
Abstract
The level of spatial aggregation is a major concern in cluster

investigations. Combining regions to protect privacy may result in
a loss of power and thus, can limit the information researchers can
obtain. The impact of spatial aggregation on the ability to detect

clusters is examined in this study, which shows the importance of
choosing the correct level of spatial aggregation in cluster investi-
gations. We applied the circular spatial scan statistic (CSS), flexi-
ble spatial scan statistic (FSS) and Bayesian disease mapping
(BYM) approaches to a dataset containing childhood asthma visits
to a hospital in Manitoba, Canada, using three different levels of
spatial aggregation. Specifically, we used 56, 67 and 220 regions
in the analysis, respectively. It is expected that the three scenarios
will yield different results and will highlight the importance of
using the right level of spatial aggregation. The three methods
(CSS, FSS, BYM) examined in this study performed similarly
when detecting potential clusters. However, for different levels of
spatial aggregation, the potential clusters identified were different.
As the number of regions used in the analysis increased, the total
area identified in the cluster decreased. In general, potential clus-
ters were identified in the central and northern parts of Manitoba.
Overall, it is crucial to identify the appropriate number of regions
to study spatial patterns of disease as it directly affects the results
and consequently the conclusions. Additional investigation
through future work is needed to determine which scenario of spa-
tial aggregation is best.

Introduction
In the context of epidemiology, a spatial cluster is defined as

a geographical region within the overall study area with unusual
aggregation of disease (Lawson, 2006). The identification of clus-
ters using cluster detection tools is helpful to initially identify
regions with high rates of disease and are ultimately most at risk.
Thus, the identification of these clusters plays an important part in
epidemiological research and disease surveillance in public
health. Cluster detection may uncover risk factors associated with
disease and provide insight into disease aetiology (Jennings et al.,
2005). Moreover, public health agencies may use cluster detection
to guide the implementation of disease interventions.

The majority of cluster detection procedures investigate
whether the current rate of disease differs from the expected num-
ber of cases with respect to the population of the region of interest.
One group of cluster detection methods are the general approach-
es, which include the Besag and Newell (Besag and Newell, 1991)
and maximizing excess event test (Tango, 2000) approaches. The
purpose of these procedures is to detect a potential cluster without
specifying a specific area of interest. Another group of cluster
detection approaches are the focused methods. These procedures
aim to detect regions with high numbers of disease within a spec-
ified area and test the null hypothesis that no spatial clustering
exists (Lawson et al., 1999; Elliott et al., 2001). This paper focus-
es on the circular spatial scan statistic (CSS) (Kulldorff, 1997),
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flexible spatial scan statistic (FSS) (Tango and Takahashi, 2005)
and Bayesian disease mapping (BYM) (Clayton and Kaldor, 1987;
Besag et al., 1991; Clayton and Bernardinelli, 1996) approaches,
which are three of the most popular focused cluster detection
methods.

While an extensive number of cluster detection methods exist,
protecting the privacy and confidentiality of patients is a concern
for epidemiological researchers and public health officials
(AbdelMalik et al., 2008), no matter what cluster detection
approach is utilized. Numerous studies have addressed privacy and
confidentiality concerns in population health and spatial analyses
(Cox, 1996; Armstrong et al., 1999; AbdelMalik et al., 2008;
O’Keefe and Rubin, 2015). Data modification, where counts are
rounded up to get a sufficient number of cases and data aggrega-
tion, where numerous years of data are combined to get adequate
counts are some techniques used to protect the privacy and confi-
dentiality of disease cases (Cox, 1996). An alternative approach is
spatial aggregation, which is the process of combining regions in
order to get a suitable number of disease cases so that the cases are
unidentifiable (Cox, 1996; Armstrong et al., 1999). Conversely, by
combining years of data or regions, public health officials or
researchers are limited in the information they can obtain from
spatial analyses. There is evidence that there is a loss of power
when regions are aggregated. It has also been shown that there is
an increase in the number of regions that are falsely detected as
being part of a cluster when the regions are aggregated (Olson et
al., 2006; Ozonoff et al., 2007).

Previously, three focused cluster detection methods (CSS, FSS
and BYM) were applied to a dataset containing childhood asthma
visits to a hospital in Manitoba, Canada in order to investigate
potential clusters (Torabi, 2012). As an extension of that work, we
studied the impact of spatial aggregation in this paper. In particu-
lar, we applied the previously mentioned approaches (CSS, FFS
and BYM) to the same asthma dataset using three different levels
of spatial aggregation. Specifically, we used three different num-
bers of regions (56, 67 and 220) in the analysis. The results were
compared in terms of potential clusters for the three different num-
bers of regions.

Materials and Methods
This retrospective study was conducted using data provided by

Manitoba Health through the Manitoba Centre for Health Policy. A
yearly dataset of asthma visits to hospital by children (age ≤ 18)
during the 2000-2010 fiscal years in the province of Manitoba,
Canada was used in the analysis. During the study period, the
delivery of health care services in the province was distributed
across eleven Regional Health Authorities (RHAs). These regions
were further divided into 56 smaller regions called Regional
Health Authority Districts (RHADs). This is the geographical unit
utilized in the analysis of 56 regions. In the analysis using 67
regions, the same RHADs are used, except the major urban centre
in the province, the City of Winnipeg, is now divided into 12 sub-
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Table 1. The order of significant regions for the circular spatial scan statistic, flexible spatial scan statistic, and Bayesian disease mapping
methods in the case of 56 and 67 regions.

Region                       Ci                             Ei                                          56 regions                                                        67 regions
                                                                                             CSS                FSS                BYM                        CSS            FSS               BYM

10                                       273                                  121                                  1                            -                             -                                       1                      -                           -
14                                       156                                   80                                   1                            -                             -                                       1                      -                           -
20                                       362                                  229                                  1                            -                             -                                       1                      -                           -
21                                       292                                  138                                  1                            -                             -                                       1                      -                           -
25                                       296                                  170                                  -                            1                             -                                        -                      -                           -
26                                       359                                  124                                  1                           1                            6                                       1                      -                           -
28                                       356                                  105                                  -                            -                             4                                       -                      -                           5
29                                       394                                  213                                  -                            1                             -                                        -                      -                           -
30                                       209                                   65                                   -                            -                             -                                        -                      -                           6
31                                       333                                  231                                  1                            -                             -                                       1                      -                           -
32                                       135                                   48                                   -                            1                             -                                        -                      -                           -
33                                        73                                     23                                   1                           1                             -                                       1                      1                           -
34                                       218                                   52                                   1                           1                            3                                       1                      1                          2
35                                       257                                   96                                   1                           1                             -                                       1                      1                           -
36                                       327                                   91                                   1                           1                            5                                       1                      1                          3
37                                       624                                  167                                  1                           1                            1                                       1                      1                          1
38                                        49                                     16                                   1                           1                             -                                       1                      1                           -
39                                       117                                   33                                   -                            1                             -                                        -                      1                           -
40                                       240                                   80                                   1                           1                             -                                       1                      1                           -
41                                       268                                   70                                   1                           1                            2                                       1                      -                           4
CSS: Circular spatial scan statistic, FSS: Flexible spatial scan statistic, BYM: Bayesian disease mapping; Ci: the observed number of cases in region i; Ei: the expected number of cases in region i.
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regions. Manitoba municipalities, along with the 12 Winnipeg sub-
regions comprise the units used in the analysis of 220 regions. The
data used in this study was aggregated over the study period and
linked to these non-overlapping geographical units, which are
labeled as 1,2,…,56 (or 67, or 220) for simplicity. A population-
based centroid was provided for each unit, although, these cen-
troids are not necessarily geographical centres.

The observed as well as the expected number of asthma visits
and the population size for each region are the necessary data com-
ponents for each of the cluster detection methods used in this
study. Here, the expected numbers of asthma visits to a hospital in
each region were adjusted by year (1-10) and gender (male,
female).

The CSS, FSS and BYM methods were applied to a dataset
containing childhood asthma visits to a hospital in Manitoba,
Canada. The identification of clusters in this study is the first step
in spatial modelling. A technical description of these approaches
can be found in the Appendix. In the CSS and FSS approaches, the
maximum number of regions included in a cluster is 15. However,
this is not a requirement in the BYM procedure. In the BYM
method, we use a gamma distribution as a prior for the inverse of
variance component (to account for variation of spatial random
effects), with shape and scale parameter 0.001. A Normal
Distribution with mean 0 and variance 106 was used as a prior for
the fixed effect. For the model-based cluster identification method
(BYM), the deviance residual (McCullagh and Nelder, 1989) was
checked to ensure the model fits the data well. If the deviance
residual suggests that the model does not fit the data appropriately,
the study results may indicate incorrect clusters.

Results
The comparison of the results for the CSS, FSS and BYM clus-

ter detection methods is provided to identify the potential clusters
of childhood asthma visits to hospital for the period of 10 years
(2000-2010) in the province of Manitoba, Canada, for different
levels of spatial aggregation (56, 67 and 220 regions). The
deviance residual was checked for the BYM approach and no vio-
lation was observed in terms of the pattern of the residuals.

The population range of Manitoba was relatively steady during
the study with 1.15 million people in 2000 and 1.20 million people
in 2010. Over the study period, there was an average population of
336,000 children in Manitoba and there was a total of 14,691 child-
hood asthma visits to hospitals. In the case of 56 regions, the mean
and median numbers of yearly cases per region were 26 and 17
(range 3 to 422), respectively. For 67 regions, the mean and medi-
an numbers of yearly cases per region were 21 and 19 (range 3 to
72), respectively. Finally, in the case of 220 regions, the mean and
median numbers of yearly cases per region were 6 and 3 (ranging
from 0 to 72), respectively.

In general, we found that the northern and central parts of the
province of Manitoba contained possible clusters of childhood
asthma visits to hospital. In Figures 1-3 the areas that were statis-
tically significant (potential clusters) are shaded for each method
(CSS, FSS, BYN) and number of regions (56, 67, and 220), respec-
tively. Tables 1 and 2 present a summary of the results for each
method (CSS, FSS, BYN) and number of regions (56, 67, and
220), respectively. The regions that were most likely to constitute
a cluster are ordered and presented in these Tables as well.

Based on 56 regions, the CSS, FSS and BYM methods, respec-
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Table 2. The order of significant regions for the circular spatial
scan statistic, flexible spatial scan statistic, and Bayesian disease
mapping methods in the case of 220 regions.

Region             Ci                 Ei            CSS           FSS                BYM
199                        460                   163                 1                     1                           1
200                        176                    70                  1                     1                            -
201                         18                      2                   1                     1                            -
202                        244                    98                  1                     1                            -
203                         51                     14                  1                     1                            -
204                         78                     19                  1                     1                            -
205                        229                   109                 1                     1                            -
206                        213                    63                  -                     1                           2
207                        104                    43                  1                     1                            -
208                          9                       3                   1                     1                            -
209                         44                      9                   1                     1                            -
210                        103                    32                  1                     1                            -
211                         54                     29                  1                     1                            -
212                         24                     13                  -                     -                            -
213                         45                     23                  -                     -                            -
214                         39                     13                  -                     -                            -
215                         38                     12                  -                     -                            -
216                         18                      4                   -                     -                            -
217                        104                    43                  -                     -                            -
218                         15                     13                  -                     -                            -
219                         55                     13                  -                     -                            -
220                         98                     23                  1                     -                            -
CSS: Circular spatial scan statistic, FSS: Flexible spatial scan statistic, BYM: Bayesian disease mapping;
Ci: the observed number of cases in region i; Ei: the expected number of cases in region i.
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Figure 1. Potential clusters (shaded regions) identified by the
three methods: (A) circular spatial scan statistic (CSS), (B) flexi-
ble spatial scan statistic (FSS), and (C) Bayesian disease mapping
(BYM) in the case of 56 regions; (D) is the blank map with the
region number.
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tively, found 14, 13 and 6 regions as potential clusters. Regions 26,
34, 36, 37, and 41 were identified by all three methods as potential
clusters. In the case of 67 regions, the CSS approach detected 14
regions, while the FSS method found 8 regions and the BYM tech-
nique identified 6 regions as potential clusters. Here we observed
that most of the regions identified by the FSS method were also
found in the CSS method and the majority of the regions detected
by the BYM approach as potential clusters were also found by the
CSS and FSS procedures. Based on 220 regions, 13 regions were
identified as potential clusters by both the CSS and FSS methods,
while the BYM method only identified 2 regions as potential clus-
ters. It should be noted that region 199 was detected by all three
methods, while region 206 was only identified as a possible cluster
by the FSS and BYM methods.

The maps in Figures 1 and 2 display the results for the analyses
with 56 and 67 regions, respectively. Here, the CSS method iden-
tified the same regions in central Manitoba in both analyses.
Meanwhile, for the FSS and BYM approaches, there were some
differences between the results with 56 and 67 regions. In Figure
1, the FSS method identified most of northern Manitoba as a
potential cluster, whereas, in Figure 2, only some regions in north-
ern Manitoba were found in the cluster. For the BYM procedure,
in Figure 1, cluster regions in the north-central part of the province
were found, with a small region in southern Manitoba identified as
well. In Figure 2, most of the same regions were identified, with
the exception of one region along the western Manitoba border.
There was also an additional such region found in southern
Manitoba. The maps in Figure 3 display the results for the analysis
with 220 regions. Here, one large region in north-central Manitoba
was found as a potential cluster with all three methods. The differ-
ent approaches also identified various smaller regions contained
within this one larger region. The results for 220 regions showed
that a much smaller area was identified as a potential cluster when
a lower level of spatial aggregation was used in the analysis.

Discussion
We employed three different focused cluster detection meth-

ods, namely the CSS, FSS and BYM approaches to detect potential
clusters with high ratios of childhood asthma visits to hospital in
the province of Manitoba, Canada. We also used three different
numbers of regions (56, 67 and 220) to study their impacts in iden-
tifying potential clusters. We observed that using a different num-
ber of regions produced different potential clusters for each of the
methods. In theory, if we would have different numbers of regions,
we would also have different spatial information for the inference
to detect potential clusters. In terms of the different approaches, the
FSS method may have had a better ability to detect clusters in
Manitoba due to the non-circular shape of the regions there. The
BYM must also be deemed flexible, especially if the study interest
goes beyond clustering to include spatial regression modelling.

All three approaches (CSS, FSS and BYM) identified the same
three regions {34, 36, and 37} as potential clusters in the study
when using both 56 and 67 regions in the analysis. Moreover, the
regions {33, 34, 35, 36, 37, 38, and 40} were identified as potential
clusters by the CSS and FSS procedures in the study when using
both 56 and 67 regions in the analysis. The BYM procedure detect-
ed the same clusters {28, 34, 36, 37, 41} when using both 56 and
67 regions in the analysis, with the exception of regions 26 and 30.
When utilizing 220 regions, northern Manitoba was shown to con-
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Figure 2. Potential clusters (shaded regions) identified by the
three methods: (A) circular spatial scan statistic (CSS), (B) flexi-
ble spatial scan statistic (FSS), and (C) Bayesian disease mapping
(BYM) in the case of 67 regions; (D) is the blank map with the
region number.

Figure 3. Potential clusters (shaded regions) identified by the
three methods: (A) circular spatial scan statistic (CSS), (B) flexi-
ble spatial scan statistic (FSS), and (C) Bayesian disease mapping
(BYM) in the case of 220 regions; (D) is the blank map with the
region number.
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tain many small regions contained within a larger region.
Interestingly, the BYM method did not include the majority of
these smaller regions in the cluster, contrary to the CSS and FSS
approaches. There are advantages and disadvantages to the level of
spatial aggregation used in the analysis. There is evidence that
using a high level of spatial aggregation contributes to a loss of
power. Subsequently, it has been suggested that this may lead to
some regions being falsely identified as being part of a cluster
(Olson et al., 2006; Ozonoff et al., 2007). When a high level of
spatial aggregation is used in the analysis, the precision of the clus-
ter is lost. If a large area is identified as a cluster in public health
cluster investigations, it would be difficult for officials to narrow
down the regions where further investigation is needed or where
disease interventions are warranted. Alternately, when a large num-
ber of regions are used in the analysis there may be many regions
with a small number of cases and privacy or confidentiality protec-
tion may become a concern for researchers or public health offi-
cials (Cox, 1996; Armstrong et al., 1999; AbdelMalik et al., 2008;
O’Keefe and Rubin, 2015). One approach to solve this would be to
use multiple years of data in the analysis. However, then the anal-
ysis would not be based on the most recent years of data available,
which could impact the results. For these reasons, it is important to
consider the trade-offs of the level of spatial aggregation used in
the study prior to the start of the analysis.

Jeffery et al. (2009) studied the effect of the strength of the
spatial disturbance in the disease cluster on level of spatial aggre-
gation used in the study. They found that stronger spatial distur-
bances are better detected when a small level of spatial aggregation
is used in the analysis. Conversely, when the spatial disturbance is
weak, the cluster is better detected using higher levels of aggrega-
tion. However, when public health officials are conducting disease
surveillance, the strength of the spatial disturbance or the strength
of the disease cluster is unknown. Therefore, Jeffery et al. (2009)
suggest looking at several levels of precision rather than choosing
just one. It is of interest to consider an entirely different approach
to protecting the privacy and confidentiality of disease cases while
maintaining a low level of spatial aggregation. Geographic mask-
ing is a process, which alters the original location of the disease
case by incorporating a degree of randomization into the geocod-
ing process (Armstrong et al., 1999). While the geographic mask-
ing approach avoids the need for spatial aggregation, it is still
important to consider the masking technique and the level of dis-
placement used to ensure the privacy and confidentiality of
patients is maintained. Although the risk of identification is
reduced with geographic masking, it is possible the masked loca-
tion may be close to the original location. As well, the risk of iden-
tification increases if there are multiple versions of the masked
dataset released (Zimmerman and Pavlik, 2008; Zandbergen,
2014).

Several studies have compared the performance of both
focused and general cluster detection methods (Song and
Kulldorff, 2003; Aamodt et al., 2006; Waller et al., 2006; Tango,
2008; Tango and Takahashi, 2012; Lemke et al., 2013). It has been
shown the performance of most tests depends on the shape of the
cluster, size of the relative risk and location of the cluster. Aamodt
et al. (2006) found the BYM method performs better when the rel-
ative risk is high, compared to the CSS approach, which performs
better for low relative risks. Tango and Takahashi (2012) found the
FSS method had better predictive ability than the CSS approach
when the true clusters were not circular in shape. This may explain

the difference in regions identified as potential clusters for the CSS
and FSS methods in our study. The FSS method had the ability to
identify the non-circular shaped regions in Manitoba as potential
clusters, whereas the CSS method could not.

A limitation to this study is that each of the cluster detection
methods used had user-chosen settings. In the CSS and FSS meth-
ods, the choice of the maximum number of regions to include in a
cluster can affect the results. In the BYM approach, decision rules
used to determine a cluster can vary, which would impact the
results. Different decision rules may be defined where the estimat-
ed relative risk (in terms of the credible/prediction interval) would
be larger or smaller than two (Richardson et al., 2004). The
exceedance probability could also be employed when establishing
the significance of a cluster (Banerjee et al., 2004). Finally, since
the current study is an application of the methods to a real dataset
of asthma visits to hospital, we do not know where the true clusters
lie and thus, we cannot draw conclusions on which method and
which scenario of spatial aggregation performs best in our study.
Future work to resolve this issue would include a simulation study
where the true cluster is known in order to make direct compar-
isons on the performance of each cluster detection method. As
well, a future study would allow us to draw conclusions on which
level of spatial aggregation performs best. Another future study
would include using spatial regression modelling to identify possi-
ble risk factors to explain the asthma clustering.

One strength of our study is the fact that we compared multiple
cluster detection methods. Additionally, we examined multiple
scenarios of different spatial aggregation. We started with 56
regions in the analysis since these are sub-regions of the eleven
RHAs, which were responsible for health care delivery in the
province during the time of this study. We looked at two similar
scenarios in the analysis with 56 and 67 regions. The only differ-
ence between these two situations was the major urban centre in
Manitoba (Winnipeg) was divided into sub-regions in the analysis
with 67 regions. Since the second largest city in Manitoba has a
population of less than 50,000, Winnipeg was the only city divided
into sub-regions. Interestingly, even with the minor difference in
the number of regions in the analyses with 56 and 67 regions, we
still noticed a difference in the cluster results between these two
scenarios. We also looked at a completely different scenario with
220 regions, where there was little spatial aggregation. Finally, this
study includes an application of the methods to a real dataset of
childhood asthma visits to a hospital in the province of Manitoba,
Canada. The analysis with 220 regions yielded the smallest cluster
region, which, in terms of health care interventions, would be the
most practical to deal with. However, further investigation is need-
ed to determine which scenario of spatial aggregation is best.

Conclusions
Overall, it is crucial to identify the appropriate number of

regions to study spatial patterns of disease as it directly affects the
results and consequently the conclusions. For these reasons, it is
important to consider the trade-offs between privacy and the preci-
sion of the results in the decision regarding the level of spatial
aggregation used in the study prior to the start of the analysis.
Further exploration through our future work is needed to determine
which scenario of spatial aggregation is best. 

                                                                                                                                Article

                                                                              [Geospatial Health 2018; 13:696]                                                           [page 285]

gh-2018_2.qxp_Hrev_master  06/11/18  14:25  Pagina 285

Non
-co

mmerc
ial

 us
e o

nly



[page 286]                                                            [Geospatial Health 2018; 13:696]                                          

References
Aamodt G, Samuelsen SO, Skrondal A, 2006. A simulation study

of three methods for detecting disease clusters. Int J Health
Geogr 5:15.

AbdelMalik P, Kamel Boulos MN, Jones R, 2008. The perceived
impact of location privacy: A web-based survey of public
health perspectives and requirements in the UK and Canada.
BMC Public Health 8:156.

Armstrong MP, Rushton G, Zimmerman DL, 1999.
Geographically masking health data to preserve confidentiali-
ty. Stat Med 18:497-525.

Banerjee S, Gelfand AE, Carlin BP, 2004. Hierarchical modeling
and analysis for spatial data. London, UK: Chapman and Hall.

Besag JE, Newell J, 1991. The detection of clusters in rare dis-
eases. J Roy Statist Soc Ser A 154:143-55.

Besag JE, York JC, Mollìe A, 1991. Bayesian image restoration
with two applications in spatial statistics (with discussion).
Ann Inst Statist Math 43:1-59.

Clayton D, Bernardinelli L, 1996. Bayesian methods for mapping
disease risk. In: Elliott P, Cuzick J, English D, Stern R, eds.
Geographical and environmental epidemiology: methods for
small-area studies. Oxford, UK: Oxford University Press.

Clayton DG, Kaldor J, 1987. Empirical Bayes estimates of age-
standardized relative risks for use in disease mapping.
Biometrics 43:671-81.

Cox LH, 1996. Protecting confidentiality in small population
health and environmental statistics. Stat Med 15:1895-905. 

Elliott P, Briggs D, Morris S, de Hoogh C, Hurt C, Jensen TK,
Maitland I, Richardson S, Wakefield J, Jarup L, 2001. Risk of
adverse birth outcomes in populations living near landfill sites.
Br Med J 323:363-8.

Jeffery C, Ozonoff A, White LF, Nuno M, Pagano M, 2009. Power
to detect spatial disturbances under different levels of geo-
graphic aggregation. J Am Med Inform Assn 16:847-54.

Jennings JM, Curriero FC, Celentano D, Ellen JM, 2005.
Geographic identification of high gonorrhea transmission
areas in Baltimore, Maryland. Am J Epid 161:73-80.

Kulldorff M, 1997. A spatial scan statistic. Comm Statist: Theor
Meth 26:1481-96.

Lawson AB, 2006. Statistical methods in spatial epidemiology.
London, UK: John Wiley & Sons, Ltd.

Lawson AB, Biggeri A, Williams FLR, 1999. A review of model-
ing approaches in health risk assessment around putative

sources. In: Lawson AB, Biggeri A, Böhning D, Lesaffre E,
Viel J, Bertollini R, eds. Disease mapping and risk assessment
for public health. New York, NY: Wiley. pp 231-245.

Lemke D, Mattauch V, Heidinger O, Pebesma E, Hense HW, 2013.
Detecting cancer clusters in a regional population with local
cluster tests and Bayesian smoothing methods: a simulation
study. Int J Health Geogr 12:54.

McCullagh P, Nelder JA, 1989. Generalized Linear Models.
London, UK: Chapman and Hall.

O’Keefe CM, Rubin DB, 2015. Individual privacy versus public
good: protecting confidentiality in health research. Stat Med
34:3081-103.

Olson K, Grannis SJ, Mandl KD, 2006. Privacy protection versus
cluster detection in spatial epidemiology. Am J Public Health
96:2002-8.

Ozonoff A, Jeffery C, Manjourides J, White LF, Pagano M, 2007.
Effect of spatial resolution on cluster detection: a simulation
study. Int J Health Geogr 6:52.

Richardson S, Thomson A, Best N, Elliott P, 2004. Interpreting
posterior risk estimates in disease-mapping studies. Environ
Health Persp 112:1016-25.

Song C, Kulldorff M, 2003. Power evaluation of disease clustering
tests. Int J Health Geogr 2:9.

Tango T, 2000. A test for spatial disease clustering adjusted for
multiple testing. Stat Med 19:191-204.

Tango T, 2008. A spatial scan statistic with a restricted likelihood
ratio. Japan J Biometr 29:75-95.

Tango T, Takahashi K, 2005. A flexibly shaped spatial scan statistic
for detecting clusters. Int J Health Geogr 4:1-15.

Tango T, Takahashi K, 2012. A flexible spatial scan statistic with a
restricted likelihood ratio for detecting disease clusters. Stat
Med 31:4207-18.

Torabi M, 2012. Spatial disease cluster detection: An application to
childhood asthma in Manitoba, Canada. J Biometrics Biostat
S7:010.

Waller LA, Hill EG, Rudd RA, 2006. The geography of power:
Statistical performance of tests of clusters and clustering in
heterogeneous populations. Stat Med 25:853-65.

Zandbergen PA, 2014. Ensuring confidentiality of geocoded health
data: assessing geographic masking strategies for individual-
level data. Adv Med 2014:567049.

Zimmerman DL, Pavlik C, 2008. Quantifying the effects of mask
metadata disclosure and multiple releases on the confidentiali-
ty of geographically masked health data. Geogr Anal 40:52-76.

                   Article

gh-2018_2.qxp_Hrev_master  06/11/18  14:25  Pagina 286

Non
-co

mmerc
ial

 us
e o

nly




