
Abstract
Ability to detect potential space-time clusters in spatio-tempo-

ral data on disease occurrences is necessary for conducting sur-
veillance and implementing disease prevention policies. Most
existing techniques use geometrically shaped (circular, elliptical
or square) scanning windows to discover disease clusters. In cer-
tain situations, where the disease occurrences tend to cluster in
very irregularly shaped areas, these algorithms are not feasible in
practise for the detection of space-time clusters. To address this
problem, a new algorithm is proposed, which uses a co-clustering
strategy to detect prospective and retrospective space-time disease
clusters with no restriction on shape and size. The proposed
method detects space-time disease clusters by tracking the
changes in space–time occurrence structure instead of an in-depth
search over space. This method was utilised to detect potential
clusters in the annual and monthly malaria data in Khyber
Pakhtunkhwa Province, Pakistan from 2012 to 2016 visualising
the results on a heat map. The results of the annual data analysis
showed that the most likely hotspot emerged in three sub-regions
in the years 2013-2014. The most likely hotspots in monthly data
appeared in the month of July to October in each year and showed
a strong periodic trend. 

Introduction
Ability to discover significant space-time clusters in spatio-

temporal data is essential in many research areas. Cluster detec-
tion plays an important role in disease surveillance as it facilitates
health officials’ efforts to identify targets of possible interest for
interventions. In surveillance, the spatio-temporal distribution of
disease occurrences in an area is studied with the aim to detect
sub-regions and time points where disease occurrences tend to
cluster suggesting the potential of an emerging disease outbreak in
that area.

A number of space-time statistical methods have been used for
disease cluster detection. Amongst these, the scan statistics intro-
duced by Kulldorff et al. (1998) is one of the most commonly used
approaches. This method detects circular shaped clusters by
employing a cylindrical shaped scanning window on the center of
each sub-region in the study area. The base of the cylinder is cir-
cular or elliptical indicating the geographical space in question,
while its height denotes the time variable. At all possible time
intervals, it iteratively draws circles around each sub-region with
the radius size varying from zero up to a threshold value. For each
window, the likelihood ratio statistic is determined and the win-
dow with the maximum value of the statistic is chosen as the most
likely cluster. 

Several studies have been conducted to improve the detection
of clusters with non-circular shapes. Iyengar (2004) extended this
algorithm to detect space-time clusters with a square-pyramid
shape while Neill et al. (2005) proposed an algorithm to detect
emerging space-time clusters with rectangular shapes. In certain
situations, however, rather than adjust to such standardised areas,
disease occurrences tend to cluster in very irregular shapes due to
the different environmental conditions in the study area. Then the
algorithms sometimes detect clusters which include low-risk
regions adjacent to high-risk regions due to the geometrical shape
of the scanning window. To detect irregularly shaped space-time
cluster Takahashi et al. (2008) developed the flexible space-time
scan statistics, which generates windows with irregular shapes on
each sub-region by combining its neighbouring regions. The
determination of threshold cluster size in this algorithm is user
defined which is suggested to be (10-15) percent of the size of the
entire study area. This algorithm extended the scan statistics
method to discover hotspots with irregular shape however; it can
detect hot spots of smaller sizes only due to the restriction on clus-
ter size. Dong et al. (2011, 2012) proposed a grid-based method
and Fanaee-T and Gama (2015) proposed the Eigen space method
to identify space-time disease clusters with irregular shapes. These
algorithms are, however, designed for detecting prospective dis-
ease clusters (Neill et al., 2005; Dong et al., 2011, 2012) and they
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cannot always be applied to detect retrospective disease clusters in
space-time dimensions, the latter being very important for guiding
epidemiological researchers. The Eigen space method lacks the
appropriate density measure of disease occurrences and is only
valid when a single hotspot exists in the study area; it cannot be
adapted for detecting multiple hotspots (Fanaee-T and Gama,
2015). Based on past literature and limitations in the existing algo-
rithms, this study proposes a new method, which uses a co-cluster-
ing strategy to detect space-time disease clusters. The likelihood
ratio, used in the spatial scan statistic proposed by Kulldorff
(1997), is calculated for each sub-region over each time point to
allow for space-time cluster detection. The density measures (like-
lihood ratio scores) can be organised in the form of a data matrix,
the rows of which indicate the sub-regions and the columns the
time points. The co-clustering technique called Bregman Block
Average Co-clustering algorithm (BBAC) is applied to the density
matrix to get an optimum co-clustered matrix by the concurrent
analysis of rows and columns similarity. The contents of the rows
and columns associated with the largest element of the co-clustered
matrix are combined to approximate the most likely clusters, while
those of the rows and columns related to the second largest element
are combined to approximate secondary clusters. This can be visu-
alised on heat maps using different colours for the different clus-
ters. The co-clustering algorithm simultaneously partitions rows of
a data matrix into clusters based on similarities along all columns,
and columns into clusters based on the similarities along all rows.
It concurrently assigns rows into row-clusters and columns into
column-clusters. This algorithm first initialises m row-clusters and
n column-clusters, and then the co-clustered matrix is calculated,
where m and n are the desired number of row-clusters and column
clusters respectively. The difference of the co-clustered matrix and
the original matrix is used as the loss function (Anagnostopoulos
et al., 2008). This difference is minimised by repeatedly allocating
every row to the nearest row-cluster and every column to the near-
est column-cluster until a convergence is seen to obtain an optimal
co-clustered matrix. The co-clustering technique BBAC developed
by Banerjee et al. (2007) allows many loss functions and numerous
co-clustering systems in which the summary statistics of rows and
columns remain unchanged in the assignment process. This algo-
rithm was applied with I- divergence to the temperature data for
spatio-temporal pattern detection (Wu et al., 2015).

The objective of this paper was to present a method, which is
more flexible with regard to detection of prospective and retro-
spective space-time disease cluster with no restriction with regard
to cluster shape and size. Moreover, the proposed method can be
applied to detect multiple clusters in the available spatio-temporal
data on disease occurrences. This paper provides insights that
should be useful for the public health community and for epidemi-
ologists in the accurate detection of space-time disease clusters. 

Materials and Methods
Health officials and policy makers are interested in detecting

the groups of spatial regions and time points where observed dis-
ease occurrences are higher than expected, to prioritise the provi-
sion of resources. In many countries, the health information sys-
tems collect data on disease cases from each sub-region Si at the
discrete time point tj (days, month or years). Let Cji be the
observed number of disease cases in region Si at time point tj. In
the disease cluster detection framework, the observed number of

cases Cji is assumed to have a Poisson distribution with some
unknown parameter (µji), Cji~ Poisson µji. Let p be the probability
of disease occurrence inside the region Si at time tj and q the prob-
ability of disease occurrence in the area outsid Si at the same time
point. For each time point, the null hypothesis H0 is to be tested as
follows: p=q against H1: p>q where:

The likelihood ratio
The likelihood ratio is calculated under the Poisson model for

each region at each discrete time point as:

                   

Eq. 1

if p>q and L(Si, tj)=1, otherwise where Cji = the total observed
cases of disease in sub-region Si at time tj; Gj = the total observed
cases of disease in the entire study area at a time tj; nji = the popu-
lation in sub-region Si at time point tj; and Nj = the total population
of the entire study area. In this study, log L(Si, tj) was used as a
density measure instead of L(Si, tj). This makes a matrix of density
measures log (L(Si, tj)) in which the rows were regions Si and the
columns the time points. The BBAC algorithm was applied, to
detect groups of high-density measures which are close in space as
well as in time.

The Bregman Block Average Co-clustering algorithm 
The BBAC algorithm with I-divergence as a loss function was

applied to calculate an optimum co-clustered density matrix of the
original density matrix. The original density matrix is denoted by
L(S,T), where S represents the sub-regions with values (s1 … sm)
and T the time points with values (t1 … tn). The co-clustered den-

sity matrix is denoted where takes the values in region-

clusters and the values in time-clusters . The
summarised steps of the BBAC algorithm are given in this section.
More details and the programming codes for the BBAC-I algo-
rithm have been given by Wu et al. (2015).

Step 1: initialisation of the mapping of the region with respect
to region-clusters and year to year clusters randomly. This is the
essential step needed to analyse the loss of mutual information in
the following step. In disease surveillance, only the most likely
cluster and the secondary one are of interest, while the rest of the
densities can be grouped together as insignificant clusters.
Therefore, regional clusters and time-clusters were initialised to
group the densities into three types of clusters: the most likely, the
secondary and the insignificant clusters. 

Step 2: computing the loss in mutual information as:

                Eq. 2
                                                                                                       
where B1 (.||.)=I-divergence; L(S,T) = the matrix of density meas-
ures with i(s,t) as elements; and E(S,T) = the matrix approximation
of the original matrix with e (s, t) as elements.

                                                                                                                                Article
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The approximation matrix E(S,T) is calculated as:

                        Eq. 3

where R and C are binary matrices with the sizes m x k and n x l.
The matrix R show the membership of sub-regions to region-clus-
ters and the matrix C show the membership of years to the year-
clusters. Ct represents the transpose of the matrix C. The loss in
mutual information given in Eq 2 can be calculated as:

 
Eq. 4

Step 3: decomposing Eq. 4 according to rows and columns of
matrix L(S,T) to find the new mapping. 

Step 3a: decomposing according to row

        
Eq. 5

Step 3b: decomposing according to column

                                                                                                

        
Eq. 6

Step 4: minimising the loss of mutual information to get the
optimal co-clustering. Since Eq. 4 is decomposed to the I diver-
gence according to row and column, individually, then this step is
to get the new mapping of every row to row-clusters that minimis-
es Eq. 5.

Step 4a:

        Eq. 7

and likewise, getting the new mapping of every column to column-
clusters that minimises Eq. 6 

Step 4b:
                                                                                                

        Eq. 8

Step 5: re-calculating the loss in mutual information according
to Eq. 4. If the difference in the loss is less than a fixed threshold
value, then the mapping obtained there is the optimal co-clustering
end; otherwise repeat steps 2 to 4 to get a new mapping.

Step 6: visualising the resulting co-clustered matrix by a heat
map in which red colour indicates the most likely space-time clus-
ter and yellow the secondary clusters. The heat map is the presen-
tation of a data matrix in which the values are visualised with var-
ious colours.

Malaria case study in Pakistan
Malaria prevalence in Pakistan, estimated at 1.6 million occur-

rences per year (WHO, 2007), is seasonal and the country is prone

to epidemics in particular geographical areas. Its geography is sub-
tropical and the economy agriculture-based with the land charac-
terised by vast irrigation networks. The monsoon rains provide a
favorable situation for malaria in many parts of the country
(Ghanchi et al., 2011).

Pakistan is divided into five provinces (Sindh, Balochistan,
Punjab, Khyber Pakhtunkhwa and Gilgit Bultistan). Khyber
Pakhtunkhwa Province is located in the Northwest sharing 1,100
km of border with Afghanistan. The total area of this province is
74,521 km2 and the estimated population 26.5 million according to
the Bureau of Statistics Khyber Pakhtunkhwa, Pakistan (BOSKP)
census of 2012 (BOSKP, 2016). The land area of the province is
divided into twenty-five districts and seven federally administered
tribal areas (FATA). In Figure 1, the brown colour shows the dis-
tributed land area of FATA. The FATA regions are ethnically homo-
geneous with Khyber Pakhtunkhwa, but not politically connected
to the province. However, very recently it has been decided by the
federal government of Pakistan to merge these areas, politically
and administratively into the province of Khyber Pakhtunkhwa.
The climate in this province is of the tropical monsoon type, but
most of the districts are situated beyond the tropical zone with rel-
atively high temperatures and a cool, dry winter that runs from
December to February with March to June representing the hot and
dry season. Summer extends from July to September and is gener-
ally rainy. October and November represent the receding monsoon
period. The province has two rainy seasons: March to April and the
summer monsoon from July to September.

The District Health Information System (DHIS) collects data
on disease occurrences in the whole province except in FATA.
DHIS has offices in each district. All hospitals in a district report
the registered malaria cases to the respective DHIS office on a
monthly basis. The offices send the monthly data to the provincial
DHIS office. In this study, the malaria case data for twenty-five
districts were collected from this provincial DHIS office and the
estimated mid-year population of each district was collected for
the years 2012-2016 from the annual report of 2016 (BOSKP,
2016). The population distribution of Khyber Pakhtunkhwa is
shown in Table 1. Given the number of reported disease cases and

                   Article

Figure 1. Geographical map of the study area. Red colour repre-
sents the location of most likely clusters (2013-14) and yellow
the secondary clusters (2016).
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population for each district Si in each year tj from 2012 to 2016, the
density measures logs L (Si, tj) were calculated, which made a
matrix of the size 25×5. The rows in the matrix of the density mea-
sure were arranged in descending order according to the total den-
sity over all time points, to visualise the dense region on the top of
the heat map.

To co-cluster this matrix, the BBAC algorithm was applied and the
resulted co-clustered matrix visualised on the heat map (Figure 2). 
The detected clusters in the annual data (2012-2016) are displayed
on the geographical map of the study area (Figure 1). 

The proposed method was applied to the monthly malaria data
for each year (2012-2016) to detect space-time clusters in each
year and interpret the seasonal pattern in malaria occurrences. The
resulting co-clustered matrices of density measure for these years
are visualised on the heat maps (Figures 3-7). All the steps of the
proposed method including visualisation were implemented in
MATLAB (https://www.mathworks.com/).

The proposed method was applied to annual and monthly data
on malaria occurrences in Khyber Pakhtunkhwa Province to detect
the space-time malaria hotspots.

Results and Discussion
The most likely and secondary hotspots were detected in the

mid southern part of the province. The sub-matrix in red on the
heat maps shows the most likely clusters while, the sub-matrix in
yellow shows the secondary clusters. The blue colour represents
regions with insignificant disease risk. When visualising the clus-

                                                                                                                                Article

Table 1. Population (n) in Khyber Pakhtunkhwa by district and
year.

District           2012           2013          2014           2015        2016

Abbotabad         1,110,000         1,151,000       1,172,000        1,193,000     1,215,000
Bannu                1,011,000         1,019,000       1,048,000        1,080,000     1,110,000
Buner                  811,000            888000          922,000           957,000        994,000
Buttgram            200,000            210,000          217,000           228,000        239,000
Charsada           1,500,000         1,558,000       1,603,000        1,649,000     1,696,000
Chitral                 443,000            461,000          473,000           485,000        497,000
Hangu                  485,000            505,000          522,000           539,000        556,000
Haripur               935,000            955,000          975,000           997,000      1,019,000
Karak                   693,000            693,000          716,000           739,000        763,000
Kohat                   880,000            904,000          934,000           964,000        995,000
Kohistan             459,000            479,000          479,000           480,000        480,000
Lower Dir          1,100,000         1,182,000       1,222,000        1,264,000     1,307,000
Malakand            731,000            738,000          763,000           789,000        815,000
Mansehra          1,603,000         1,639,000       1,678,000        1,719,000     1,760,000
Mardan              2,267,000         2,267,000       2,335,000        2,405,000     2,478,000
Noshera            1,310,000         1,336,000       1,375,000        1,415,000     1,456,000
Peshawar          3,292,000         3,392,000       3,513,000        3,638,000     3,768,000
Sawabi               1,520,000         1,583,000       1,630,000        1,678,000     1,728,000
Shangla               690,000            700,000          723,000           747,000        771,000
ToorGhar            227,000            227,000          247,000           257,000        266,000
Upper Dir           810,000            862,000          886,000           911,000        936,000
D.I. Khan           1,300,000         1,373,000       1,418,000        1,464,000     1,511,000
Lakkimarwat      767,000            777,000          802,000           827,000        853,000
Swat                   2,010,000         2,056,000       2,125,000        2,197,000     2,271,000
Tank                     350,000            376,000          388,000           400,000        413,000

Figure 3. Heat map for the co-clustered density matrix 2012.

Figure 4. Heat map for the co-clustered density matrix 2013.

Figure 2. Heat map showing the elements of co-clustered density
matrix 2012-2016.
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ters in the annual data on the geographical map of the province
(Figure 1), it is obvious that the regions in the secondary cluster
were spatial neighbours of the most likely hotspots, but they
emerged at different points in time. For the purpose of disease sur-
veillance, we were only interested to detect regions with unusually
high disease occurrences, i.e. the most likely and secondary
hotspots. From the results, it is evident that malaria occurrences
tended to cluster in three sub-regions (Bannu, Buner and
Lakimarwat) for the years 2013-2014 and in five sub-regions
(Tank, Karak, Charsadda, D.I. Khan and Malakand) for the year
2016. The sub-regions in the detected clusters exhibited a signifi-
cant rate of malaria occurrences. 

To justify the spatial dimension of the most likely cluster in the
annual data, the average malaria incidence rate per hundred thou-
sand population in the years 2013-2014 for each district was dis-
played on a bar chart (Figure 8A), in which the highest malaria rate
was found in the three regions (Bannu, Buner and Lakki Marwat).
To confirm the temporal dimension of the most likely cluster, the
malaria incidence rate in the combined three most likely districts
for each year was also displayed on a bar chart (Figure 8B), which
showed the years 2013 and 2014 to have the highest malaria rates
in the study period. 

Similarly the malaria incidence rate in the secondary cluster
period (2016) for each district was displayed on a bar chart (Figure
9A) and the malaria incidence rate in the five secondary districts
for each year as well (Figure 9B). Figure 9A shows the five dis-
tricts (Tank, Karak, Charsadda, D.I. Khan and Malakand) to be the
peak regions and Figure 9B the year 2016 to be the peak year. The
bar charts in Figures 8 and 9 confirmed the detected clusters in the
annual data. 

The most likely clusters in the monthly data for each year
occurred in the same three regions (Bannu, Lakki Marwat and
Buner) (Figures 3-6). None of these regions appeared to be a likely
cluster in the year 2016 as in Figure 7, which shows that the most
likely malaria hotspots had changed location in 2016. In the years
2012, 2014 and 2015, the most likely cluster occurred in the
months of July, August and September. In 2013, it occurred in
September and October and in 2016 in August and September. The
most likely hotspots occurred in the summer monsoon season
(July-October) each year showing a strong seasonal trend. In this
study, no cluster appeared in the dry winter season (November-
February) similar to the result of the study conducted in Buner
District by Ibrahim et al. (2014), in which the highest number of
malaria cases was recorded in July and the lowest in January. It is
evident from the results that malaria occurrences tended to occur
in the hot, wet season, which provides a favorable environment for
mosquito breeding.

Out of 25 districts, eight were shown to have had unusually
high malaria occurrences. Seven of these districts were geograph-
ically adjacent to FATA. Indeed, people from FATA and
Afghanistan were found to be the malaria carriers in Pakistan
(Kazmi et al., 2001; Hussain et al., 2016). Most of the Afghan
refugees and the Internally Displaced People (IDPs) from FATA
were settled in these neighbouring districts due to military opera-
tions. The heavy influx and continued presence of Afghan refugees
and IDPs from FATA may have contributed to the high malaria
occurrences and added to the malaria burden in these districts. The
high malaria occurrences in the districts of Malakand and
Charsada can be partially attributed to floods that affect these dis-
tricts in the summer monsoon season.

Conclusions
A new method has been proposed which uses a co-clustering

approach to detect disease hotspots with no restrictions with regard
to cluster shape and size. This method can detect prospective and
retrospective disease clusters with no low-risk region included in
the clusters. The proposed algorithm is valid for detecting multiple
clusters existing in the disease data. The prospective and retrospec-

                   Article

Figure 6. Heat map for the co-clustered density matrix 2015.

Figure 7. Heat map for the co-clustered density matrix 2016.

Figure 5. Heat map for the co-clustered density matrix 2014.
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tive malaria clusters in Khyber Pakhtunkhwa, detected by the pro-
posed method, all exhibited significant malaria risk, while no low-
risk regions were included in the clusters (Figures 8 and 9). 

Detection of such types of disease hotspots provides useful
insights about the space-time pattern in disease occurrences for
health officials and policy makers. On the basis of this information,
public health officials can prioritise the allocation of resources,
e.g., funds, medical equipment, staff and activation of disease con-
trol programmes at exact times and in exact geographical loca-
tions. Similar policy recommendations have been suggested by
Khan et al. (2016). Based on the results of annual data analysis, the
secondary clusters emerged in 2016 and still exist, which needs the

possible interventions of health officials on the priority basis to
take control of the malaria outbreaks. In addition, the proposed
approach can guide epidemiologic research on finding factors
which cause specific disease outbreaks in a geographical area. The
method also helps epidemiologists to test the hypotheses about the
cause of an epidemic and provide sufficient information about the
transmission dynamics of a particular disease. This technique is
computationally less intensive; however, the results are influenced
by specifying the number of regional clusters and time-clusters in
the algorithm for large data sets. Future work is required to guide
the proposed method to finding the optimum number of region-
clusters and time-clusters in the data.

                                                                                                                                Article

Figure 8. Bar chart showing the average malaria incidence rate in the years (2013-2014) for each district (A), and the malaria incidence
rate in three most likely regions for each year in the study period (B).

Figure 9. Bar chart showing the malaria incidence rate in the year 2016 for each district (A), and in 5 secondary districts for each year
in the study period (B). 
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