
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death

globally and the number one cause of death globally. Over 75% of
CVD deaths take place in low- and middle-income countries.
Hence, comprehensive information about the spatio-temporal dis-
tribution of mortality due to cardio vascular disease is of interest.
We fitted different spatio-temporal models within Bayesian hier-
archical framework allowing different space-time interaction for
mortality mapping with integrated nested Laplace approximations
to analyze mortality data extracted from the health and demo-
graphic surveillance system in Kersa District in Hararege, Oromia
Region, Ethiopia. The result indicates that non-parametric time
trends models perform better than linear models. Among proposed
models, one with non-parametric trend, type II interaction and
second order random walk but without unstructured time effect
was found to perform best according to our experience and. simu-
lation study. An application based on real data revealed that, mor-
tality due to CVD increased during the study period, while admin-
istrative regions in northern and south-eastern part of the study
area showed a significantly elevated risk. The study highlighted
distinct spatiotemporal clusters of mortality due to CVD within
the study area. The study is a preliminary assessment step in pri-
oritizing areas for further and more comprehensive research rais-
ing questions to be addressed by detailed investigation.
Underlying contributing factors need to be identified and accu-
rately quantified. 

Introduction
According to the World Health Organization (WHO), cardio-

vascular diseases (CVDs) are the leading cause of death globally,
currently accounting for 17.9 million deaths per year and project-
ed to increase to more than 23.6 million by 2030. More than three
quarters of CVD deaths take place in low- and middle-income
countries (Mathers and Loncar, 2006; Laslett et al., 2012; WHO,
2018). It would be a catastrophe for developing countries to have
this additional burden, as they are already faced with a multitude
of other challenges, such as poor socio-economic indices, high
prevalence of infectious diseases and a trend towards high-caloric
nutrition and sedentary lifestyles (Popkin et al., 2012). Even
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worse, a greater proportion of younger people are also affected -
more than 80 per cent of deaths resulting from CVD in developing
countries occur between the ages of 30 and 70 years (Bloom et al.,
2012; Leeder et al., 2012; WHO, 2018).

Reliable evidence on CVD mortality, its causes and trends
should aid in developing appropriate interventions are such data
are highly needed when evaluating the global and regional health
impact of the CVDs. Monitoring trends and distribution of mortal-
ity due to CVD have substantial value towards progress with
respect to health. In the absence of routine mortality statistics, data
from the health and demographic surveillance system (HDSS) pro-
vide a valuable source for estimating trends and distribution of
mortality on a longitudinal basis (Hammer et al., 2006; Assefa et
al., 2016; Dedefo et al., 2016a; Dedefo et al., 2016b).

It is necessary to limit high risk areas where certain adverse
health effects are most likely to occur as intervention at a wider
population level is too expensive to implement. There is thus a
need to identify more affected areas where adverse health out-
comes seem to aggregate and to develop specific health strategies
targeting these regions (Benzler and Sauerborn, 1998; Sankoh et
al., 2001). The key benefit of such mapping is that it allows public
health officials to identify clusters of areal units that exhibit elevat-
ed disease risks, which in turn enables interventions to be appro-
priately targeted at the communities with greatest needs. Such
interventions can for example include a vaccination program or a
public awareness campaign about potential risk factors. Thus, in
addition to the obvious public health benefit, the identification of
high-risk clusters through the use of disease maps can help to
reduce health-care costs (Anderson et al., 2014). In addition, clus-
ter detection is an important part of spatial epidemiology because
it may help suggesting potential factors associated with disease
and therefore guide investigations of the nature of the disease and
its aetiology (Torabi and Rosychuk, 2011).

Spatio-temporal disease mapping models are useful in describ-
ing the temporal evolution of geographic patterns of mortality and
disease rates. The results from such analyses would not only help
decision-makers and investigators to formulate hypotheses regard-
ing the aetiology of a disease, to look for risk factors and to allo-
cate resources efficiently, but also to design intervention pro-
grammes in advance. Among the benefits of using space-time
models in disease mapping is to borrow strength from spatial and
temporal neighbours to reduce the high variability, which is char-
acteristic of classical disease/mortality risk estimators, such as the
standardized mortality ratio (SMR); particularly, while dealing
with rare diseases or areas with small populations (Ugarte et al.,
2014).

Use of spatiotemporal analysis has increasingly been applied
in epidemiological research in recent years (Kulldorff and
Nagarwalla, 1995; Gangnon and Clayton, 1998; Elliot et al., 2000;
Gangnon and Clayton, 2000; Gómez-Rubio et al., 2005; Gómez-
Rubio et al., 2006; Gómez-Rubio et al., 2009; Bilancia and
Demarinis, 2014). Developments in data accessibility and
advanced analytic approaches have created new opportunities to
observe variations in disease occurrence rates at the small-area
level (Elliot et al., 2000). Many methods have been proposed for
the detection of disease clusters, most of them based on moving
windows, such as Kulldorff’s Spatial Scan Statistics
(https://www.satscan.org/). Among the most important exploratory
methods for cluster detection are those that identify significant
clusters in space and/or time (Hjalmars et al., 1994; Boyle et al.,
1996; Hjalmars et al., 1996; Kulldorff, 1998, Hjalmars et al., 1999;

Torabi and Rosychuk, 2011; Gómez-Rubio et al., 2006).
In this paper we fitted different spatiotemporal models within

the Bayesian hierarchical framework allowing different and flexi-
ble space time interactions for mortality mapping based on stan-
dard spatial mapping models using integrated nested Laplace
approximations (INLA) (http://www.r-inla.org/). The approach
proposed is the use of a Bayesian inference tool in latent Gaussian
models (Rue and Held, 2005). Our objectives were to detect signif-
icant risk clusters of mortality within a population-based surveil-
lance site in eastern Ethiopia applying models to analyse mortality
data extracted from Kersa District HDSS for the period of 2007-
2016.

Spatio-temporal disease mapping
Disease mapping can be used to assess the spatial pattern of a

disease, to estimate a measure of spatially observed health out-
comes and to identify clusters (Pascutto et al., 2000; Rezaeian et
al., 2007; Everitt and Dunn, 2011). The data are obviously discrete
in nature, as they are counts of diseases or deaths in specific area.
Public health data are often aggregated over small administrative
areas due to issues of confidentiality. Still, household- and individ-
ual-level data are often available for modelling, both at the individ-
ual level and aggregated, by generalized linear mixed models
(GLMM) (McCullagh and Nelder, 1989) to identify mortality and
disease clustering. A wide range of spatio-temporal models for dis-
ease mapping have been proposed in the literature, most of them
based on conditional autoregressive (CAR) models extending the
well-known BYM model (Besag et al., 1991). The key to applying
spatio-temporal models in disease-mapping studies is to borrow
strength from spatial and temporal neighbours to reduce the high
variability inherent in classical risk estimators, such as the SMR;
in particular, when studying rare diseases or areas with low popu-
lations. Models used in spatio-temporal disease mapping are usu-
ally GLMMs dealing with counts assuming a Poisson distribution.
These models are formulated within a hierarchical Bayesian
framework. Let the region in the study area be divided into non-
overlapping n small administrative areal units (kebeles) labelled as
i = 1,…, n. Data are available for each area i and time t,  t = 1,…,
T. A response yit is observed in each areal unit and time. Here, it is
important to account for differences in population demographics
across the study region, since some sub-regions are likely to con-
tain a larger at-risk population. For example, areas which have a
higher percentage of elderly people are likely to have higher rates
of heart disease than those with a younger population, but this does
not necessarily mean that there is any underlying difference in dis-
ease risk rate between the regions. We can account for these demo-
graphic differences by constructing a set of expected disease
counts eit, where eit is the expected number of disease cases in area
i at time t.

Conditional on the relative risk (ρ), the observed number of
counts yit is assumed to be Poisson distributed with mean μit = eitρit.
(Eq. 1):

yit|ρit∼Poisson(eit ρit)

from μit=eit ρit, log μit =logeit + log ρit Eq. 1

Most of the time the interest is in modelling the relative risk
usually using log link function and depending on that different
models can be specified, e.g. Eq. 2:
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log ρit = a0 + υi + vi + Temporalt                                                                               Eq. 2
where α0 is the intercept quantifying the logarithm of average risk
for all areas, υi spatially structured residual or random effects, and
vi a spatially unstructured random effect or residual. A temporal
component Temporalt with t = 1,…, T can be specified with some
parametric or non-parametric structure.

Parametric time trend models
We consider here a parametric Bayesian model with a linear

time trend based on Bernardinelli et al. (1995). The model is an
extension of the BYM model (Besag et al., 1991), which includes
two spatial effects: the unstructured random effect with a Gaussian
exchangeable prior; and the spatially structured random effect of
an intrinsic conditional autoregressive prior (iCAR) with an addi-
tional linear time trend and a differential time trend for each small
area, i.e. Eq. 3:

log ρit = a0 + υi + vi + (β+δi)*t                                                  Eq. 3

where α0 is the intercept quantifying the logarithm of average risk
for all areas, υi the spatially structured residual or random effect, vi

the spatially unstructured residual or random effect, β an overall
linear time trend, and δi the differential trend which identifies the
interaction between linear time and space.

Non-parametric dynamic trend models
In parametric trend models, a linearity constraint is imposed on

the differential temporal trend. However, this may not be the case
in practice, where there is some non-linearity in temporal trends
due to a day-to-day development in treatments, intervention pro-
grammes and advancement of research findings in general. Thus,
it is important to relax the linearity assumption imposed. In this
paper, we considered different nonparametric models extending
the work of Knorr-Held and Rasser (2000). Thus, the log risk is
modelled as Eq. 4:

log ρit = a0 + υi + vi + gt+ ϕt                                                      Eq. 4

where α0 is the intercept quantifying the logarithm of average risk
for all areas, υi spatially structured residual or random effect, vi

spatially unstructured residual or random effect, γt the temporally
structured effect, and ϕt the unstructured temporal effect.

Space-time interaction models
To better explain differences in the time trend of diseases for

different administrative regions, it would be necessary to expand
the previous non-parametric dynamic model to allow for a flexible
interaction between space and time where accordingly the log risk
is modelled as Eq. 5:

log ρit = a0 + υi + vi+ gt+ ϕt + δit                                                Eq. 5

where α0 is the intercept quantifying the logarithm of average risk
for all areas, υi spatially structured residual or random effect, vi

spatially unstructured residual or random effect, gt the temporally
structured effect, ϕt the unstructured temporal effect, and δit the dif-
ferential trend which identifies the interaction between time and
space.

Modelling the spatial dependency structure
The most commonly used model for modelling the spatial

dependence is the BYM model (Besag et al., 1991), but her there
is a problem in identifying the structured and unstructured depen-
dence. In this respect Leroux et al. (2000) proposed an alternative
model formulation to make the compromise between unstructured
and structured variation more explicit. Here, ξ = u + v is assumed
to follow a normal distribution with mean zero and covariance
matrix of (σ ξ

2(λξ Rξ+(1-λξ) In
–1)(σ ξ

2, λξ).
For the vector of spatial effect ξ = (ξ1,…,ξn)', ξ~N(0, σ ξ

2 (λξ

Rξ+(1-λξ)In
–1)(σ ξ

2 , λξ) where λξ ∈ [0,1] denotes a mixing or smooth-
ing parameter. In is an identity matrix of dimension n×n and Rξ the
spatial neighborhood matrix. 

The Leroux CAR prior accounts for spatially unstructured ran-
dom effect with an exchangeable prior ξ~N(0,σ ξ

2In) when λξ= 0 and
consider spatially structured effect with intrinsic CAR prior when
λξ = 1, which finally gives the log risk as Eq. 6:

log ρit = a0 + ξi + γt + ϕt + δit                                                     Eq. 6

Here, the unstructured temporal random effects ϕt are modelled
as independent and identically distributed normal random vari-
ables with mean 0 and variance σϕ

2 as ϕ~N(0,σϕ
2 IT), where ϕ =

(ϕ1,… ϕT)’ and IT constitute an identity matrix of dimension T×T.
For structured temporal effects γ = (γ1,… γT)’ a random walk of first
and second order can be considered and its distribution given by
γ~N(0, σγ

2Rt
_), where Rt denotes the structure matrix of first and sec-

ond order random walk where the symbol “-“ denotes the Moore-
Penrose generalized inverse. The interaction term δ = (δ11,…δnT)’,
also assumed to be distributed normally as δ~N(0,σ δ

2 Rδ), where  
σ δ

2 is the variance parameter and Rδ the matrix structure of main
effects identifying the type of temporal and/or spatial dependence
between the elements of δ and defined according to the Kronecker
product (Gilks and Roberts, 1996). In this work the four types of
interactions in Knorr-Held and Rasser (2000) based on the struc-
ture matrix are considered for Rδ.

Type I interaction
Type I assumes that the two unstructured effects interact but

result in no structure in space and /or time. In type I interaction, all
δnT’s are a priori independent and the structure matrix or precision
matrix can be written as Eq. 7:

              Eq. 7

The rank of Rδ for both first order and second order random
walk of γ is n · T.

Type II interaction
Type II interactions combine unstructured spatial effects with

structured temporal effect and the structure matrix can be given as
Eq. 8:

Rδ =Rν⨂Rγ Eq. 8

where Rv = I and Rγ is the neighbourhood structure which may be
specified through a first or second order random walk which
means that each δi. i = 1,…,n,(δi1,…δiT) follows a first order or sec-
ond order random walk independently of all other regions. This
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type of interaction would be better suited if the temporal trend is
independent from one another, but do not have any structure in
space. Here the matrix Rδ has the rank of n · (T-1) for first order
random walk of γ and n · (T-2) for second order random walk of γ.

Type III interaction
Type III interaction combines structured spatial main effects

and unstructured temporal effects and the associated structure
matrix given as Eq. 9:

Rδ =Rυ⨂Rϕ Eq. 9

where Rϕ = I and Rυ can be seen as different spatial trends for each
year without any temporal structure and each δ.t i = 1,…,T, (δt1,…
δtn) follows an (independent) intrinsic conditional autoregression.
The matrix Rδ has the rank of (n - 1) · T for first order random walk
of γ and (n - 1) · T for second order random walk of γ.

Type IV interaction
Type IV is the most complex type of interaction between spa-

tially and temporally structured effects, where δit’s are completely
dependent over space and time. This type of interaction would be
suitable if temporal trends are different from region to region, but
are more likely to be similar for adjacent regions. 

The structure matrix will be given as Eq. 10:

Rd = Rυ⨂Rγ                                                                                                                            Eq. 10

This matrix has the rank of (n – 1) · (T – 1) for first order ran-
dom walk of γ and (n – 1) · (T – 2) for second order random walk
of γ.

The models
With a combination of the four types of interaction given

above and by choosing different priors for the structured time
effect we proposed nineteen different models for both the paramet-
ric and non-parametric cases. Three parametric models were con-
sidered based on different parametric form of the trend. The log
risk model is specified as Eq. 11:
                                                                                                         
log ρit = a0 + ξi + (β+δi)*t                                                     Eq. 11

Model 1
The Leroux CAR prior is considered for the spatial effects. For

model 1 we assumed exchangeable distribution for the differential
effect, that is δi, i = 1,…, I are independently and identically dis-
tributed normal random variables δ~N(0,σδ

2).

Model 2
The Leroux CAR prior is considered for the spatial effects. For

model 2, iCAR prior is assumed for the differential effect, that is
(Eq. 12):

                                         Eq. 12

where i∼ j indicates that area i and j are neighbours, mi the number
of neighbours of area i, and σ2 is the variance component. Thus, the
joint distribution of the random effects can be written as (Eq. 13):

δ~N(0, σ2 Rs
–), where δ=(δ1,…δn )' Eq. 13

The Rs matrix is determined by the spatial neighborhood struc-
ture with non-diagonal elements (Eq. 14):

 
Eq. 14

The diagonal element (Rs)ii gives the number of neighbours
(mi) of area  and the symbol – indicates the Moore-Penrose gener-
alized inverse.

Model 3
The Leroux CAR prior is considered for both the spatial effects

and for the differential trend.

Non-parametric models

Models 1 and 2
Here, we considered a non-parametric trend model without the

interaction term but allow for first order and second order random
walk respectively for the structured time effect, i.e. (Eq. 15):

log ρit = a0 + ξi + gt+ ϕt                                                          Eq. 15

Models 3 and 4
Here, we considered a non-parametric trend model with type I

interaction with first order and second order random walk respec-
tively for the structured time effect, i.e. (Eq. 16):

log ρit = a0 + ξi + gt+ ϕt + dit    with Rδ=Rν⨂Rϕ= I⨂I=I        Eq. 16

Models 5 and 6
Here, we considered non-parametric trend with type II interac-

tion with first order and second order random walk respectively for
the structured time effect, i.e. (Eq. 17):

log ρit = a0 + ξi + gt+ ϕt + dit    with Rδ=Rν⨂Rg                      Eq. 17

Models 7 and 8
Here, we considered non-parametric trend with type III inter-

action with first order and second order random walk respectively
for the structured time effect, i.e. (Eq. 18):

log ρit = a0 + ξi + gt+ ϕt + dit    with Rδ=Rυ⨂Rϕ                      Eq. 18

Models 9 and 10
Here, we considered non-parametric trend with type IV inter-

action with first order and second order random walk respectively
for the structured time effect, i.e. (Eq. 19):

log ρit = a0 + ξi + gt+ ϕt + dit    with Rδ=Rυ⨂Rg                      Eq. 19

Models 11 and 12
Here, we considered non-parametric trend without unstruc-

tured time effect, without interaction effect with first order and sec-
ond order random walk, i.e. (Eq. 20):

log ρit = a0 + ξi + gt                                                                Eq. 20

Models 13 and 14
For model 13 and 14, we considered non-parametric trend

without unstructured time effect, with type II interaction with first
order and second order random walk respectively, i.e. (Eq. 21):

log ρit = a0 + ξi + gt + dit    with Rδ=Rν⨂Rg                            Eq. 21
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Models 15 and 16
Here, we considered non-parametric trend without unstruc-

tured time effect, with type IV interaction with first order and sec-
ond order random walk respectively, i.e. (Eq. 22):

log ρit = a0 + ξi + gt + dit    with Rδ=Rυ⨂Rg                            Eq. 22

Priors 
Based on recommendation from different literature sources,

more suitable user-defined hyperpriors have been given using suit-
able expression in INLA. Specifically, the non-informative uni-
form prior distributions σ∼U (0, ∞) and λ∼U (0, 1) have been
defined for hyperparameters of random effects in the modelling
process.

Approximation of Bayesian inference using integrated
nested Laplace approximations

Here, a full Bayesian approximation was implemented to fit
the proposed models with Bayesian hierarchical framework in over
three stages. The first stage was the observational model and the
second stage the latent Gaussian Markov random field (GMRF)
with precision matrix R which in turn is controlled by hyperparam-
eters which are not necessarily Gaussian (third stage).

INLAs were proposed for estimation in Bayesian inference
with latent Gaussian field according to Rue et al. (2009). The
methodology would be particularly attractive, if the latent
Gaussian model were a GMRF us used by Rue and Held (2005)
with precision matrix  controlled by a hyperparameter τ (details
about implementation of INLA method can be found in Rue et al.,
2009). Note that estimation using the standard Markov chain
Monte Carlo (MCMC) has a higher computational cost in terms of
time so INLA is faster. In addition, parameter samples may have
high correlation resulting in a large Monte Carlo error during esti-
mation. Particularly the application of MCMC in spatiotemporal
analysis is difficult because of the strong posterior dependence
between components of the latent spatial or spatiotemporal fields,
while INLA provides very accurate approximations to the posterior
marginals in a relatively short computational time. All components
in the models proposed in this work can be modelled using GMRF
and INLA can be run on Windows, Mac and Linux in the software
environment R using the R-package r-inla (Rue et al., 2017). In our
case we used version 17.06.20 released 2017-06-20.

Mortality analysis due to centers for disease control
and prevention in Kersa health and demographic sur-
veillance system 2007-2016

Kersa is a district in the eastern part of Ethiopia. According to
the Ethiopian Government census of 2007, it has a total population
of 172,626; out of which, 6.87 % are urban dwellers (Central
Statistical Agency, 2010). The Kersa HDSS, established in 2007
with 10 522 households and 50,830 population to track demo-
graphic and health changes in the community, is a member of the
INDEPTH Network, a network of HDSSs in Africa, South
America and Asia.

Kersa HDSS is currently a platform for various health related
research by the college of Health and Medical Sciences in
Haramaya University with a broader vision to become a centre of
excellence for health science research in Eastern Africa. After the
first census, a continuous registration system for demographic and
health related events have been operational in the whole of the
HDSS area (Assefa et al., 2016; Dedefo et al., 2016a; Dedefo et

al., 2016b). Data are entered into the HRS-2 relational database.
The sex ratio and average number of persons per household was
1.0 and 5.1, respectively. At the end of 2016 the population was
130,358. Until the end of 2016, 20,935 births and 5,195 deaths
were registered. Over 85% of births and deaths occurred at home.
The annual net population growth ranged from -0,1 to 1.6.
Meanwhile, the population growth rate at the national level ranged
from 1.63 to 2.94. The majority of the population in Kersa is out
of work; hence the dependency ratio in most of the years is below
1 and ranged from 0.88 to 0.98. The young population dependency
ration was the highest (0.88) as compared with the old dependency
ratio (0.05). A reduction in neonatal, infant and under five mortal-
ities was observed. For all deaths, verbal autopsies were done.
Non-communicable diseases (NCDs) were the second leading
cause of death among adults and the trend indicates that NCDs
may surpass infectious diseases as a leading cause of death in the
near future, while malnutrition is the leading cause of death among
children under five years. For the past ten years, the Kersa HDSS
has been supported with regard to advancement of research under-
takings, health science education, generating evidence for improv-
ing planning and the delivery of health service. Currently the net-
work has three centres at neighbourhood locations (Kersa, Harar
and Haramaya) with a total population nearing 200,000. For this
study, the cause of death due to CVDs was extracted from a ten-
year adult mortality database available at Kersa HDSS and trian-
gulated with their corresponding verbal autopsy records. Cases
were merged in a two-year interval to attain sufficiency.

Results

Model choice 
The different models defined in the previous section were fit-

ted to mortality data from Kersa HDSS. To select the best model,
we considered the deviance information criterion (DIC) among
several other quantities for model choice and model calibration
available in INLA. The DIC is the sum of the posterior mean of the
deviance (a measure of goodness of fit) and the number of
effective parameters pD (a measure of model complexity). The DIC
is a well-known Bayesian model choice criterion to decide which
model provides the best trade-off between model fit and complex-
ity (Spiegelhalter et al., 2002). Models with the smallest DIC value
provide the best trade-off between model fit and complexity. 

After fitting all the proposed models, models with non-para-
metric time trend performed better than the parametric ones with
respect to the trade-off between model fit and complexity based on
DIC. From Table 1 we could easily observe that the parametric
models exhibit relatively low values of the effective number of
parameters (pD) with the highest values of posterior deviance ( )
with the largest DIC values. Overall, models with type II interac-
tions together with a RW2 prior for the structured temporal random
effect were the one showing lower DIC values. Furthermore, mod-
els without unstructured temporal components seemed to be better.
Finally, Model 14 with a DIC value of 264.03 turned out to be the
best model in terms of a trade-off between model fit and complex-
ity (the smallest DIC value). This model included the spatial effect
with a Leroux CAR prior, a structured temporal random effect with
a RW2 prior and a type II interaction effect. The estimated log-

relative risk , where = + + + obtained

D

D
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from the selected model can be split up into its separate compo-
nents: a global risk estimate (); an estimate for the spatial risk due

to location that may be attributed to factors associated to a par-
ticular administrative region; an estimate for the temporal risk

trend for all areas that may be attributed to changes in distri-
bution of the disease, associated diagnostics, related policies
affecting the region and an estimate for the area specific temporal

risk trend that may reflect particular effects of each adminis-
trative region for the observed difference in each administrative
region (kebele).

Figure 1 shows the spatial patterns of mortality, specifically the

mortality risk (exp ) due to CVD at each administrative unit of
Kersa HDSS and Figure 2 displays the posterior probability that

the spatial risk (exp ) is greater than 1. Most literatures set pos-
terior probability of spatial risk above 0.8 as a cutting point
towards high risk administrative regions and more detail about the
thresholds and cut-off probabilities can be seen from Richardson et
al. and Ugarte et al. (Richardson et al., 2004; Ugarte et al., 2009).
From both Figures it can be observed that, administrative regions
in the eastern part and far south-west areas are those with high risk.

                                                                                                                                Article

Table 1. Summary of the posterior mean of the deviance ( ), the number of effective parameters pD and the deviance information cri-
terion (DIC) as a measure of trade-off between model fit and complexity for all the models.

PARAMETRIC MODELS
Model                                                                                       D                                                  pD                                        DIC

Model 1                                                                                                            296.93                                                          20.37                                                317.30
Model 2                                                                                                            296.59                                                          19.61                                                316.20
Model 3                                                                                                            297.44                                                          20.52                                                317.96
NON- PARAMETRIC MODELS
Model                            SP interaction                                   D                                                  pD                                        DIC

Model 1                                    Additive (RW1)                                            249.74                                                          20.60                                                270.34
Model 2                                    Additive (RW2)                                            249.61                                                          20.53                                                270.14
Model 3                                     Type I (RW1)                                              246.77                                                          25.51                                                272.28
Model 4                                     Type I (RW2)                                              246.72                                                          25.36                                                272.08
Model 5                                     Type II (RW1)                                             250.41                                                          19.10                                                269.51
Model 6                                     Type II (RW2)                                             247.07                                                          16.93                                                264.96
Model 7                                    Type III (RW1)                                            246.05                                                          25.99                                                272.04
Model 8                                    Type III (RW2)                                            245.95                                                          25.92                                                271.87
Model 9                                    Type IV (RW1)                                             248.26                                                          24.00                                                272.26
Model 10                                  Type IV (RW2)                                             248.17                                                          23.86                                                272.03
Model 11                                  Additive (RW1)                                            249.77                                                          20.41                                                270.18
Model 12                                  Additive (RW2)                                            249.45                                                          20.26                                                269.71
Model 13                                   Type II (RW1)                                             251.56                                                          19.30                                                270.86
Model 14                                   Type II (RW2)                                             247.04                                                          16.63                                                264.03
Model 15                                  Type IV (RW1)                                             248.38                                                          23.95                                                272.33
Model 16                                  Type IV (RW2)                                             248.06                                                          23.89                                                271.95

D
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Figure 1. A map showing the spatial pattern of mortality (exp ) due
to cardiovascular diseases in Kersa health and demographic sur-
veillance system.

Figure 2. A map showing the posterior probability that the spatial
risk(exp ) due to cardiovascular diseases in Kersa health and demo-
graphic surveillance system is greater than 1.
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In Figure 3, the top map panel displayed the spatio-temporal
trend of mortality due to CVD risks for each administrative region
with comparison to the whole region during the study period. The
bottom panel in Figure 3 displays the posterior probabilities that
the relative risks are greater than 1. The risk scale was originally
constructed in the logarithmic scale expressing the magnitudes of
excess risk and default risk with respect to the whole region and
was then back-transformed to facilitate the display maps and inter-
pretation. In the map, the value 1.47 means 47% excess risk with
comparison to the whole region during the study period. Overall, it
can be seen from both maps that the mortality risk due to CVD is
on the rise both in space and time, specifically the years 2011-2012
were identified as having the highest risk, while administrative
regions in the eastern and far south-western part of the region
exhibited a consistent high risk.

Simulation study 
A simulation study was conducted by generating spatio-tempo-

ral data based on setting of mortality data of Kersa HDSS. We gen-
erated 300 data sets where the random effects for each of them
were generated from the following multivariate normal distribu-
tions:

where each of the estimates are the average of the models in the
study to generate the log risk, logρit. For each case, counts were
generated from a Poisson distribution with the mean μit = eit

                   Article

Table 2. Summary of the DIC for the simulated data.

LINEAR/PARAMETRIC MODELS

Model                                                         DIC

Model 1                                                                       290.56
Model 2                                                                       290.32
Model 3                                                                       288.03
NON-PARAMETRIC MODELS

Model                                                         DIC

Model 1                                                                       248.55
Model 2                                                                       247.99
Model 3                                                                       251.11
Model 4                                                                       248.24
Model 5                                                                       243.07
Model 6                                                                       239.57
Model 7                                                                       247.98
Model 8                                                                       247.55
Model 9                                                                       248.54
Model 10                                                                     248.01
Model 11                                                                     245.11
Model 12                                                                     244.51
Model 13                                                                     246.12
Model 14                                                                     240.44
Model 15                                                                     249.99
Model 16                                                                     247.02
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Figure 3. The distribution of relative mortality risk due to cardiovascular diseases in Kersa health and demographic surveillance system (A) and
posterior probability distribution mortality for each administrator region during the time 2007-2016 (B).
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exp(logρit). This was repeated three times by multiplying the
expected count by 2n for n = –1,1,2 to account for the effect of the
population. Finally, the same hyperprior used in the analysis were
used to generate these data. After fitting the data generated by
using the models proposed in this study, a model with non-para-
metric time trend performed much better than the models with lin-
ear time trends. As shown in Table 2, the best model selected when
fitting the model with real data still performed well in the simula-
tion but now it was the second best model with very little differ-
ence from the first best model from the simulated data. Overall,
with small discrepancies the proposed models performed equally
well with the simulated data.

Conclusions
This work focuses on modifying and extending the existing

structural models in spatio-temporal data analysis for disease map-
ping to present a flexible model to analyze aerial data for mortality
clustering. Different models with parametric and non-parametric
components were proposed and fitted using a fully Bayesian
framework. Model fitting was carried out using INLAs and DIC
was used to choose the best model among the proposed candidates.
All the models were applied to mortality data collected from Kersa
HDSS during the period 2007-2016. Overall nonparametric mod-
els performed much better than parametric models. A model with
non-parametric trend, without unstructured time effect, with type
II interaction and second order random walk stood as the best
among all the proposed models. The simulation study confirmed
the same with little discrepancy of results among the non-paramet-
ric models. Importantly, our analysis shows that the trend of mor-
tality due to CVD is increasing over time and it is obvious that the
administrative regions in the eastern and south-western regions
need considerable attention. The results from this study highlights
areas requiring more targeted health interventions, which in turn
should lead to more detailed inquiries regarding the mortality due
to CVD in space and time as well as the associated risk factors that
account for these patterns.
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