
Abstract
There has been a conspicuous increase in malaria cases since

2016/2017 over the three malaria-endemic provinces of South
Africa. This increase has been linked to climatic and environmen-
tal factors. In the absence of adequate traditional
environmental/climatic data covering ideal spatial and temporal
extent for a reliable warning system, remotely sensed data are use-
ful for the investigation of the relationship with, and the prediction
of, malaria cases. Monthly environmental variables such as the
normalised difference vegetation index (NDVI), the enhanced
vegetation index (EVI), the normalised difference water index
(NDWI), the land surface temperature for night (LSTN) and day
(LSTD), and rainfall were derived and evaluated using seasonal
autoregressive integrated moving average (SARIMA) models
with different lag periods. Predictions were made for the last 56
months of the time series and were compared to the observed
malaria cases from January 2013 to August 2017. All these factors
were found to be statistically significant in predicting malaria
transmission at a 2-months lag period except for LSTD which
impact the number of malaria cases negatively. Rainfall showed
the highest association at the two-month lag time (r=0.74;
P<0.001), followed by EVI (r=0.69; P<0.001), NDVI (r=0.65;
P<0.001), NDWI (r=0.63; P<0.001) and LSTN (r=0.60; P<0.001).
SARIMA without environmental variables had an adjusted R2 of
0.41, while SARIMA with total monthly rainfall, EVI, NDVI,
NDWI and LSTN were able to explain about 65% of the variation
in malaria cases. The prediction indicated a general increase in
malaria cases, predicting about 711 against 648 observed malaria
cases. The development of a predictive early warning system is
imperative for effective malaria control, prevention of outbreaks
and its subsequent elimination in the region.

Introduction
Malaria is a major endemic below 1,300 m above mean sea

level in the north-eastern part of South Africa (SA), where it
affects about 5 million of the population who has recently wit-
nessed a surge in malaria morbidity and mortality (STATS SA,
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2017). The endemic regions are in the provinces of Mpumalanga,
Limpopo, and KwaZulu-Natal (South Africa National Department
of Health, 2011). The disease is markedly seasonal, with varying
intensity of transmission due to environmental and climatic factors
such as rainfall, temperature, elevation, and humidity favouring the
development of the vector and parasite (Teklehaimanot et al.,
2004; Ngomane and de Jager, 2012; Midekisa et al., 2012). The
transmission is highest during the wet summer months (September
to May), and peak transmission occurs in January/February
(Ngomane and de Jager, 2012). The Plasmodium falciparum para-
site accounts for about 95% of the total malaria infections in SA
and the mosquito Anopheles arabiensis is the major local vector
(Govere et al., 2007).

More often than not, meteorological conditions, such as high
rainfall and/or high temperature, are cited as the causing factors for
malaria epidemics (Alemu et al., 2011; Ferrão et al., 2017). Hence,
many efforts have been made to predict malaria epidemics by
using climatic variables on the local (Craig et al., 2004;
Teklehaimanot et al., 2004; Ceccato et al., 2007; Ferrão et al.,
2017) and the regional (Craig et al., 1999; Gething et al., 2011;
Weiss et al., 2014) scale. However, many of these studies report
variations in the relationship between climatic factors and malaria
occurrences from one geographic space to another. This suggests
that one or more climate factors are more important than others for
malaria. Rainfall has both direct and indirect relationship with its
incidence by creating suitable breeding habitats for the vector.
However, excessive rainfall can also have a negative impact on the
mosquitoes by washing away the larvae (Teklehaimanot et al.,
2004). Temperature impacts survival of both mosquito and para-
site. Larval development takes about 47 days at 16°C, while para-
site development ceases at temperatures of <15°C and the organ-
ism dies at temperatures >40°C (Gething et al., 2011; Weiss et al.,
2014). Vegetation provides a resting habitat for adult Anopheles
and also serves as an indicator of the availability of moisture
(Machault et al., 2011; Sarfraz et al., 2014). Elevation is associated
with the flight range of the vector as the proportion of moving
mosquitoes declines exponentially with distance and height from
the breeding habitat (Thomas et al., 2013). Nevertheless, as allud-
ed to by (Ceccato et al., 2005; Adimi et al., 2010; Machault et al.,
2011) the lack of adequate climatic data is a major constraint for
the development of a reliable early warning system (EWS). With
the recent surge in malaria morbidity and mortality in SA, there is
no better time to tackle the urgent need for the development of an
operational malaria EWS to predict when, where, and what magni-
tude of malaria epidemics might occur, with sufficient lead-time to
target scarce resources for effective control measure. However, in
contrast to the conventional data gathering methods (Jensen,
2007), remote Sensing (RS) offers advantages such as large area
coverage and continuous the spatiotemporal representation of
Earth’s surface. 

Environmental as well as climatic variables derived from
Earth-observing satellites, for instance: land surface temperature
(LST), the enhanced vegetation index (EVI), the normalized differ-
ence vegetation index (NDVI), the normalized difference water
index (NDWI) and rainfall estimates have been used to identify
mosquito breeding habitats (Mushinzimana et al., 2006: Julie et
al., 2010), to predict outbreaks (Hay et al., 1998; Adimi et al.,
2010) and for the development of malaria EWSs (Ceccato et al.,
2005; Midekisa et al., 2012). These studies have led to a signifi-
cant contribution to malaria control in various regions; however a
large percentage of malaria studies in SA are based on the use of

conventional climate data (Kleinschmidt et al., 2001; Craig et al.,
2004; Silal et al., 2014) rather than RS despite its great potential.
Although reported recently (Adeola et al., 2015; 2016; 2017b) no
study has studied the direct relationship between remotely sensed
environmental data and malaria in SA. 

An in-depth understanding of the relationships between malar-
ia cases and environmental factors over a period of time may offer
a useful insight towards the effective control of the disease. The
South African malaria elimination strategy aims to eliminate
malaria within its borders by 2018 on the one hand, it is faced with
surging epidemics on the other, the characterization of malaria
cases with remotely derived environmental/climatic variables is
imperative to provide adequate spatial orientation and predictive
tool for targeted local malaria control efforts. This, in particular,
should help to improve malaria control measures in Nkomazi
municipality which records high malaria transmission in
Mpumalanga Province (Figure 1). However, less attention has
been paid to other malaria endemic areas of KwaZulu-Natal
(Adeola et al., 2015) and this paper aims at extending the previous
work done by the authors (Adeola et al., 2016) by i) determining
the relationships between malaria cases and remotely sensed cli-
matic and environmental variables; and ii) developing a flexible
modeling framework for predicting malaria cases based on remote-
ly sensed variables. 

This study builds on the preliminary studies (Adeola et al.,
2016; 2017b) in the quest of developing a robust and functional
malaria early warning system using satellite derived environmental
data due to its advantage over traditional climate data which are
not available at sufficient spatial scale and are not adequate due to
lengthy data gap over the study area

Materials and Methods

Study area
Nkomazi Municipality is located in the North-eastern part of

SA, and lies between latitudes 25°19’0”S and 26°00’0”S and lon-
gitudes 31°15’0”E and 32°01’0”E. The municipality is bordered to
the east by Mozambique and in the south by Swaziland and the
Kruger National Park to the north. The area covers a total area of
3255, 67 km2, representing 4.1% and 23% of the total land area of
Mpumalanga Province and Ehlanzeni District, respectively (Figure
1). It has 54 towns/villages, mostly concentrated in the southern
part of the municipality. The municipality had a total population of
277 864 in 1996 that has increased to 410 907 in 2016 (STATS SA,
2016). It enjoys sub-tropical weather conditions, with temperatures
ranging between 2°C and 43°C, with an average of 22.6°C, and an
annual average rainfall of 680 mm. Nkomazi Municipality varies
in elevation from about 120 to about 1 250 m. The western part is
densely vegetated with undulating hills and deeply incised valleys.
The area is drained by two major rivers, namely the Komati River
to the east, with its main tributary, the Lomati River to the west.
The municipality is known for its richness in sugarcane, fruits and
vegetable production.

Data collection
Both malaria and environmental data used in this study span a

period of approximately 18 years (from 2000 to August 2017).
Daily malaria data, including both passive and active data, were
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acquired by the malaria control programme of the Department of
Health, Mpumalanga. The passive data are those obtained from
patients who present at the health facility and test positively for
Plasmodium, while the active data are those collected through
screening measures. These include people with non-specific symp-
toms such as fever, or those residing near or in the same home-
steads with recently confirmed cases. There are 48 healthcare facil-
ities in the area ranging from hospitals to clinics across the munic-
ipality. The records in the malaria information system contain
information such as facility name, date of diagnosis, number of
cases, deaths, age, gender, infection source and the facility coordi-
nates. For this study, only localized notified malaria (56.38%)
cases were utilized in the model. 

Vegetation indices consisting of NDVI, EVI, and water index
NDWI were extracted from a 16-day composite of the US National
Aeronautics and Space Administration’s (NASA) Moderate-reso-
lution Imaging Spectroradiometer (MODIS) MOD13Q1 on board
of both Terra and Aqua satellites system (NASA, 2017). The
indices, providing regular spatial and temporal assessments of veg-
etation conditions, were computed from atmospherically corrected
bi-directional surface reflectance masked for water, clouds, heavy
aerosols, and cloud shadows (NASA, 2017).

The day-time (LSTD) and night-time (LSTN) values were
derived from an 8-day composite of the MODIS MOD11A2 ther-
mal sensor on board the NASA-Terra satellite system (NASA,
2017). The procedure for downloading and processing data is fully
described by Busetto and Ranghetti (2016). Monthly rainfall esti-
mates (January 2000-November 2015) were derived from the trop-
ical rainfall measuring mission (TRMM)-3B43 and December
2015-August 2017 from the newer global precipitation measure-
ment, a joint mission between the Japanese Aerospace Exploration
Agency (JAXA) and NASA as the principal participants. The data
was downloaded using the Network Common Data Form simple
subset wizard in the NASA Goddard Earth Sciences Data and
Information Services Center (TRMM, 2011).

Data analysis
All data processing, statistical analyses and modeling were

performed in R (R Core Team, 2016). Malaria cases and environ-
mental data were aggregated to monthly data. The malaria cases
were used as the dependent variables with the environmental vari-
ables as the independent ones. Descriptive statistics using boxplot
(Spitzer et al., 2014) was performed to explore the climatic vari-
ables and malaria case. Pearson’s correlation was used to statisti-
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Figure 1. Maps of the study area in South Africa. Left top: South African provincial map showing Mpumalanga Province in red; left
bottom: Mpumalanga Province showing the malaria case distribution from January 1997 to August 2017; right: Nkomazi Municipality
showing the villages, health facilities and major rivers with the Normalized Difference Vegetation Index (NDVI) overlay.
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cally determine the association between monthly malaria cases and
environmental variables and at different lags at 0 to 3 months
lagged periods. With the aim of determining the statistical associ-
ations of the environmental variables with malaria cases and pre-
dicting the number of malaria cases, a seasonal autoregressive inte-
grated moving average (SARIMA) model without exogenous vari-
ables and with exogenous variables was employed as the baseline
predictive model (Box and Jenkins, 2008). 

The SARIMA model provides a robust set of tools for perform-
ing time series analysis, parameter estimation and forecasting.
SARIMA is particularly appropriate in situations when the time
series data exhibit seasonality periodic fluctuations. The SARIMA
model structure is SARIMA = (p,d,q)(P,D,Q)S, expressed as
Φ(LS)ϕ(L)(1-L)d(1-LS)DYt = Θ(LS)θ(L)εt, where L is the lag operator
denoted by Lk = Yt-k / Yt, ϕ(L) = 1-ϕ1L1 –ϕ2L2 –ϕ3L3 -… ϕpLp which is
an Autoregressive (AR) polynomial function of order p with a vec-
tor of the coefficient ϕ’= (ϕ1, ϕ2, ϕ3,…, ϕp),θ(L) = 1 + θ1L1 + θ2L2 +
θ3L3 +…+ θqLq. The latter is a Moving Average (MA) polynomial
of order q with a vector of coefficients θ’= (θ1, θ2, θ3,…, θq), Φ(LS)
= 1 – ϕS,1LS – ϕS,2L2S - ϕS,3L3S -…- ϕS,PLPS, and Θ(LS) = 1 + θS,1LS +
θS,2L2S + θS,3L3S +…+ θS,QLQS, which are seasonal polynomial func-
tions of order P and Q, respectively, and which fulfill the invert-
ibility and stationarity conditions. The variable d is the number of
differencing passes needed to stationarise the series, while D is the
number of seasonal differences, S is the seasonal period (e.g. in
quarterly data s=4 and in monthly data s=12) and εt are error terms
known as white noises since they are interpreted as an exogenous
effect that the model is not able to explain. The white noise, in this
case, maybe contributions of other environmental variables like
altitude, the use of IRS, population movement and other factors
which are not included in the model.

In order to induce constant variance and stationarity, the malar-
ia case data were logarithmically transformed and differenced
once. Augmented Dickey-Fuller (ADF) test, a formal statistical
test for stationarity (Hyndman and Athanasopoulos, 2017), which
was used to check for stationarity. The ADF tests if the change in
Y can be explained by lagged value and a linear trend. A stationary
time series is a time series without trend, having a constant mean
and variance over time, a condition to be satisfied in using the
Box-Jenkins approach (Box and Jenkins, 2008). The time series
data were divided into training (80%) and testing (20%) data in
order to allow for cross-validation. Cross-validation is primarily a
way of assessing the predictive performance of a model against a
set of data not used in estimation. The auto.arima function, which
searches through combinations of order parameters and selects the
order that best fits the model, was performed on the transformed
malaria time series without environmental variables to identify the
auto-regressive, moving average and differencing orders of the
SARIMA model. The Autocorrelation Function (ACF) and the
Partial Autocorrelations Function (PACF) were examined. The
model with the lowest Akaike Information Criterion (AIC) value,
indicating the best-fit model, was selected (Burnham and
Anderson, 2002). Consequently, using the identified best SARI-
MA model form, SARIMA with exogenous variables model
(SARIMAX) was fitted with the transformed malaria and environ-
mental variables at different lag periods. The SARIMAX model is
mainly a linear regression model that uses SARIMA model type
process with exogenous variables, (p,d,q) (P,D,Q)S (X), where X is
the vector of external variables (Peter and Silvia, 2012). The lag
periods were used to assess the associations between malaria cases
and the environmental variables from 0 to 3 months using cross-

correlation analysis (a time lag was defined as the time duration
between malaria incidence and environmental observation). The
adequacy of each model was diagnosed by plotting the residuals of
the ACF and PACF using Ljung_Box Q statistics (Ljung et al.,
1978). Out-of-sample predictions of the models (SARIMA with
environmental variables; SARIMAX) for the last 56 months of the
time series were made and compared with the observed malaria
data (January 2013 to August 2017). The performance measures of
prediction were assessed by computing the Root Mean Squared
Error (RMSE), which gives an indication of how the predicted val-
ues differ from the observed values.

Results
During the study period, a total of 25,897 malaria cases were

recorded in Nkomazi Municipality. This number of cases accounts
for 32.3% of the total malaria cases in Mpumalanga Province
(80,058 malaria cases - see inset map in Figure 1). Within this peri-
od, a total of 37,054 (46.3%) malaria cases were locally transmit-
ted, 43,004 (53.6%) imported and 62 (0.08%) untraceable.
Mozambique was the highest contributing source of imported
malaria (41,550) accounting for 96.6% of the total figure. In
Nkomazi Municipality, 24,684 (95.3%) of the cases were detected
by passive surveillance and 1213 (4.7%) by active. Gender-wise,
males accounted for 13,601 (52.5%) and females for 12,296
(47.5%) of the cases. Age was categorized into 3 major groups of
0-14, 15-64 and≥65 representing the young, those working and the
elderly, respectively. Malaria infection was more common in the
economically active group - 16,459 (63.6%), while those belong-
ing to the young amounted to 8,956 (34.6%) and those in the old-
age group were only 482 (1.9%). Figure 2A indicates that there is
monthly variation in the cases of malaria in Nkomazi, with inci-
dence rising from September and dropping after May, while Figure
2B shows the annual locally notified malaria cases in Nkomazi
Municipality from January 2000 to December 2016. There was a
remarkable peak in 2000 (8,525) with an equally remarkable
decline (1,128 cases) in 2006 soon afterwards. Peak malaria inci-
dence was noticeable in March and few cases were recorded in
June, July, and August, i.e. the winter months.

Shown in Figure 3 are monthly time series box plots of malaria
cases and the environmental variables showing the minimum, first
quartile, median, third quartile, and maximum values in Nkomazi
for the period under investigation. At a monthly average rainfall of
about 9 mm, July is the driest month. The greatest amount of rain-
fall is received in January, with an average of about 130 mm.
Between the driest and wettest months, the difference in rainfall is
117 mm.  January is the warmest month of the year at a day-time
average temperature of 31.2°C and 20.0°C night-time average tem-
perature. June is the coldest month of the year, with average tem-
peratures of about 17.8°C. The variation in annual temperature is
around 8.4°C. The highest mean NDVI (0.67), EVI (0.44) and
NDWI (-0.058) values are recorded in March February and
January, respectively. While the lowest mean NDVI (0.41), EVI
(0.21) and NDWI (-0.14) values are recorded in
August/September, August and August, respectively. 

Over the period considered in the study, the mean maximum
and minimum daytime temperature received was 41.7 and 21.3°C,
respectively, with a standard deviation (SD) of 4.34. On the other
hand, the mean maximum and minimum night-time temperatures
recorded were 22.6 and 10.4°C, respectively (SD=3.08). The high-
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est and lowest rainfall received were recorded in February 2000
amounting to 594.5 and 0.19 mm, respectively (SD=72.7). From
the time series analysis, a peak; a little above the 5-year average
was noticed in the total rainfall received from November 2016 till
February 2017. A corresponding effect of the increased rainfall
was noticed with regard to the other variables. The maximum, min-
imum averages of NDVI, EVI and NDWI values were 0.75; 0.34,
(SD=0.11), 0.53; 0.17 (SD=0.09) and 0; -0.17 (SD=0.04), respec-
tively.

The result of the Pearson’s correlation indicated that the
monthly environmental variables corrected with the number of the
monthly malaria cases during the period under study (Appendix
Figure S1). The correlation indicated that there was a statistically
significant association between the monthly environmental vari-
ables time series and the malaria case time series.

The highest correlation between the number of malaria cases
and an environmental variable was shown by rainfall (r=0.36;
P<0.001), followed by NDVI and EVI (r=0.28; P<0.001), and
NDWI (r=0.17; P=0.014). There was no statistically significant
relationship between the temperatures and malaria case count (r=-
0.094; P=0.179 and r=0.056; P=0.423 for LSTD and LSTN,
respectively). Furthermore, as indicated in Table 1, none of the
variables showed any strong positive or negative correlation with
the number of malaria cases at 0-month lag period. Only at least 1-
month time lag when the environmental variables time series
lagged the malaria time series. A negative relationship was indicat-
ed between the number of malaria cases and LSTD. Although tem-
peratures were not significantly associated with the number of
malaria cases, LSTN was significant at a 2-month lag time with the
number of malaria cases. Most significant associations were
observed at the 2-month lag time. Rainfall showed the highest
association at the two-month lag time (r=0.74; P<0.001), followed
by EVI (r=0.69; P<0.001), NDVI (r=0.65; P<0.001), NDWI
(r=0.63; P<0.001) and LSTN (r=0.60; P<0.001). When different
combinations of the environmental variables with the number of
malaria cases were performed, total monthly rainfall, monthly
mean EVI, NDWI and LSTN, at a two-month lagged effect, were

found to be the most significant climatic variables for malaria
transmission in Nkomazi Municipality having an adjusted coeffi-
cient of determination (R2=0.64; P<0.001).

Shown in Figure 4 are monthly mean aggregates of malaria
cases against environmental variables. The number of malaria
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Table 1. Correlation between malaria cases and environmental
variables at lags of 0, 1, 2, and 3 months.

Climatic variables           Lag (month)         R                 P-value

Rainfall                                                     0                       0.19                        0.062
                                                                  1                       0.32                      <0.001
                                                                  2                       0.74                      <0.001
                                                                  3                       0.56                      <0.001
EVI                                                            0                       0.24                        0.069
                                                                  1                       0.42                      <0.001
                                                                  2                       0.69                      <0.001
                                                                  3                       0.56                      <0.001
NDVI                                                         0                       0.22                        0.083
                                                                  1                       0.31                        0.001
                                                                  2                       0.65                      <0.001
                                                                  3                       0.56                      <0.001
NDWI                                                        0                       0.31                        0.111
                                                                  1                       0.27                        0.055
                                                                  2                       0.63                      <0.001
                                                                  3                       0.56                      <0.001
LSTD                                                         0                      -0.24                       0.109
                                                                  1                      -0.43                     <0.001
                                                                  2                      -0.51                     <0.001
                                                                  3                      -0.34                     <0.001
LSTN                                                         0                       0.07                        0.145
                                                                  1                       0.12                        0.115
                                                                  2                       0.59                      <0.001
                                                                  3                       0.26                        0.054
EVI, enhanced vegetation index; NDVI, normalized difference vegetation index; NDWI, normalised differ-
ence water index; LSTD, day-time land surface temperature; LSTN, night-time land surface temperature.

Figure 2. The temporal distribution of locally notified malaria in Nkomazi local Municipality, Mpumalanga January 2000-August 2017.
(A) Monthly distribution; (B) annual distribution.
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cases increased with increasing nighttime temperature (17-20°C)
from January-May and decreased with increasing LSTD from June
to November. NDVI values between 0.50-0.65 from January-May
(r=0.78; P<0.001) and NDVI values of 0.42-0.45 from September-
December (r=0.67; P<0.001) were found to be more significantly
associated with the number of malaria cases. Similarly, EVI values
between 0.28-0.45 from January-May (r=0.72; P<0.001) and EVI
values of 0.22-0.26 from September-December (r=0.61; P<0.001)
were found to be more significantly associated with malaria.
NDWI values greater than -0.12 but less than -0.06 from January-
May and values greater than -0.14 but less than -0.12 were signif-
icantly associated with the number of malaria cases. Monthly total
rainfall amount of about 20-120 mm was seen to be a trigger for
malaria from November-May having its peak in January and hence
confirming the 2-months lag period.

The result from the ADF test indicated that the transformed
time series of monthly malaria counts was stationary, i.e. the P-
value was less than 0.05 meaning that there was no unit root. The
auto.arima function suggested that the SARIMA (2,1,1) (2,0,1)12

model form is the best model fitting the training dataset by the low-
est AIC values compared to other models. The AIC values for the
SARIMA models fitted to the malaria case training data are shown
in Table 2. The adequacy of the model was further assessed by
diagnosing the residuals of the model. Appendix Figure S2 panel a
indicates that the standardized residuals estimated from the model
was an independent and identically distributed sequence with a
mean of zero and a constant variance. Plotted in Appendix Figure

S2 panel b is the ACF of the residuals indicating that the autocor-
relations were close to zero. This result implies that the residuals
did not significantly deviate from a zero mean white noise
(P<0.001). The plot of the P-values in Appendix Figure S2 panel d
showed that the seasonal and non-seasonal autoregressive (AR)
and moving average (MA) parameters of the model have P-values
significant at the 5% level. Additionally, the ACF of the residuals
shown in Appendix Figure S2 panel b indicates that these autocor-
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Figure 3. Boxplots of malaria case distributions and environmental variables. (A) monthly number of malaria cases; (B) normalized dif-
ference vegetation index (NDVI); (C) enhanced vegetation index (EVI); (D) normalised difference water index (NDWI); (E) rainfall; (F)
day-time land surface temperature; (G) night-time land surface temperature.

Table 2. Akaike Information Criterion (AIC) values of log-trans-
formed malaria cases in Nkomazi Municipality.

Model type                       AIC values                 AIC values of
                                         of SARIMA          SARIMA plus environ. 
                                                                                variables

(2,1,1)(2,0,1)12                                 59.534                                     54.438
(2,1,0)(2,0,0)12                                 74.234                                     71.597
(2,1,1)(2,0,0)12                                 62.446                                     58.223
(2,1,2)(2,0,0)12                                 62.974                                     58.256
(2,1,1)(1,0,0)12                                 86.218                                     81.673
(1,1,1)(2,0,0)12                                 58.754                                     56.377
(3,1,2)(2,0,0)12                                 67.342                                     63.262
(0,1,1)(2,0,0)12                                 62.151                                     58.186
(1,1,0)(2,0,0)12                                 81.045                                     77.198
SARIMA, Seasonal autoregressive integrated moving average.
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relations were also close to zero. Because of the high P-values, the
null hypothesis of independence in the residual series cannot be
rejected. It could, therefore, be concluded that the SARIMA model
of the form (2,1,1) (2,0,1)12 is a good prediction model.

As shown in Table 2, the addition of the environmental vari-
ables improved the prediction performance of the SARIMA mod-
els from adjusted R2 of from 0.41 to 0.65. Furthermore, the AIC
(Table 2) and RMSE (Table 3) score reduced after the inclusion of
the environmental variables. The decrease in the values of the
RMSE and AIC indicated that the inclusion of the environmental
variables improved the predicting accuracy of the models across
all the villages.

Different combinations of SARIMA with environmental vari-
ables were tested (Table 3). SARIMA with total monthly rainfall,
EVI, NDVI, NDWI and LSTN were able to explain about 65% of
variation, while SARIMA with total monthly rainfall, EVI, NDWI
and LSTN were able to explain about 64% of the variation.
However, because EVI is more sensitive to differentiating vegeta-
tion canopy to the ground than NDVI (Matsushita et al., 2007) and
high collinearity between EVI and NDVI, only monthly total rain-
fall, EVI, NDWI and LSTN were left in the model to predict the
number of malaria cases to be expected.

The number of malaria cases from January 2013 to August
2017, based on the SARIMA (2,1,1) (2,0,1)12 model including the
significant predictors for malaria cases (rainfall, EVI, NDWI and
LSTN) lagged at 2-month, was subjected to out-of-sample predic-
tion and compared with the 20% observation testing data left out
of the modeling procedure (January 2013 to August 2017) (Figure
5 and Table 4). The predicted number of malaria cases were rela-
tively close to the number of cases observed, which indicates that

the model provides an acceptable fit to predict the number of
malaria cases within the study area. The prediction indicated a
general increase of malaria which is a deviation from the down-
ward trends witnessed in the observed data after the major peak in
the year 2000 although with few peaks in 2004, 2006, 2011 and
2014. The above-average numbers of observed malaria cases
(major peaks) noticed form February 2015 through May 2015 and
declining afterwards until the sudden rise in December 2016

                                                                                                                                Article
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Figure 4. The plot of total monthly time series of malaria cases in relation to environmental variables. Red line, malaria case count; Blue
line, the various environmental variables as follows: (A) normalized difference vegetation index (NDVI); (B) enhanced vegetation index
(EVI); (C) rainfall; (D) day-time land surface temperature; (E) night-time land surface temperature; (F) normalised difference water
index (NDWI).

Table 3. Forecasting performance measures of seasonal autore-
gressive integrated moving average (SARIMA) and SARIMA with
exogenous variables models at 2-month lag period.

Forecast method                                    MAPE      RMSE    Adjusted 
                                                                                                    R2

SARIMA                                                                      27.621         19.541           0.413
SARIMA + rainfall                                                   25.342         17.891           0.492
SARIMA + rainfall + EVI                                        23.453         16.342           0.527
SARIMA + rainfall + EVI + NDVI                        23.112         15.876           0.532
SARIMA + rainfall + EVI + NDVI + NDWI        21.874         15.451           0.607
SARIMA + rainfall + EVI + NDVI + NDWI +   20.005         13.962           0.647
LSTN                                                                                
SARIMA + rainfall + EVI + NDVI +                    25.211         17.561           0.535
NDWI + LSTN + LSTD                                                
SARIMA + rainfall + NDVI + NDWI + LSTN     20.449         14.215           0.624
SARIMA + rainfall + EVI + NDWI + LSTN        20.143         14.052           0.635
MAPE, Mean absolute percentage error; RMSE, Root mean squared error. EVI, enhanced vegetation
index; NDVI, normalized difference vegetation index; NDWI, normalised difference water index; LSTN,
night-time land surface temperature; LSTD, day-time land surface temperature.
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stretching into June 2017 was equally well captured by the model.
The model under-predicted the malaria cases in 2014, predict-

ing 222 cases against 297 observed cases. In general, the SARIMA
model over-predicted malaria cases in the study area. The model
predicted a total number of 711 malaria cases as against 648
observed in the study area. As shown in Appendix Figure S3, the
forecast for September to December of 2017 indicated that there
would be an additional 64 cases of malaria in Nkomazi
Municipality if all other conditions such as the implementation of
malaria control measures remain unchanged. Out-of-sample pre-
dicted and observed malaria cases for the next 56 months are given
in Table 4 and Table 5 gives the summary of the performance mea-
sures of the model’s prediction accuracy.

Discussion
The spatial and temporal distribution of malaria transmission is

largely determined by climatic and environmental variables (Weiss
et al., 2014; Ferrão et al., 2017). These determinants range from
the provision of suitable thresholds for the survival of both the par-
asites and vectors, to the provision suitable breeding habitats and
to the availability of host (human or animals). For this study, the
SARIMA model was developed and shown to be specifically use-
ful for epidemiological studies that exhibit seasonal patterns. The
SARIMA model in the (2,1,1) (2,0,1)12 form that was developed in
this study aims to provide a prediction tool to predict the expected
number of malaria cases based on historically observed data with
and without environmental variables. The latter (rainfall, NDVI,
EVI, NDWI and LSTN at the 2-month lag time) were found to be
significantly associated with the number of malaria cases in
Nkomazi Municipality. These environmental variables were
lagged by one to three months, considering the accumulation of
rainfall which has an influence on the availability of soil moisture
and indirectly on vegetation greenness and water availability in

ponds. This, in turn, influences the occurrence of the Anopheles
vector which takes about two weeks to complete its life cycle, with
an additional two weeks for the incubation of parasites in the
human host.

The statistically significant relationship of rainfall with the
number of malaria cases agrees with other studies where satellite-
derived rainfall estimates were used to study its relationship with
malaria transmission. For instance, Midekisa et al. (2012) have
identified a lag of one to three months between satellite-derived
rainfall and malaria cases in five study sites in Ethiopia. Similarly,
Ceccato et al. (2007) in Eritrea have indicated that satellite-derived
rainfall is statistically associated with malaria with a lead time of
two to three months. In addition, Ngomane and de Jager (2012)
used climatic data, including rainfall and temperature data from
ground weather stations, to examine climatic associations with
malaria cases in the Nkomazi Municipality. The study found that

                   Article

Figure 5. Plot of Actual (observed) and predicted (fit) malaria
cases in Nkomazi Municipality January 2013-August 2017.

Table 5. Performance measures of the model for out-sample prediction.

Model                                          Prediction without environmental variables                           Prediction with environmental variables

SARIMA   (2,1,1) (2,0,1)12                 MAPE                              RMSE                       Adjusted R
2                                MAPE                             RMSE                   Adjusted R2

                                                              26.674                              18.562                             0.412                                      22.430                             15.684                         0.687
SARIMA, Seasonal autoregressive integrated moving average; MAPE, Mean absolute percentage error; RMSE, Root mean squared error.
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Table 4. Observed number of malaria cases and out-of-sample predicted values obtained in Nkomazi local Municipality January 2015-
August 2017.

Year      Cases                                                                                                     Month
                                    Jan.          Feb.        Mar.        Apr.      May.      Jun.        Jul.      Aug.        Sept.       Oct.          Nov.       Dec.        Total

2013         Observed                5                    4                  9                 2               6                0                 5              5                  23               16                 12                7                 94
                 Predicted               21                  17                19                5               3                1                 4              3                  22               19                 11                6                131
2014         Observed               22                  19                45               24            31             25                0              9                  46               49                 14               13               297
                 Predicted               18                  13                32               22            27             19                5              4                  23               36                  9                14               222
2015         Observed               20                  13                12               16            19              2                 5              0                   7                13                  6                 3                116
                 Predicted               26                  15                14               12            15              7                 3              1                   2                12                 19               11               137
2016         Observed                1                    1                  2                 6               8                0                 0              1                   3                 0                   4                 1                 27
                 Predicted               20                  11                 7                 9               8                1                 1              1                   9                 8                   6                 8                 89
2017         Observed                5                    2                 20               21            40              2                 4             20                  -                 -                    -                  -                114
                 Predicted               22                  19                21               17            16             11                9             18                 21               19                 14                9            133+64
Based on SARIMA (2,1,1)(2,0,1)12 model with climatic variables as exogenous variable.
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rainfall is significantly associated with the number of malaria
cases. EVI and NDVI are measures of vegetation greenness which
customarily should respond positively to moisture availability
(rainfall) and negatively to its absence. Hence, EVI and NDVI
could serve as an indirect indicator of soil moisture, surface water
and near-surface humidity. Previous studies, for instance Ceccato
et al. (2007) have reported a 4-month lag association between
malaria and NDVI. However, although NDVI in this study exhibits
a statistically significant relationship with the number of malaria
cases at the 1 to 3-month lag period, EVI seems to be more statis-
tically associated with malaria at the same lag period. This could
be as a result of the advantage the EVI has over the NDVI by being
higher over areas of denser vegetation, thus allowing it to deter-
mine more changes and variation in a mature canopy (Matsushita
et al., 2007). 

Although the use of NDWI to detect mosquitoes breeding
habitats has previously been reported (McFeeters, 2013; Adeola et
al., 2017b), this water index has not been included in any model to
determine its relationship with malaria infection. Indeed, this is a
new result emanating from this study. The NDWI showed a statis-
tically significant association with the number of malaria cases in
the study area. The significant relationship of NDWI with malaria
may be explained by the presence of open-water bodies (river and
ponds) used for irrigation which amounts to about 18% of the total
land area of the municipality (Adeola et al., 2016). The NDWI is a
well-established method used to detect surface water which could
serve as potential breeding and resting sites for mosquitoes. Thus,
NDWI may be an additional index for quantifying environmental
factors in relation to malaria infection, and conceivably, other vec-
tor-borne diseases.

In this study, LSTD extracted from meteorological earth obser-
vation satellite indicated a negative relationship with the number
of malaria cases at all tested lag times. However, LSTN at the 2-
month lag period indicated a significant association with malaria,
which corresponds with the results reported by Ngomane and de
Jager (2012) who found temperature (based on climate data from a
weather station) to be less of a predictor of malaria in Nkomazi
Municipality. In contrast, Adeola et al. (2017a) found a positive
significant association of minimum temperature with malaria cases
locally in Mutale Municipality, a malaria-endemic area in
Limpopo Province, SA. Obviously varying associations between
malaria and climatic variables have been shown in the three malar-
ia-endemic SA provinces, Limpopo, KwaZulu-Natal and
Mpumalanga. For instance, Komen et al. (2015) found a strong
positive correlation between temperature and malaria (r=0.5212),
and a weak positive relationship with rainfall (r=0.2810) in
Limpopo Province, while Craig et al. (2004) found that tempera-
tures during the preceding summer and current spring were signif-
icantly associated with delta log of the number of malaria cases in
KwaZulu-Natal.

In general, this study found that the spatial and temporal pat-
terns of malaria cases in the Nkomazi Municipality is associated
with satellite-derived environmental factors. The developed SARI-
MA model improved the adjusted R2 from 0.41 to 0.64 after the
inclusion of the environmental variables, i.e. the SARIMAX model
with monthly total rainfall, EVI, NDWI and LSTN were able to
explain about 64% of the variation. On the other hand, the SARI-
MA model explained only 41% of the variation. By including only
rainfall into the SARIMA model, the adjusted R2 increased from
0.413 to 0.492. It further increased to 0.527 by including EVI ris-
ing to 0.532 after adding NDVI and further to 0.607 by incorporat-

ing NDWI. The adjusted R2 increased to 0.647 after the inclusion
of LSTN but dropped to 0.535 when LSTD was included in the
model indicating the negative effect of LSTD, which is in line with
another previous study (Ngomane and de Jager, 2012). Although,
SARIMA + rainfall + EVI + NDVI + NDWI + LSTN gave the
highest adjusted R2 (0.647), SARIMA + rainfall + EVI + NDWI +
LSTN  (adjusted R2=0.635) was used in the final model because
EVI is more sensitive in differentiating vegetation canopy from
ground than NDVI (Huete et al., 2002; Matsushita et al., 2007)
coupled with high collinearity between EVI and NDVI. The final
selection was further confirmed by the adjusted R2 of 0.624 for
SARIMA + rainfall + NDVI + NDWI + LSTN as against adjusted
R2 of 0.635 for the selected model. Also, the decrease in MAPE
and RMSE explicitly substantiates that the incorporation of the
external variables improves the forecast accuracy. This implies that
64% of the total variation in the number of malaria cases can be
explained by the linear relationship between the environmental
variables and malaria. The other 36% of the total variation might
be explained by other factors such as a high number of imported
malaria cases and social factors like population mobility, housing
type, sanitation, control measures, public health systems, etc.
which were not considered in this present study. From the result, it
can be deduced that malaria is expected to appear between 9-10
weeks following adequate rainfall of about 20-120 mm, at an aver-
age temperature between 17-20°C, NDVI of 0.40-0.65 or EVI of
0.28-0.45 and NDWI values of -0.12 to -0.06.s

The prediction indicated a general increase in malaria cases
with a distinct seasonal pattern and significant peaks in February
to April. This is as a result of about 2 to 3 months lag effect of envi-
ronmental variables, particularly rainfall, which starts in
September/October. Although, the model under-predicted malaria
cases in 2014 which recorded a high malaria incidence, the model
was able to depict monthly variation and distinct seasonal pattern.
The under-prediction might be attributed to the influence of non-
climatic external factors which could have triggered the increase.
The over-prediction of the model could be due to the non-inclusion
of the malaria control strategies which could have been reinforced
after the notice of the sudden rise in the number of malaria cases.

Conclusions
As SA progresses in efforts to eliminate malaria in three

endemic provinces by 2018, an effective and operational EWS as
proposed by the World Health Organization becomes imperative.
Despite the advantages offered by RS for epidemiology research,
the use of remotely sensed environmental variables has not been
fully been exploited for malaria research in SA. Hence, this study
aimed at investigating the relationship between remotely sensed
monthly environmental variables with monthly malaria case
counts towards the development of a model capable of better pre-
diction. Hence, a SARIMA model regressed with the external vari-
ables such monthly total rainfall, EVI, NDWI and LSTN is ideal
for estimating the number of malaria cases. This study indicates
that total rainfall is the most significant predictor of malaria cases
in the study area. The lagged time of 1 to 3 months between the
environmental variables and malaria can be used to develop a
malaria EWS for municipalities commonly ravaged by high malar-
ia transmission. The performance of the model has the potential for
improvement by the inclusion of factors like population move-
ment, migration, elevation, data on indoor residual spraying and
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proximity to health. Further research will, therefore, be required in
order to determine the impact of these factors and their possible
inclusion into the model, which should be regularly updated to an
operational malaria EWS.
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