
Abstract
The spatial pattern of dengue fever cases is the result of com-

plex interactions between the virus, the host and the vector, which

may be affected by environmental conditions. The largest out-
break of dengue fever in Guangzhou city, China occurred in 2014
with case numbers 2.7 times the number of cumulative cases since
1978 and a significantly non-random spatial distribution.
Selecting Guangzhou City as the study area, we used scan statis-
tics to analyze the spatial heterogeneity of dengue fever and a gen-
eralized additive model to evaluate and examine the effects of
socio-economic and environmental factors on spatial heterogene-
ity at a fine scale. The study found that the spatial distribution of
dengue fever is highly heterogeneous and various factors differ in
relative importance. The junction of the central districts of
Guangzhou is a high-risk area with the urban village and urban-
rural fringe zone formed by urbanization as important regional
factors. The low gross domestic product per capita, the high pop-
ulation density, the high road density were perceived as risk fac-
tors. The Asian subtropical coastal area together with the socioe-
conomic and environmental factors were found to be the key
drivers at the fine scale explaining the high spatial heterogeneity
of dengue fever in Guangzhou City.

Introduction
Dengue fever is a mosquito-borne viral disease that occurs

mainly in tropical and subtropical regions. According to World
Health Organization, its incidence has increased by 30 times over
the past 50 years and is now estimated that 390 million people
worldwide are infected with dengue virus every year (Bhatt et al.,
2013; Low et al., 2018; World Health Organization, 2018). The
main vectors are Aedes aegypti and Ae. albopictus and the wide
distribution of the latter has resulted in the spread of the wide
dengue fever, particularly in Brazil and Argentina in the Americas,
China and Indonesia in Asia as well as France and Portugal in
Europe (La et al., 2010; Wilder-Smith et al., 2014). The rapid
spread of dengue fever is the result of globalization, urbanization
and ineffective vector control (Gubler, 2011; Low et al., 2018) as
well as the lack of vaccine or drug treatment (Bhatt et al., 2013).

Thanks to application of geographical information systems in
the public health area, the significant spatial heterogeneity of dis-
ease can be examined from a unique geographical perspective. At
present, most of such research with respect to dengue use methods
such as spatial autocorrelation (Ren et al., 2015) and scan statis-
tics (Liu et al., 2014). However, the selection of scale in spatial
autocorrelation analysis is subject to the subjective judgment of
the researcher and does not consider the time characteristics of the
aggregation, therefore easily resulting in incomplete detection of
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aggregation. Although scan statistic methodology effectively
solves the bias problem of anthropomorphic scale, most of the
research is based on large areas and large analysis units (nation,
province, prefecture or county), so there is a lack of fine scale
research in local areas. Therefore, this study used the scan statistics
to elucidate the spatial heterogeneity of dengue fever in
Guangzhou at a fine scale, i.e. the township level.

The temporal and spatial heterogeneity of dengue cases is
related to geography, climate, and socioeconomic and environmen-
tal factors. These factors result in different patterns of aggregation
(Wen et al., 2010; Ling et al., 2014) in space and time, and differ-
ent patterns have different correlations with their related factors
(Goto et al., 2013; Lai, 2011). Previous studies had many different
foci. For example, Lowe et al. (2011) studied the effects of mete-
orological conditions on the risk of dengue fever in Brazil from
2001 to 2008, Wu et al. (2009) the influence of temperature and
urbanization on the spatial distribution of dengue in Taiwan,
Teurlai et al. (2015) the effects of socioeconomic and climatic fac-
tors on the heterogeneity of dengue fever on the island of New
Caledonia from 1995 to 2012, while Fan et al. (2014) and other
scholars considered the impact of meteorological factors on the
spread of dengue fever in Guangdong Province from 2005 to 2011.
These studies have explored the effects of various factors on
dengue fever in different parts of the world, but the relative impor-
tance of individual factors may vary from country to region. Due
to the low level of climate diversity in Guangzhou, socio-environ-
mental factors may contribute to a large extent to the spatial het-
erogeneity of dengue fever, so we were only in studying the influ-
ence of socio-economic and environmental factors on spatial het-
erogeneity on a fine scale in Guangzhou, China.

Since 1997, there have been cases of dengue fever in China
(Zhang et al., 2014; Fan et al., 2014). Between 2006 and 2014,
these cases were mainly concentrated in Guangzhou, still an
important region for dengue fever epidemics in China, which is
also a key area for prevention and control. In 2014, the largest out-
break of dengue fever in southern China, a large proportion of
cases (83%) occurred in Guangdong Province. The objectives of
this study were i) to analyze the spatial heterogeneity of dengue
fever cases in Guangzhou based on the smallest administrative unit
- the township (the hierarchal levels of Chinese administrative
regions are province, prefecture, county and township with the
county equivalent to district that exists both in rural and urban
areas); and ii) to identify the socioeconomic and environmental
factors that influence this spatial heterogeneity and examine and
evaluate the mechanisms underlying each factor.

Materials and Methods

Study area and background
Guangzhou City is located at coordinates 22˚26’~ 23˚56’N,

112˚57’ ~ 114˚03’E. The climate is humid and subtropical, with
high temperatures and humidity in summer with comparatively
mild and dry winters. The annual mean temperature is 22°C, and
the annual accumulated precipitation is 1,800 mm. The terrain is
characterized by high elevation in the Northeast and low elevation
in the Southwest. The North and Northeast are mountainous, with
the maximum and average altitude of 1,210 m and 11 m, respec-
tively, while the South contains the Pearl River Delta alluvial plain.
Meteorological conditions are suitable for the survival and repro-

duction of the dengue virus, and the hot and humid climate is ben-
eficial to the breeding and growth of mosquito vectors (Sang et al.,
2015). In 2014, Guangzhou City experienced its most serious
dengue epidemic, with 37,380 cases (four deaths), the greatest
number of cases in any mainland Chinese city.

Guangzhou is a large city that has been at the forefront of
China’s reform and opening up, and it is the political, economic
and cultural centre of Guangdong Province. Along with rapid
urbanization, the rapid growth of the urban population, the expan-
sion of urban villages and urban-rural fringe zones, high building
density, widespread illegal construction, its complex population
structure and hot and humid climate provide conditions for the out-
break of dengue fever (Zhu et al., 2012). China’s urban villages are
developed from rural settlements and become transitional neigh-
bourhoods under rapid urbanization. The urban village is called
chengzhongcun in Chinese, literally village encircled by the city,
which was developed as a concept of a small urban settlement. It
is of neighbourhood size combining residential living with work,
retail and leisure units, aiming to be self-sustaining, mixing differ-
ent social and economic groups, having efficient transport and is
well designed and managed (Liu et al,. 2010). Urban-rural fringe
zones can be seen as a transitional neighbourhood with a mixture
of rural and urban society and dual land ownerships. It is a product
of rapid urbanization and economic growths, and the dual urban
and rural systems in terms of land ownership, household registra-
tion and planning management systems. According to the literature
(Lin et al., 2012), there is a total of 138 urban villages in the
metropolitan area with a total area of 80.6 km2, mainly located in
the middle of the city of 63 townships. Urban-rural fringe areas are
located at the junction of urban and rural areas with 35 townships
(Lin et al., 2012). The incidence of dengue fever in Guangzhou
continues to be is high and the prospects for prevention and control
are not the best. These prospects are largely affected by geography,
the natural ecological environment, climate characteristics, and
social changes (increasing migrant, large population flow, etc.)
Therefore, it is important to study the effect of social economy and
environmental factors on the spatial heterogeneity of dengue fever
in Guangzhou (Figure 1).

Data collection

Administrative division data
The data for the administrative divisions of the study area were

retrieved from the Resources and Environment Science Data
Center of the Chinese Academy of Science, including four levels
of province, prefecture, county and township, which have previ-
ously been widely used in scientific research (Sang et al., 2016;
Xiao et al., 2016).

Dengue fever data
Dengue fever cases were obtained from the Chinese Center for

Disease Control and Prevention (China CDC) in 2014. Each case
record consists of a patient’s residential addresses and occupation,
as well as the time of onset and diagnostic information. The inclu-
sion criteria in our study included laboratory-confirmed or clinical
diagnosis (based on clinical manifestations and epidemiologic
exposure history), date of dengue fever onset in 2014 and perma-
nent residential addresses within Guangzhou City. Spatial informa-
tion technology was used to locate and calibrate each permanent
address to ensure accuracy in the case location. 
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Socioeconomic and environmental data
i) Urbanization. The impact of urbanization on the incidence of

dengue fever can be described by two regional factors: urban vil-
lage and urban-rural fringe zone, and one population factor, pop-
ulation density (Wu et al., 2009; Arunachalam et al., 2010). The
above data were retrieved from the Resources and Environment
Science Data Center of Chinese Academy of Science.

ii) Economic situation. The gross domestic product (GDP) of
the counties in Guangzhou in 2015 was retrieved from the National
Bureau of Statistics of China. We used a land-use model to analyze
the gross domestic product of each township and further calculated
the GDP per capita.

iii) Natural environment. The normalized difference vegetation
index (NDVI) is an important indicator for assessing whether the
target area contains green vegetation. The NDVI is in the range of
-1 to + 1, where a high negative value indicates that the area has
dense green vegetation. In the study, high-resolution, remote-sens-
ing satellite images from 2014 were used. The NDVI values were
calculated by band calculation, and the regional NDVI was
obtained by regional statistical analysis.

iv) Accessibility. According to the literature, road density is an
important index indirectly reflecting regional accessibility

(Mahabir et al., 2012). Roads are usually divided into five levels
according to their administrative and utility classification, i.e.
highway and road classes 1-4 (where class 1 is the best). The
expressway runs mainly in the periphery of the city, so this paper
used Class 1-4 roads from 2015 to calculate the road density, and
regional statistical analysis was used to obtain the average road
density for each township. Road data were obtained from the
Resources and Environment Science Data Center of Chinese
Academy of Science.

Methods

Space-time scan statistical analysis
Space-time scan statistics have been applied previously in the

study of several mosquito-borne diseases such as malaria
(Coleman et al., 2009), Japanese encephalitis (Impoinvil et al.,
2011) and Barmah Forest virus (Naish and Tong, 2014). To identi-
fy factors affecting the distribution of outbreaks, space-time scan
statistics are more accurate compared to purely spatial scans, as
they assess two dimensions simultaneously, avoiding multiple test
bias. We used the space-time scan statistics to test for the presence
of statistically significant spatial and temporal clusters of dengue,
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Figure 1. Study area.
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with the township as the scale of aggregation employing a cylin-
drical window with a circle indicating a geographic base with
height representing the period of the potential clusters. The cylin-
drical window was then moved in space and time, to examine each
potential geographical location and size, as well as each likely
period. In addition, risk population is a population threshold limit-
ing the size of the window. Each circle was noted as a potential
cluster. Finally, for each potential cluster, a likelihood-ratio test
statistic was used to determine whether the number of observed
dengue cases within the potential cluster was significantly higher
than expected. Space-time scan statistical analysis was performed
using SaTScan v9.4.4 (Kulldorff, 2009).

Generalized additive model analysis
The generalized additive model (GAM) is a combination of the

generalized linear model (GLM) and the additive model as it adds
nonparametric smoothing terms based on GLM. The conditions for
using GAM are as follows: i) each function can be summed and
smoothed at the same time and; ii) the relationship between the
independent variables and the dependent variables in the model is
nonlinear with the data obeying the Poisson distribution, binomial
distribution, gamma distribution or normal distribution. The gener-
al model is as follows (Eq. 1):

                                                 

Eq. 1

where g(μ) is a connection function and fj () a nonparametric
smoothing function. The degree of freedom is an important index
that influences the goodness of fit. The Akaike Information
Criterion (AIC) criterion and the Generalized Cross Validation cri-
terion are usually used as the criteria for the selection of the good-
ness of fit. To evaluate the possible non-linearity of the socioeco-
nomic and environmental factors regarding the spatial heterogene-
ity of dengue, we used a spline-smoothing technique to fit and plot
the predicted values based on the observed covariable values
(Honorio et al., 2009). We specified the expected number of cases
as follows (Eq. 2):

log(case)=β0+β1 (urban_village)+β2 (urban_rural_fringe_zone)+
s(pop_density)+s(GDP_per_capita)+
s(NDVI)+s(road_density)                                                       Eq. 2
                                                                                                         
where s() is the spline-smoothed, non-parametric function. The
urban village and urban-rural fringe zone variables were binary,
which fit with the parameter function. Population density, GDP
per capita, NDVI and road density were nonlinear and fit with the
spline-smoothed technique using specific degrees of freedom (df)
for each smoothing. All statistical analyses were performed using
the statistical software R 3.0.3 (Team, 2013) with the mgcv library
(Wood, 2008).

Results

Spatial distribution of dengue fever incidence
Figure 2 shows the geographic distribution of targeted dengue

fever incidence at the township level in Guangzhou. The colour
change from green to red indicates increasing dengue fever inci-
dence. Overall, the incidence of dengue fever in Guangzhou had
high spatial heterogeneity. The high incidence was mainly dis-
tributed in particular townships in the middle of the city. There are
164 townships in Guangzhou, with the incidence of more than 1%
(100/10,000) in 24 townships. These townships include seven
townships in the south-western Baiyun District, six townships each
in the north-eastern Liwan District and north-western Haizhu
District, two townships each in the western Tianhe District and
Yuexiu District, and only one township in the north-eastern Panyu
District. The total area is 138.83 km2, accounting for 1.93% of the
city area.

Spatial heterogeneity
We used comparative sensitivity analysis and the Knox test to

determine the maximum spatial window and the minimum time
window of the scanning analysis to ensure the practical signifi-
cance of the estimation of the spatial heterogeneity. Supported by
previous studies and multiple data tests in study area, we identified
minimum temporal windows, minimum spatial windows and max-
imum spatial windows for 14 days, 10% risk population, and 40%
risk population, respectively. Thus, that means that one analysis
window or one cluster area contains more than 14-day cases, more
than 10% residents or less than 40% residents. To more accurately
define spatial heterogeneity, two situations, 14 days & 10% risk
population and 14 days & 40% risk population, were applied to
space-time analysis. The intersection of the two analysis results
was used as the final result, which was helpful to eliminate the
error introduced by the circular aggregation window in the space-
time analysis. 

The results of the analysis are shown in Table 1 and Figure 3.
Figure 3A shows the results of the first case: seven clusters, with a
range of 85 townships. According to the log-likelihood ratio, it can
be divided into a primary cluster and secondary clusters (Table 1).
The results showed that the primary cluster is the most likely sta-
tistically significant cluster (RR=26.46), including 38 townships
within the period 08/31/2014 to 11/01/2014. Another statistically
significant secondary cluster with six circles was also identified
within the same time frame (Figure 3B). Likewise, the primary
cluster is the most likely statistically significant cluster
(RR=42.32), including 102 townships within the period
08/31/2014 to 10/29/2014.

Although the sizes of the maximum spatial windows are differ-
ent, the results of the space-time analyses were very similar
(Figure 3C). The agreement of the two results in terms of time and
the region were the most statistically significant clusters. The peri-
od of the cluster is from 08/31/2014 to 10/01/2014, which is con-
sistent with the high-risk period from previous years (September to
October). The overlapping areas included 67 townships mainly
located at the junction of Baiyun District, Yuexiu District and
Liwan District; the junction of Baiyun District, Tianhe District,
Huangpu District the junction of Yuexiu District, Haizhu District
and Tianhe District; and the junction of Haizhu District and Panyu
District. The results showed that the high-risk period in
Guangzhou was from September to October. There is a high inci-
dence rate in the central area of the city, and the low incidence in
other regions is a clear example of spatial heterogeneity. Human
activities resulted in a lower incidence of disease inside each dis-
trict than in the border areas. For a detailed analysis, see the
Discussion section.
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Table 1. Space-time clusters of dengue identified using space-time scan statistics.

Period (10%)              C (n)                           T                        R (km)                  O (n)                 E (n)                        RR                      LLR

Primary cluster                    1(38)                          08/31-11/01                           8.48                             11006                          580                                26.46                          23599
Secondary cluster               1(16)                          09/09-10/17                           4.68                              4909                           333                                16.83                           8931
                                                2(13)                          09/06-10/20                          10.25                             2850                           330                                 9.26                            3709
                                                 3(6)                           09/18-10/26                          11.53                             2640                           314                                 8.96                            3367
                                                4(10)                          09/18-10/17                           9.59                              2352                           288                                 8.65                            2934
                                                 5(1)                           09/18-10/14                           0.00                               127                             19                                  6.71                             133
                                                 6(1)                           09/24-10/20                           0.00                                68                              12                                  5.74                              62
Period (40%)              C (n)                           T                        R (km)                  O (n)                 E (n)                        RR                      LLR

Primary cluster                   1(102)                         08/31-10/29                          16.81                            29531                         3051                               42.32                          55445
C, Cluster; (n), number of townships; T, Time frame; R, Radius; O, Observed cases; E, Expected cases; RR, Relative risk; LLR, Log-likelihood ratio.

Figure 2. The spatial distribution of dengue fever incidence at the township level.Non
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The effects of socio-economic and environmental fac-
tors on spatial heterogeneity

Analyses were performed with GAM to fit parametric and non-
parametric functions to the relationships between the response and
predictors. According to the criteria for assessing the goodness of
fit for the dengue cases (Pearson χ2/df close to 1), the distribution
of dengue cases was over-dispersed and fit the negative binomial
function (Pearson χ2/df = 0.71) best. Thus, the log-link function
for a negative binomial distribution response was used.

The spatial distribution of the six exploratory variables is
mapped in Figure 4. Figure 4A shows the distribution of urban vil-
lages; Figure 4B shows the distribution of urban-rural fringes
zones; Figure 4C shows the population density; Figure 4D shows
the distribution of GDP per capita; Figure 4E shows the NDVI dis-
tribution; and Figure 4F shows the road density. The method for
negative binomial response data was used to decide which terms to
include in the model. The AIC/un-biased risk estimator scores for
the models were compared with and without the term. Finally, all
six factors were entered into the model, and we specified an offset
for the predictor. The diagnostic information of the GAM showed
that except for population density, the variables were found to be
significant at the 0.01 level. This specification of the model
explained 70.7% of the variance in the dengue fever incidence.

The partial contributions of six covariates to the conditional
probability of the risk of disease are shown in Figure 5. Figure 5A
and B show that the relative risk of living in urban-rural fringe
areas (estimate value=0.672) was slightly larger than that of living
in urban villages (estimate value=0.663). Figure 5A shows that the
urban village area had a positive impact on the risk of disease
transmission. Figure 5B shows that the risk of disease in the urban-
rural fringe areas will increase. Figure 5C shows that there was no
significant linear relationship between population density and risk.
We still consider that population density a crucial factor in dengue
research because those townships of higher population density

have more patients suffering from the disease. Figure 5D shows a
significant downward trend of the risk of disease when per capita
GDP increases to 100,000 CNY (14,500 USD). The small fluctua-
tions around the zero response of risk to GDP per capita between
100,000 CNY (14,500 USD) and 600,000 CNY (87,000 USD)
must be deemed a modest, stable response. The risk showed a
decreasing and then increasing trend when the GDP per capita is
between 600,000 CNY (87,000 USD) and 800,000 CNY (126,000
USD), followed by a rapid decline. Thus, the higher the GDP per
capita, the lower the risk of disease. Figure 5E depicts a negative
relationship between the risk of disease and NDVI. When NDVI
exceeded 0.25, the risk of disease decreased rapidly with increas-
ing NDVI. The result indicates that higher NDVI can decrease the
risk of disease. The risk of disease decreased gradually with
increasing road density (Figure 5F) showing a curve trough at
approximately 50, after which the response increased. Therefore,
this result indicates that high area accessibility can increase the
risk of disease.

Discussion

The effects of climate factors on the temporal hetero-
geneity of dengue fever

The seasonal variation in dengue fever is a clear example of
temporal heterogeneity. The incidence of dengue fever in
Guangzhou is concentrated in summer and autumn, and the high-
risk period is from September to October. Dengue fever is a cli-
mate-sensitive disease; temperature plays an important role in the
growth and breeding of mosquitoes and the transmission of dengue
virus. Previous studies have found that the development time of
Ae. albopictus follows an inverted V-shape as the temperature
increases. The optimum growth temperature is 29.74°C; above

                   Article

Figure 3. Space-time clusters of dengue identified using space-time scan statistics. (A) 14 days and 10% risk population; (B) 14 days
and 40% risk population; (C) The area of agreement in analysis results.
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Figure 4. Spatial distribution of socioe-
conomic and environmental data at the
township level. (A) Urban village; (B)
Urban-rural fringe zone; (C)
Population density; (D) Gross
Domestic Product per capita;
(E)Normalized Difference Vegetation
Index; (F) Road density.

Non
-co

mmerc
ial

 us
e o

nly



[page 294]                                                            [Geospatial Health 2018; 13:682]                                          

30°C, the development of the mosquito begins to be inhibited; and
above 35°C, only approximately 2.5% of the eggs develop into
adults (Delatte et al., 2009). The transmission of dengue virus
requires the development of the virus in the mosquito, which is
called the extrinsic incubation period. Previous studies have pre-
sented that, as temperatures increase, the extrinsic incubation peri-
od is shortened between 18°C and 36°C and reaches a minimum at

31°C before increasing again. At temperatures lower than 18°C,
dengue virus cannot develop in mosquitoes (Xiao et al., 2016).
These characteristics may explain the high incidence of dengue
fever in Guangzhou in September and October. The results show
that mosquito control should begin in May and June by promoting
public awareness and cleaning up mosquito breeding grounds to
keep mosquito density in the dengue epidemic period at a low

                   Article

Figure 5. Partial contributions of six exploratory variables. (A) Urban village; (B) Urban-rural fringe zone; (C) Population density; (D)
Gross Domestic Product (GDP) per capita; (E) Normalized Difference Vegetation Index (NDVI); (F) Road density.
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level. Climate factors, including temperature and precipitation, are
often considered the major contributors to outbreaks of dengue
(Wu et al., 2009; Wang et al., 2014), but they were not added to the
GAM model because, according to the observation data of
Guangzhou Meteorological Observatory, the spatial variation in
temperature and precipitation was very small in 2014. Climate fac-
tors mainly affect the time heterogeneity of dengue fever, and rapid
spread of dengue fever in a local area is more closely associated
with socioeconomic and environmental factors than with climate
(Lu et al., 2009; Kienberger et al., 2013; Teurlai et al., 2015).
Additionally, the use of socioeconomic and environmental factors
alone might increase the accuracy of the model.

The choice of the size of the spatial window and tempo-
ral window in space-time scan statistical analysis

Space-time analysis can not only identify the aggregation area
by spatial scanning but also automatically identify and filter the
area in combination with temporal trends, which can improve the
accuracy of detection. The choice of the size of the spatial window
and temporal window determines the stability of the statistical
analysis results, the accuracy of the cluster areas, and the operabil-
ity of the disease monitoring work. It has been suggested that the
maximum scan window for scanning statistical analysis in some
areas seems unrealistic at the default setting of 50% of the risk
population (Chen et al., 2008). Furthermore, landscape ecology is
believed to strongly influence dengue transmission, and if a large
population threshold (> 40%) were used, numerous functional eco-
logical zones controlled by landscape ecology factors would be
included in the area within that threshold. Thus, the most signifi-
cant risk population thresholds were 10% and 40% in this study,
based on the range tested by comparative sensitivity analysis
(Naish and Tong, 2014).

In this study, the Knox test was used to detect the minimum
cluster time of dengue fever. This test is one of the most commonly
used statistical methods in the study of spatial interactions of infec-
tious diseases, and it is usually used to detect the spatial and tem-
poral distance distribution between cases of infectious diseases and
diagnose the temporal and spatial spread of the disease with
unknown causes and mechanisms (Knox and Bartlett, 1964;
Kulldorff and Hjalmars, 1999). Aldstadt et al. (2012) used the
Knox test to analyze 262 cases of dengue fever in Thailand from
1990 to 2010 and found that 15-17 days was the most likely con-
tinuous interval between cases. The latest research by Tao et al.
(2016) analyzing 679 cases of dengue fever in the 20th-30th weeks
of 2014 in Guangzhou using the Knox test, found that cases had
significant spatial interactions at an interval of 2 weeks. Therefore,
after a series of value tests, 14 days (2 weeks) was regarded as the
minimum cluster time in space-time scan statistical analysis.

In this study, clusters generated using a larger size scan win-
dow (40% risk population) produce larger clusters that could help
policy-makers make decisions at larger geographic levels, for
example, at the county level. However, these large spatial clusters
cover a larger and more heterogeneous population. Conversely,
clusters generated using smaller circular windows (10% risk pop-
ulation) produce smaller clusters but contain a more homogeneous
population, which could help policy makers plan more focused
community interventions.

The contribution of influencing factors
The identification of socioeconomic and environmental factors

and the partial trend shown in the model in this paper provide

meaningful clues for epidemic assessment and local interventions
to counteract risk factors. Compared with people in other regions
in Guangzhou, people living in urban villages and urban-rural
fringe areas are at higher risk of dengue infection. With the devel-
opment of the city, the application of effective vector monitoring
and control measures is important for reducing the risk of dengue
fever. However, due to the rapid progress of urbanization and the
lag in the development of management, cities, especially in the
urban villages and urban-rural fringe areas, are facing an increas-
ingly prominent sanitation problem; thus, the risk of infectious dis-
ease in these regions is increasing. Compared to previous studies
(Qi et al., 2015), the same factors show different trends related to
the risk of dengue fever in different regions. In Guangzhou, the
vegetation index is negatively correlated with the risk of disease.
As the vegetation index increases, the risk of disease diminishes,
likely because in the park area, population density is low, vegeta-
tion coverage high and health management departments have taken
measures to kill A. albopictus in the activity area. The GDP per
capita shows a clear relationship to risk. The risk of dengue fever
in low-income and high-income areas shows slight fluctuations,
indicating that economic development is beneficial for reducing
risk in both low-income and high-income areas. In urban areas
with higher road density, the risk of disease increases as road den-
sity increases. We speculate that high accessibility maybe acceler-
ate population flow and increase the rate of virus transmission. In
contrast, in rural areas with low road density, the increase in road
density is beneficial to improve the public environment somewhat
and helps to reduce the risk of disease to a certain degree.

Human intervention can weaken or eliminate the impact of
population density on the risk of dengue fever. GAM model anal-
ysis found that the effect of population density factors on the inci-
dence of dengue fever is linear and non-significant. This factor
should have been removed from this study, but population density
is often considered to be one of the most important factors affect-
ing dengue fever, and high-population-density regions usually
have long epidemic times, high transmission speed and high mor-
bidity. Therefore, it is essential to analyze why this factor was not
significant. The reasons are as follows: there was a large-scale out-
break of dengue fever in Guangzhou in 2013, so the Patriotic
Health Campaign strengthened the prevention and control mea-
sures taken in densely populated townships in 2014; these mea-
sures slowed the spread of the and reduced the incidence in the
central region to below that in the border area in the counties with
high population density. This finding was supported in our spatial
heterogeneity analysis.

No significant relationship between population density and
spatial heterogeneity of dengue fever was found in this study, but
in areas of high population density, especially urban villages and
urban-rural fringe areas, clean-up campaigns should be carried out
ahead of time and intensified in the event of an epidemic to prevent
outbreaks of dengue fever. We have taken many measures to verify
the variable of population density by using smaller analysis units
(1km×1km grid) and adding other types of environmental variable
and eventually prove that population density is a significant factor,
and it’s positively correlated with dengue risk. Low GDP per capi-
ta, low NDVI and high road density are the linear factors affecting
the spatial heterogeneity of dengue fever, so environmental
hygiene and A. albopictus eradication are still the focus of preven-
tion and control work in urban areas. Devoting more resources to
particularly vulnerable areas of the city will not only help to
strengthen people’s awareness of defense in their daily lives but
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also promote the implementation of timely response strategies in
the early stages of dengue fever, thereby minimizing its epidemic
potential.

This study is the first to identify the relationship between
socioeconomic and environmental factors and the spatial hetero-
geneity of dengue fever in the important epidemic areas in main-
land China. Spatial information technology was used to analyze
the influence of socioeconomic and environmental factors on the
spatial heterogeneity of dengue fever at a fine scale, which is the
innovation of this research method. The extension of this study to
other world cities that have experienced serious epidemics will
help to raise awareness of the impact of environmental conditions
on spatial heterogeneity at a fine level, and the identification of
high-risk areas and influence mechanisms will also contribute to
designing effective control measures for health authorities.

Regarding the link between socio-economic variables and
dengue incidence rates during epidemics, a limitation of this study
is the absence of historical time series of socio-economic and envi-
ronmental variables. Some factors that could influence the spatial
distribution of dengue cases during epidemics have not been taken
into account in this study: the spatial variability in population
immunity, or dengue vector control measures. The analysis of the
spatial pattern of infectious diseases, in relation with socio-eco-
nomic or environmental factors raises a number of methodological
issues, such as the spatial scale of aggregation of the data. These
issues need further attention in the future to increase the quality of
spatial epidemiological and environmental studies.

Conclusions
Dengue fever in Guangzhou City shows obvious spatial het-

erogeneity. The cases were mainly concentrated in the junction
townships of districts in the city centre. The space-time scan statis-
tical method increases the accuracy of the estimation of the spatial
and temporal heterogeneity of dengue fever.

Six factors (urban village, urban-rural fringe zone, population
density, GDP per capita, NDVI and road density) are the core con-
tributors to the spatial heterogeneity of dengue fever in
Guangzhou, and these areas should be the next focus in the preven-
tion and control of dengue fever.

The dengue fever epidemics in Guangzhou city show the same
trend seen in Guangdong Province. Guangzhou is the highest inci-
dence city in this province, and Guangdong province is the highest
incidence region in mainland China, with dengue cases concentrat-
ed from July to November.
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