
Abstract
Biomphalaria straminea is native to Brazil but has established

a population in Guangdong Province, China. Its potential of
expanding and transmitting Schistosoma mansoni is of great con-
cern. We seek to map S. mansoni transmission potential by pre-
dicting ecological dimensions and potential distributions of B.
straminea using state-of-the-art ecological niche model approach-
es. Two environmental datasets were selected to fit individual and
ensemble niche models, together with the evaluation of niche con-
servatism during B. straminea invasion in China. A small area is
still occupied by the introduced population compared to that in
Brazil. A vast space with suitable climate remains unfilled and
might be available to B. straminea. Contrasting results of niche

conservatism evaluation were attained based on the two environ-
mental datasets. The coastal areas in southern China, together with
south-western Yunnan and southern Hainan and Taiwan were con-
sistent supported by multiple model approaches, showing high cli-
mate suitability for B. straminea. Attention should be paid to the
possibility of S. mansoni epidemic in these identified areas, as
high pressure due to propagation and future climate change may
further complicate conditions. Our results call for rigorous moni-
toring and supervising along these areas in China.

Introduction
Biological invasion represents a major threat to the sustainable

development of our society (Mack et al., 2000), resulting in seri-
ous damages to environment and human health, which can even-
tually lead to great economic loss (Liu et al., 2011). Many strate-
gies and actions are attempted to reduce the effect of invasive
species, especially those that spread disease. Eradication is usually
difficult once the invasive species has passed the bottleneck and
established populations (Kolar and Lodge, 2001). The most effec-
tive way might be to prevent initial invasion or restrain future
expansion rather than trying to curb outbreaks. It is therefore a pri-
ority to consider spatial deployment of efforts and resources for
field management with regard to invasive species.

Predicting potential distribution of invasive species via eco-
logical niche modelling (ENM) approaches could be useful by
offering information on allocating efforts in this regard (e.g.,
Roura-Pascual et al., 2011; Beans et al., 2012). ENM seeks to
characterize ecological requirements of species using environ-
mental variables associated with observed data and then identify
how suitable environmental space are distributed. This correlative
approach is now routinely used with respect to biological invasion
(Peterson et al., 2012), and increasingly used in disease ecology
(Peterson et al., 2014).

Schistosoma mansoni is the parasite species responsible for
schistosomiasis in tropical and subtropical areas in Africa and
Latin America, especially in Brazil. One of its intermediate snail
hosts, Biomphalaria straminea, is native to Brazil but has estab-
lished populations in many countries in Central and North America
and Asia. The first detection of B. straminea in China was in
Kowloon in Hong Kong in the 1970s, where it was collected by
shellfish amateurs in irrigation trenches (Fernandez, 2002). Pan et
al. (1983) first reported its existence in Shenzhen in mainland
China. By 2013, the snail had spread to surrounding regions of
Dongguan City and Huizhou City in Guangdong Province (Figure
1) where it had established populations in freshwater habitat
throughout urban and rural areas. Its further expansion and poten-
tial for transmitting S. mansoni have been much discussed. Habib
et al. (2016) and Yang et al. (2018) employed the maximum
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entropy model (MaxEnt) (www.gbif.org/tool/81279/maxent) to
produce risk maps for B. straminea in China. However, their mod-
els were either based on the population of a non-equilibrated state
(i.e. the introduced population did not inhabit the entire habitable
area), violating key assumption of ENM applications (Peterson et
al., 2011) or employing a single-model approach without consider-
ation of model uncertainty (Yang et al., 2018). Human impacts
appeared to be an important factor for the establishment and expan-
sion of B. straminea, Yang et al. (2018) added human factors in a
niche model to predict the potential distribution but did not calcu-
late human populations that at risk of S. mansoni transmission.

In this study, classical niche models based on a native equilib-
rium population were used to map ecological dimensions and
potential distributions of B. straminea using multiple model
approaches. In addition, climate niche conservatism during the
invasion of B. straminea in China, which is another key assump-
tion in ENM applications (Peterson et al., 2012), was tested using
two environmental datasets. The aims of this study were i) to com-
pare climate spaces occupied by native Brazilian populations and
populations introduced into China; ii) to address whether the cli-
mate niche was diverged during B. straminea invasion in China;
and iii) to predict its potential distribution in China using a fine-
tuned individual MaxEnt approach and collective model ones.

Materials and Methods

Input data
Occurrence records of B. straminea were assembled from

online databases (Global Biodiversity Information Facility
(www.gbif.org/) and the published literature (e.g., Scholte et al.,
2012; Habib et al., 2016; Zeng et al., 2017). These records were
overlaid on the administrative maps and compared with their orig-
inal descriptions to remove errors. Records lacking geographic
coordinates were georeferenced using Google Maps. Spatial
aggregations of distributional records were filtered at a 10 arc grid,
where only a single record per raster cell was reserved for model
calibration and evaluation to minimize possible effects of spatial
autocorrelation (Veloz, 2009). A total of 542 records (507 native
and 35 Chinese) reflecting the present-day distribution of B.
straminea were retained for analysis.

Bioclimatic variables representing annual trends, extreme con-
ditions of temperature and precipitation according to Hijmans et al.
(2005) were considered. Variables combining temperature and pre-
cipitation were excluded because they displayed artificial disconti-
nuities among adjacent grid cells in some areas (Escobar et al.,
2014). Two environmental datasets were selected based on their
ecological relevance and independence from other variables.
Dataset A summarized the aspects of temperature, and precipita-
tion and had a Pearson correlation value of <0.85. It included mean
diurnal range (Bio2), temperature seasonality (Bio4), maximum
temperature of warmest month (Bio5), mean temperature of cold-
est quarter (Bio11), annual precipitation (Bio12), precipitation sea-
sonality (Bio15) and precipitation of driest quarter (Bio17).

The snail mainly lives in fresh water in tropical areas but
grows fast and adapts to diverse environments well. We assume
that annual mean and extreme values of temperature and precipita-
tion might be more important than others in limiting snail distribu-
tion. Therefore, a dataset B was made to reflect primary relevance
in imposing constraints upon snail distribution, including annual

mean temperature (Bio1), Bio5, minimum temperature of coldest
month (Bio6), Bio12, precipitation of wettest month (Bio13), pre-
cipitation of driest month (Bio14) and Bio15. All analyses were
based on the above two datasets at a spatial resolution of 2.5’.

Climate space comparison
Climate spaces occupied by native Brazilian and introduced

Chinese populations were compared and mapped in reduced
dimensions using principle component analysis (PCA) using
NicheA, version 3.0 according to Qiao et al. (2015). NicheA is an
open-source platform that can be used to simulate ecological nich-
es (Qiao et al., 2015) it assumes that fundamental species niches
are convex in shape as suggested by available evidence (e.g.,
Soberón and Nakamura, 2009). Niches therefore can be operated
as minimum volume ellipsoids (Van Aelst and Rousseeuw, 2009).
NicheA can quantify similarity among multiple niches in terms of
overlap in n-dimensional environmental spaces (Qiao et al., 2015).
Here, we mapped ecological dimensions for B. straminea by com-
paring climate spaces occupied by native and introduced popula-
tions in three reduced dimensions based on the two datasets men-
tioned above.

Climate niche conservatism during the invasion of B.
straminea was investigated. We used ecospat of the R package (R
Core Team, 2015), a statistical software supporting spatial analyses
and modelling of species niches and distributions (Cola et al.,
2017), to test whether the snail’s climate niche was diverged in
environmental spaces. This programme uses kernel density to fit
species distribution points and environmental variables associated
with geographical region to test niche conservatism. Climate niche
overlaps between native and introduced ranges were measured by
the first two axes of PCA (Broennimann et al., 2012). Schoener’s
D, which varies between 0 (no overlap at all) and 1 (complete over-
lap) according to Petitpierre et al., (2012) was used to measure the
overall match between the two niches.
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Figure 1. Map showing distribution and expansion of
Biomphalaria straminea in southern China. The snail was first
reported in Kowloon in Hong Kong and then expanded into sur-
rounding areas.
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Two alternative hypotheses of equivalency and similarity in
statistical tests were used to test niche conservation. The former,
which was used to compare niche similarity between geographic
populations, works by comparing niche overlap values generated
by actual occurrence data with those generated by empirical data
randomly sampled across the two regions. The latter, which was
used to test whether this similarity is due to the geographical area
in which they occur, works by comparing actual niche overlap with
that generated using points drawn at random from the region
defined as environmental background for one of the populations
(Broennimann et al., 2012; Petitpierre et al., 2012).

Background environments for the comparisons of climate
space and niche modelling should include areas accessible to the
species (Barve et al., 2011). Here, we delimited this area by buffer-
ing known occurrences by 400 km, which reflects a compromise
between including all accessible environments (Barve et al., 2011)
and covering an extent broad enough to minimize extrapolation
and detect climatic differences between presence and background
records (Owens et al., 2013). Climatic similarities between native
and introduced populations were assessed using mobility-oriented
parity (MOP) metrics for the two environmental datasets. MOP is
a correction and improvement of multivariate environmental simi-
larity surfaces (Owens et al., 2013).

Ecological niche modelling calibration and evaluation
Native models were fitted using the two datasets and then

transferred across the globe to predict areas of potential distribu-
tions. 70% of native-range points were used to fit the model, the
rest of them and introduced Chinese points were used for model
interpolative and extrapolative evaluations respectively.

We sought to adopt both individual and collective model
approaches to predict the potential distribution because each
approach has its advantages and disadvantages (Zhu and Peterson,
2017). The ensemble model approach is widely used to reduce

model-based uncertainty but it is not better than the individual
model. Therefore, five individual commonly used modelling algo-
rithms, i.e., generalized additive models, generalized boosted mod-
els (GBMs), generalized linear models, random forests, and
MaxEnt models were developed using default parameters in
biomod2 (Thuiller, 2003) implemented in R software (R Core
Team, 2015) and then averaged to produce ensemble models.
Eventually, two individual models were considered: MaxEnt and
GBM. The former follows the principle of maximum entropy and
is the most popular model algorithm, whereas the latter uses boost-
ing to combine large numbers of relatively simple tree models,
which is recommended by Jane Elith et al. (2006). Recently,
Maxent based on default setting has been criticized because of its
complexity and low transferability (e.g., Muscarella et al., 2014).
In this study, the MaxEnt model was optimized using the ENMeval
package (Muscarella et al., 2014), which provides an automated
way to execute MaxEnt models across a user-specified range of
regularization multiplier (RM) values and feature combination
(FC). We set the RM range to 0.5–4.0 with increments of 0.5 and
used six FCs, i.e. linear (L), quadratic (Q), hinge (H), product (P)
and threshold (T) to cover a broad range of model settings. The
fine-tuned MaxEnt models were made by seeking the minimum
value of Akaike’s information criterion (AIC) among candidate
models (Muscarella et al., 2014).

Partial receiver operating characteristic (ROC) and omission
error were used to evaluate model interpolation and transferability,
respectively. The traditional area under the curve (AUC) approach
is misleading according to Peterson et al. (2008) and Jiménez-
Valverde et al. (2012), so we adopted partial ROC approach, which
considers the quality of occurrence points and weights more on
omission error (Peterson et al., 2008; Zhu et al. 2017a). An AUC
ratio of 1 implies that the niche model is no better than a random
prediction; the larger the AUC ratio, the better the discrimination
in partial ROC approach (Peterson et al., 2008). The omission
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Figure 2. Climate niche spaces of Biomphalaria straminea based on two environmental datasets (datasets A and B). Yellow and pink
ellipsoids represent niche spaces occupied by native and invading populations, respectively.
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error was calculated by the proportion of testing points not predict-
ed at a threshold. Here, occurrence data in China were used to cal-
culate omission error across the threshold spectrum of model out-
put. Specifically, we calculated the omission error at the increment
of 10 against the total 1,000.

Human risk assessment
The human population that fell into suitable areas of B.

straminea were estimated in four cities (i.e., Hong Kong,
Dongguan, Huizhou and Shenzhen) based on our predictions. To
do so, the suitability maps generated by GBM model (which
showed the best performance, see results) were converted into
binary prediction at the 10 percent training threshold, the popula-
tion that fell into the positive predicted areas were estimated based
on a global population distribution data, which were obtained from
Oak Ridge National Laboratory (www.ornl.gov/sci/landscan).

Results

Climate space
PCA of the climate variables associated with snail occurrences

revealed reduced dimensions that accounted for the observed dis-
tribution. In dataset A, the first three components (PC1, PC2 and
PC3) explained 88.6% of the variance; PC1 was associated with
mean diurnal temperature range (Bio2) and accounted for 51.5%,
PC2 was associated with precipitation seasonality (Bio15) and
accounted for 23.3%, and PC3 accounted for 13.7% and was less
associated with a single dimension. In dataset B, the first three
components (PC1, PC2, and PC3) explained 88.6% of the vari-

ance; PC1 was associated with annual precipitation (Bio12) and
accounted for 57.7%, PC2 was associated with precipitation sea-
sonality (Bio15) and accounted for 24.8%, and PC3 accounted for
11.5% and was less associated with a single dimension.

Contrasting size of ellipsoid volumes between native and intro-
duced populations were observed in both datasets: native popula-
tion occupied a large ellipsoid, whereas the introduced Chinese
population occupied a relatively small ellipsoid (Figure 2).
Nonetheless, the overlaps of climate spaces occupied by native and
introduced populations varied between the two datasets: the two
ellipsoids were partially overlapped in dataset A, but the Chinese
population ellipsoid fell well into that of the native population in
dataset B (Figure 2).

Niche conservatism
Climate niche conservative evaluation showed contrasting

results based on the two datasets. Non-equivalency niche spaces
occupied by native and introduced populations were consistently
supported (dataset A: Schoener’s D = 0, P<0.5; dataset B:
Schoener’s D = 0.002, P<0.5), as actual niche overlaps, were quite
different from those of random data (Figure 3), whereas the results
of similarity tests varied between the two datasets. In dataset A, the
non-equivalency niche results were supported in similarity tests, as
actual niche overlap fell far away from random overlaps; however
this was not the case for dataset B as actual niche overlap fell
inside of random overlaps (Figure 3).

Model performances
Fine-tuned parameters of MaxEnt models identified by

ENMeval package were quite different from those default param-
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Figure 3. Histograms of niche equivalency and similarity tests between native and introduced ranges based on the two datasets. Red
lines with a diamond represent the observed niche overlap, and gray bars represent simulated niche overlaps.
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eters. In dataset A, the minimum AICc was attained based on the
parameters of RM = 4 and Features = L, Q, H and P. In dataset B,
the best parameters of RM = 2 and Features = L, Q, H, and P were
attained. All individual and ensemble models performed better
than random predictions based on the two datasets in interpolative
evaluations (AUC ratios in dataset A: MaxEnt = 1.92, GBM =
1.91, ensemble = 1.94; AUC ratios in dataset B: MaxEnt = 1.92,
GBM = 1.92, ensemble = 1.93). Ensemble models generally per-
formed better that those individual models used to generate them
in native model evaluations.

When the models were transferred into China, omission errors
varied across the spectrum of thresholds (Figure 4). Similar omis-
sion errors were attained in MaxEnt models between the two
datasets, whereas outputs based on dataset B generally outper-
formed those based on dataset A in GBM and ensemble models. In
GBM outputs, models based on dataset B showed lower omission
errors at thresholds of 180–400 than those based on dataset A but
not at thresholds less than 180 or larger than 400. In ensemble out-
puts, models based on dataset B showed lower omission errors at
thresholds of 100–600 but not at thresholds of less than100 or larg-
er than 600.

Model predictions
Projecting native-range ENMs based on the two datasets onto

the globe generally involved only minor amounts of strict extrapo-
lation in dataset A, but not dataset B (MOP analysis – Appendix
Figure A3). Spatial predictions by our native models showed that
the suitable areas are in Central America, Sub-Saharan Africa, and
Southeast Asia (Appendix Figure A1). These predictions for B.
straminea closely matched its present-day distribution, i.e. mostly
tropical and subtropical areas. Predictions of collective models
were generally consistent between the two datasets, but they were
more conservative than those based on individual models
(Appendix Figure A1).

In China, all models showed a trend of suitability descending
from southern coastal areas to the North (Figure 5; Appendix
Figure A2). Areas of high suitability consistently supported by pre-
sent models included coastal areas in southern China, south-west-
ern Yunnan and most areas in southern Hainan and Taiwan. The
south-eastern areas in Guangdong showed high suitability and
were supported by both individual and ensemble models (Figure 5;

Appendix Figure A2). In MaxEnt models, predictions based on
dataset B were more liberal than those based on dataset A in
Guangdong Province and other areas in southern China (Figure 5;
Appendix Figure A2). In GBM and ensemble models, predictions
of dataset B were more conservative than those based on dataset A
(Figure 5; Appendix Figure A2). Transfers of models between
native and coastal areas in southern China generally involved little
extrapolation (see MOP results in Appendix Figure A3).

Human risk assessment
The human populations at risk of S. mansoni infection were

estimated for Hong Kong, Dongguan, Huizhou and Shenzhen
based on GBM predictions (Figure 5). Among the four cities, Hong
Kong has the largest human population at risk of S. mansoni infec-
tion, i.e. there were about 40,000 humans at risk, whereas in
Dongguan, Huizhou, and Shenzhen, there were less than 10,000 at
risk in each city (Figure 6).

Discussion
Contrasting volume size, together with the overlaps of climate

spaces occupied by native and introduced populations (Figure 2),
suggest there are vast areas with suitable climate for B. straminea
in China compared with those of the native Brazilian population.
B. straminea is currently restricted to coastal areas in Guangdong
Province but might have a large invasion potential in China. As can
be seen in Figure 5, many suitable areas were identified in the
coastal areas in Fujian, Hainan, Guangxi, Yunnan and Taiwan.
High temperature is beneficial to snail spawning and may therefore
create more suitable conditions for the reproduction and propaga-
tion of B. straminea (e.g., Scholte et al., 2012). Nonetheless, future
climate warming will have complex effects on schistosomiasis
transmission (Stensgaard et al., 2013; Pedersen et al., 2017; Zhu et
al., 2017b), and it is conceivable that climate change will affect
aquatic environments, and hence, alter the transmission and distri-
bution of S. mansoni in this country.

Niche conservatism is much discussed with relevance to the
ongoing climate change. For example, two major studies showed
opposite results of niche conservatism during terrestrial plant inva-
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Figure 4. Omission errors of individual and consensus models based on the two datasets in anticipating introduced Chinese points.
GBM, generalized boosted models.
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sion (Petitpierre et al., 2012; Atwater et al., 2017). In this study, the
contradictory results of niche conservatism were observed based
on the two datasets, with niche divergence supported in dataset A
but not in dataset B. Thus, the environmental variables play an

important role in niche conservatism evaluation (Zhu and Peterson,
2017). Niche conservatism represents the key assumption neces-
sary for ENM application, especially when the models are used in
an extrapolative manner (Owens et al., 2013). In this study, niche
model predictions based on dataset B might be more reliable for B.
straminea, showing highly suitable areas along coastal areas in
Guangdong, Hainan, Taiwan as well as areas in south-western
Yunnan Province (Figure 5).

Assessment of transmission risk and establishment of surveil-
lance–response systems are critical to prevent B. straminea expan-
sion. In China, the sampling sites of B. straminea were mostly in
areas of fishing and farming, such as reservoirs, streams, and rivers
(Figure 1). The main route of B. straminea expansion is from port
city to mainland city (Pan et al., 1983). Among the four cities,
many humans in Hong Kong reside within the suitable areas of B.
straminea, where the highest probability of S. mansoni transmis-
sion may happen (Figure 4). Our predicted maps identified many
suitable areas around its present distribution (Figure 5; Appendix
Figure A2), the potential of B. straminea to disperse further in
China is of great concern. The suitable map for B. straminea dis-
tribution identified in the present study will have implications in
public health strategies, monitoring and guide fieldwork for earlier
detection.

Contrary to former predictions, which either were based on
introduced populations of a non-equilibrium state and identified
suitable areas that clustered around observed points (Habib et al.,
2016), or used single model that inherent uncertainty (Yang et al.,
2018), our native models identified many suitable areas along
southern coastal China and were consistent supported by multiple
model approaches (Figure 5; Appendix Figure A2). These coastal
cities are key areas of labour export, bearing high population
mobility propagating pressure (Chen and Jiang, 2008), they
deserve high attention regarding S. mansoni transmission or epi-
demics may happen, considering the synergistic effect of high cli-
mate suitability and propagation pressure (Simberloff, 2009).

                   Article

Figure 6. Human populations at risk of infection in four cities
estimated by generalized boosted model.

Figure 5. Potential distributions of Biomphalaria straminea in
southern China. Native model transfers in China were based on
three approaches (Maxent, generalized boosted model – GBM –
and ensemble) using dataset B.
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Conclusions
In this paper, we mapped the transmission potential of S. man-

soni by predicting ecological dimensions and potential distribu-
tions of B. straminea using state-of-the-art ecological niche model
approaches. Much suitable spaces were found to be unfilled in
China, and might be available to B. straminea. Attention should be
paid to S. mansoni epidemic may happen in coastal areas in
Guangdong, Hainan, Taiwan, and areas in south-western Yunnan
Provinces, considering high pressure of propagation, while future
climate change may create even better conditions. Our results call
for rigorous monitoring and surveillance in these identified areas
in China.
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