract
Schistosomiasis remains a major public health problem in the

South China, particularly in lake and marshland regions.
Modelling the spatio-temporal pattern of schistosomiasis guides
disease prevention and control programs and is a research area of
growing interest. However, few attempts have been made to eval-

uate the changing (nonlinear) effects of environmental determi-
nants on schistosomiasis. In this context, a hierarchical spatio-
temporal model was applied to evaluate how environmental deter-
minants affect the changing trend of schistosomiasis in Anhui
Province, China, based on annual parasitological and environmen-
tal data for the period 1997-2010. Results showed that – compared
to changing effect – environmental factors had a constant (linear)
effect on schistosomiasis. The disease was also found to fluctuate
over time, which was due to the two latest national schistosomia-
sis control programs. In addition to statistical benefits of this
approach, our analysis implied that climate change might not con-
tribute to variation of schistosomiasis; rather, prevention activities
affect schistosomiasis when the disease prevalence remains at a
low level. Finally, the analytical method proposed in our study
provides a template for modelling the spatio-temporal pattern of a
disease whose transmission is largely determined by environmen-
tal determinants.

Introduction
Schistosoma japonicum is the main schistosome species in

the People’s Republic of China, causing intestinal schistosomia-
sis, a debilitating disease of public health importance (Collins et
al., 2012). After a multitude of national schistosomiasis control
programs, the prevalence has been greatly reduced and currently
remains at a low level (Li et al., 2009). However, elimination of
schistosomiasis is unlikely in the near to medium term future.
The latest national schistosomiasis report concluded that there
were 453 endemic counties (city or district) with 251 million res-
idents at risk and estimated that approximately 116,000 persons
were infected by the end of 2014 (Lei et al., 2015). Based on
geographical disease patterns and ecological characteristics of
the vector snail, schistosomiasis endemic regions in China have
been classified into three types: lake and marshland regions,
plain regions with water-way networks, and hilly and mountain-
ous regions (Chen and Feng, 1999). Compared to the other two
regions, control of schistosomiasis in the lake and marshland
regions is difficult due to the vast area of Oncomelania hupensis
(the sole intermediate host) habits, and over 80% of nationwide
schistosomiasis cases occur within these regions (Gray et al.,
2008). Hence, the lake and marshland regions are the focus of
schistosomiasis control.

The transmission of schistosomiasis is closely related to the dis-
tribution of O. hupensis, which largely depends on physical condi-

Correspondence: Yan Wang, State Key Laboratory of Simulation and
Regulation of Water Cycle in River Basin, Institute of Water Resources
and Hydropower Research, Beijing, China.
Tel./Fax: +86.10.56695864 - E-mail: wangyan@lreis.ac.cn
Yi Hu, Department of Epidemiology, School of Public Health, Fudan
University, Shanghai, China.
Tel./Fax: +86.21.54237410
E-mail: huyi@fudan.edu.cn

Key words: Schistosomiasis; Spatio-temporal modelling; Nonlinear
and linear effects; Environmental determinants; China.

Contributions: the authors contributed equally.

Conflict of interest: the authors declare no potential conflict of interest.

Funding: this research was supported by the National Natural Science
Foundation of China (81773487, 81673239) and the Fourth Round of
Three-Year Public Health Action Plan of Shanghai, China
(15GWZK0202, 15GWZK0101).

Ethical statement: approval for oral consent and other aspects of this
survey were granted by the Ethics Committee of Fudan University (ID:
IRB#2011-03-0295).

Received for publication: 31 July 2018.
Revision received: 23 October 2018.
Accepted for publication: 23 October 2018.

©Copyright F. Gao et al., 2018
Licensee PAGEPress, Italy
Geospatial Health 2018; 13:730
doi:10.4081/gh.2018.730

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (CC BY-NC 4.0) which permits any
noncommercial use, distribution, and reproduction in any medium, pro-
vided the original author(s) and source are credited.

Implications from assessing environmental effects on spatio-temporal 
pattern of schistosomiasis in the Yangtze Basin, China
Fenghua Gao,1 Michael P. Ward,2 Yan Wang,3 Zhijie Zhang,4-6 Yi Hu4-6

1Anhui Provincial Institute of Parasitic Diseases, Hefei, China; 2Faculty of Veterinary Science, The
University of Sydney NSW, Australia; 3State Key Laboratory of Simulation and Regulation of Water Cycle in
River Basin, Institute of Water Resources and Hydropower Research, Beijing, China; 4Department of
Epidemiology, School of Public Health, Fudan University, Shanghai, China; 5Key Laboratory of Public
Health Safety, Ministry of Education, Shanghai, China; 6Laboratory for Spatial Analysis and Modeling,
School of Public Health, Fudan University, Shanghai, China

                                           [Geospatial Health 2018; 13:730]                                                           [page 359]

                                                                        Geospatial Health 2018; volume 13:730

Non
-co

mmerc
ial

 us
e o

nly



tions such as temperature of freshwater, rainfall, and quality and
humidity of the soil. These physical conditions have therefore been
considered when modelling the geographical or spatio-temporal dis-
tribution of schistosomiasis in numerous research studies (Yang et
al., 2005; Steinmann et al., 2007; Clements et al., 2009; Hu et al.,
2013; Soares Magalh Es et al., 2014; Hu et al., 2015; Hu et al., 2016;
Hu et al., 2017). Almost all of these studies evaluated the linear
effect of environmental conditions on the disease; nonlinear effects
were seldom assessed. This linear assumption would be problematic
particularly in modelling the spatio-temporal variation of schistoso-
miasis, in which changing effect, due to abnormal climate (e.g.,
drought, flooding, tornado, etc.), of physical conditions on the dis-
ease would be expected. In this context, this paper aims to investi-
gate the nonlinear effects of environmental factors on the spatio-
temporal pattern of schistosomiasis in Anhui Province, East China,
which is characterized by a typical lake and marshland environment
(Hu et al., 2014), using a spatio-temporal model.

Materials and Methods

Study area
In this study, a Hierarchical spatio-temporal model was devel-

oped to evaluate the nonlinear effects of environmental covariates
on schistosomiasis prevalence. The analysis was conducted at the
township-level schistosomiasis data from Anhui Province. Anhui
Province, located across the lower reaches of the Yangtze River in
East China, spans approximately 139,600 square kilometers with a

population of 61.47 million (2015). Plains dominate the province,
with a series of hills and ranges covering southwestern and south-
eastern Anhui. Major rivers include the Huaihe River in the north
and the Yangtze River in the south (Figure 1).

Parasitological data
The S. japonicum infection prevalence data during 1997-2010

were obtained from cross-sectional surveys carried out by health
professionals of the Anhui Institute of Parasitic Diseases (AIPD).
The data were collected annually through village-based field sur-
veys using a two pronged diagnostic approach: screening by a
serological test of all residents 5 to 65 years old and confirmed by
Kato-Katz stool examination (three thick-smear slides from one
stool specimen) (Yu et al., 2007). The results were then reported to
AIPD via township offices. The database used in this study consist-
ed of 97 sample townships located in the schistosome-endemic
area, which were selected from the database of annual schistoso-
miasis surveys. For our analysis, townships that had no infected
individuals during the study period were removed. Figure 1 shows
the locations of the sample townships in the endemic area.

Environmental data
Environmental data included rainfall, temperature and distance

to the Yangtze River. Monthly rainfall and temperature data during
the study period were obtained from the China Meteorological
Data Sharing Service System (http://cdc.cma.gov.cn/home.do).
With climatic data at 756 meteorological stations nationwide,
inverse distance weighting interpolation was used to derive esti-
mates within the study area. ArcGIS software (version 10.0, ESRI
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Figure 1. Location of sample townships in Anhui Province, China. The geographical layer of water bodies was overlaid. Yangtze River
is shown in the south and Huaihe River in the north. The map was created using the AcrGIS software (version 10.0, ESRI Inc.,
Redlands, CA, USA).
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Inc.; Redlands, CA, USA) was used to extract yearly-average rain-
fall and temperature for each county. Data on the Yangtze River
were downloaded from Conservation Science Data Sets of World
Wildlife Foundation at http://worldwildlife.org. For each town-
ship, the Euclidian distance to the Yangtze River was calculated
using ArcGIS 10.0.

Statistical analysis
Hierarchical Bayesian model is used as the statistical method

in this study. Assume that there is a true unobserved spatio-tempo-
ral process hidden behind the yearly counts of schistosomiasis
cases, which is incorporated into the framework of a hierarchical
Bayesian statistical model. The spatial domain is discrete and con-
sists of the 97 townships in the study area. Consequently, the size
of count data we model is fixed at 97. The basic representation of
the hierarchical Bayesian model is typically composed of three
levels, namely, data level (whose conditional probability distribu-
tion given processes and parameters is independent), process level
(which determines change of data level given parameters), and
parameter level (which exists in the previous levels).

Specifically, let Zit denotes the number of infected individuals
(data level) in township i (I = 1,2,..,97) at time t (t = 1997, 1998,…,
2010). The following distribution is assumed for the observed
infected individuals (Eq. 1):

Zit ∽ Binomial (pit, Nit)                                                           Eq. 1

where pit and Nit are the probability that a randomly selected person
will test positive for schistosomiasis and number of people tested
in township i at time t, respectively. Considering low level of infec-
tion (i.e., many townships had no observed infection, see the
results section), we therefore assume Zit follows a zero-inflated
binomial distribution which is characterized by adding a zero-
inflated parameter α into Eq. 1. pit is regarded as the hidden process
of interest (process level) in which the spatio-temporal dependence
can be modelled. The logit transformation of pit was used to model
the linear and nonlinear environmental effects and spatio-temporal
disease dependence as follows (Eq. 2):

                                       
Eq. 2

where xit are covariates that are specified as the environmental fac-
tors; fk() and g() are functions for the kth covariate and time,
respectively, which could be linear or nonlinear; and the term ωit

refers to the latent spatio-temporal process, which changes in time
with first-order autoregressive dynamics and spatially correlated

residuals (Hu et al., 2017). All the parameters included in hierar-
chical Bayesian model are assumed to be in the parameter level.
More details about this spatio-temporal model can be found in our
latest study (Hu et al., 2017). This paper focuses more on the non-
linear effects of environmental factors and time on schistosomiasis
and therefore assume all the fk() have a following form (Eq. 3):
fk (x) = βt x                                                                               Eq. 3

where the coefficient βt follows a random walk pattern, namely,
βt = βt-1 + εt Eq. 4

where εt is a temporally uncorrelated noise, following a normal dis-
tribution with mean 0 and covariance τ-1, i.e., ε ∽ N(0, τ-1). Of note,
if βt does not change with time and remains constant, Eq. 3 returns
to the ordinary linear function, namely,

fk (x) = βx Eq. 5

Similarly, g() is assumed to have the same form.
In order to compare with the above full nonlinear spatio-tem-

poral model (i.e., fk() and g() are both nonlinear and this is denoted
as m1), two mixed models (m2, in which fk() is assumed to be linear
while g() is nonlinear, and m3, in which fk() is assume to be nonlin-
ear while g() is linear) and a full linear model (m4, in which both
fk() and g() are assumed to be linear; Table 1) are also specified.
The deviance information criterion (DIC) (Spiegelhalter et al.,
2002) was also used to compare the fitness of these models to the
data: smaller values denote a better fitting model. All the statistical
analysis was implemented using R software (R Development Core
Team 2013), particularly the R-INLA package.

Results
As shown in Figure 2, the mean prevalence of schistosomiasis

within the study area decreased during the study period from
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Table 1. Deviance information criterion (DIC) values for all
models fit to schistosomiasis prevalence data in Anhui Province,
China, 1997 to 2010.

Model                  fk ()                            g ()                        DIC

m1                            nonlinear                           nonlinear                        7604.38
m2                               linear                              nonlinear                        7003.51
m3                            nonlinear                              linear                            7781.23
m4                               linear                                  linear                            7773.22
fk () and g () are functions for the kth covariate and time, respectively.

Figure 2. Prevalence of S. japonicum infection for sample town-
ships in Anhui Province, China, from 1997 to 2010. The green
circles denote the mean prevalence, and the blue circles the medi-
an prevalence. The red vertical lines represent interquartile
ranges of annual prevalence estimates.
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0.20% in 1997 to 0.14% in 1999, then increased and fluctuated
during the period 2000-2005 before gradually decreasing to 0.10%
by 2010. Of note, there was a resurgence with mean prevalence of
0.36% in 2005. A higher prevalence was accompanied by a wider
interquartile range. In addition, the excess zero observed preva-
lence (denoted by the first quartile) indicated the need to consider-
ing a zero-inflated distribution in Eq. 1.

Figure 3 shows the annual change in estimated temperature
and rainfall in the study area during the period 1997-2010. The
annual average temperature (Figure 3A) fluctuated during the
study period and showed an overall decreasing trend whereas
annual rainfall fluctuated prior to 2005 and then remained relative-
ly constant afterwards; overall, rainfall showed an increasing trend
during the study period. Notably, both annual average temperature
and annual rainfall showed an abnormality in 2003.

The DIC results of all models are presented in Table 1. As indi-
cated by these DICs, model m2 outperform the other models, with
the smallest DIC (7003.51). Hence, model m2 was selected as the
best fitting model for evaluating effects of environmental covari-
ates on schistosomiasis.

Table 2 shows the posterior estimates produced by model m2

using data for the period 1997-2010. Temperature was significant-
ly negatively associated with schistosomiasis whereas rainfall and
distance of townships to the Yangtze River were significantly pos-
itively correlated with the disease. The posterior mean of the pre-
cision parameter for random walk (τ) was 9.74e-02 and the 95%
credible interval (CI) was 9.73e-02 to 9.76e-02. The posterior
mean of the zero-inflated parameter (α) was significantly different
from zero (posterior mean 79.10e-02, 95% CI: 79.07e-02 to
79.14e-02).

Discussion
With the improvement of national and local epidemic surveil-

lance systems, more space-time epidemiological data are becoming
available; together with advances in space-time statistics, modelling
the spatio-temporal pattern of schistosomiasis has become a growing
area of research interest. As a disease strongly associated with the
physical environment, schistosomiasis has been found to be sensi-
tive to changes in determinants such as temperature, moisture, and
rainfall (Engels et al., 2002). Hence, evaluating the changing effect
of these determinants is critical when modelling the spatio-temporal
pattern of schistosomiasis. However, previously few studies have
incorporated such nonlinearities into the analysis of schistosomiasis
data. In this context, the purpose of the current study was to investi-
gate changing (nonlinear) effects of environmental factors on the
spatio-temporal pattern of schistosomiasis.

The smallest value of DIC (7003.51) for model m2 indicated
that compared to changing effect (m1 and m3), constant (linear)
effects of environmental factors fitted the observed data better. A
geographical study has shown rainfall and air temperature in Anhui
Province to have increased annually during the last six decades
(Zeng et al., 2014) and extreme weather in the form of heavy pre-
cipitation occurred in 2003 (Wang, 2014) (Figure 3B). The linear
part, i.e., fk() in model m2 suggests that changing effects of climatic
factors could be neglected but the nonlinear function g() indicates
that schistosomiasis changes over time; this latter nonlinear part
can be well explained by the two national schistosomiasis control
strategies implemented during the study period. In 1992 the
Chinese government launched a 10-year World Bank Loan Project
(WBLP) on schistosomiasis control, mainly based on large-scale
chemotherapy with some auxiliary interventions such as health
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Figure 3. Changing trend in climatic factors in Anhui Province,
China, from 1997 to 2010. (A) Annual average temperature; (B)
annual average rainfall.

Table 2. Posterior estimates (mean, standard deviation [SD], and quantiles [Q]) for model 2 (Table 1) of schistosomiasis prevalence in
Anhui Province, China, 1997 to 2010.

Parameter                    Mean                                SD                                    Q0.025                             Q0.500                                      Q0.975

Temperature                           -0.13                                           0.06                                               -0.25                                        -0.13                                                   -0.01
Rainfall                                  0.17e-02                                    0.06e-02                                       0.05e-02                                 0.17e-02                                             0.28e-02
River                                      0.81e-02                                    0.23e-02                                       0.37e-02                                 0.81e-02                                             1.25e-02
τ                                              9.74e-02                                    8.13e-05                                       9.73 e-02                                9.74 e-02                                            9.76e-02
α                                            79.10e-02                                   0.02e-02                                      79.07e-02                               79.10e-02                                           79.14e-02
τ, precision parameter for random walk; α, zero-inflated parameter.
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education, chemical control of snails, and other environmental
exposure modifications (Yuan et al., 2005). However, the disease
rebounded shortly after the conclusion of the WBLP in 2001
(Utzinger et al., 2003). In response, a revised program has been
implemented from 2005 until present, aiming to reduce the role of
bovines and humans as sources of infection (Li et al., 2009). In
addition to chemotherapy and health education, water buffaloes
have been replaced by tractors. This integrated program also
includes such strategies as treatment of night-soil and provision of
piped, safe water, keeping domestic animals in barns, and reduc-
tion of snail habitats through the construction of water conserva-
tion projects (Zhang et al., 2005).

Model m2 provided modeling benefits as well as important epi-
demiological insights. From a statistical aspect, linear effects of
environmental factors on infection risk were confirmed by our
model, hence simplifying the spatio-temporal modeling of schisto-
somiasis. The epidemiological interpretation of model m2 is also
useful in the design and implementation of disease control pro-
grams; it reinforces the concept that changes in environmental fac-
tors do not contribute to variation of schistosomiasis; rather,
changes in schistosomiasis over time are likely due to disease pre-
vention activities. This indicates that – compared to environmental
factors – there should be more focus on prevention activities.
However, this overall conclusion needs to be interpreted with cau-
tion because schistosomiasis prevalence has remained at a very
low level during the study period (Figure 2) and the same conclu-
sions might not be applied in endemic areas with high disease risk.
Another limitation of our study is that the specificity of serological
assays and the sensitivity of stool examination tests are not perfect
(Wang et al., 2008) and this uncertainty has not been considered in
our modeling (although any diagnosed error is assumed to be non-
differential over time and place). Modeling that incorporates diag-
nostic errors might be considered in further studies.

Conclusions
This study investigated the effect of changing environmental

factors on the spatio-temporal pattern of schistosomiasis in Anhui
Province – a typical endemic area of the lake and marshland region
in China – using a dynamic spatio-temporal model. Our model
showed that environmental factors had a constant effect on schis-
tosomiasis but that the infection risk changed over time. The pro-
posed analytical method in our study provides a case study of mod-
elling spatio-temporal disease patterns when such disease risk is
environmentally determined.
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