
Abstract
When searching for epidemiological clusters, an important

tool can be to carry out one’s own research with the incidence rate
from the literature as the reference level. Values exceeding this
level may indicate the presence of a cluster in that location. This
paper presents a method of searching for clusters that have signif-
icantly higher incidence rates than those specified by the investi-
gator. The proposed method uses the classic binomial exact test
for one proportion and an algorithm that joins areas with potential
clusters while reducing the number of multiple comparisons need-
ed. The sensitivity and specificity are preserved by this new
method, while avoiding the Monte Carlo approach and still deliv-
ering results comparable to the commonly used Kulldorff’s scan
statistics and other similar methods of localising clusters. A strong
contributing factor afforded by the statistical software that makes
this possible is that it allows analysis and presentation of the
results cartographically. 

Introduction
The development of statistical methods in geographical anal-

ysis has accelerated rapidly with the development of technology in
general. In the medical field, spatial cluster detection is an impor-
tant tool in cancer surveillance, to identify areas of increased risk
and to formulate hypotheses about cancer aetiology. A review of
the literature draws attention to the particular focus of research in
the epidemiology of leukaemia, which has a strong tendency to
form clusters, a factor of increasing public attention (Hjalmars et
al., 1996; Alexander et al., 1998; Michelozzi et al., 2002; Francis
et al., 2012). As a result, cancer incidence rates are used in
research and comparison of new methods for cluster detection
(Turnbull et al., 1990; Wheeler, 2007; Huang et al., 2008; Lawson
and Rotejanaprasert, 2014).

The application of statistical methods depends on initial
assumptions about clusters. A method widely used for the detection
of clusters employs the scanning window, introduced with
Geographical Analysis Machine (GAM) by Openshaw et al.
(1988), then further developed by Besag and Nowell (1991) and
used for Spatial Scan Statistics (Kulldorff, 1997) and Flexible Scan
Statistics (Tango and Takahashi, 2005, 2012). In spatial scan statis-
tics, the assumed cluster is defined by showing a greater difference
with regard to the observed and expected frequencies inside the
window than outside. Over the past several years, development in
spatial analysis has resulted in many data smoothing methods,
including Bayesian methods (Besag et al., 1991; Kang et al.,
2013). In particular, Bayesian partition model for cluster detection
described by Wakefield and Kim (2013) has gained popularity. All
these methods are still in progress but the essential aspect of their
development and widespread use is accessible software that is
developing in tandem with the advancement of these techniques,
e.g., FleXScan (Takahashi et al., 2013), SaTScan (Kulldorff, 2015)
and R Cran Packages such as SpatialEpi (Kim et al., 2014). The
described methods allow the search for clusters without having to
take into account the epidemiological expectations of the incidence
rate, which the cluster should exceed. In order to search for clusters
with an expected incidence rate, we have proposed the CutL
method. The idea here is based on smoothing coefficients and
searching for clusters with a higher incidence rate than the level of
the-cut off level. We report here on simulation studies carried out
to demonstrate the effect of this method where it was shown that
the sensitivity and specificity of the CutL method are similar to
Kulldorff’s scan statistic and partly similar to flexible scan statis-
tics and the Bayesian partitin model for cluster detection. We also
present the application of this approach on a known dataset of
leukaemia cases in New York, USA that were reported by Turnbull
et al. (1990) and Waller and Gotway (2004). 
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Materials and Methods

Initial assumptions
The proposed method automatically searches for clusters based

on the specified cut-off level value and the level of statistical sig-
nificance. For example, one can looking for districts that have a
incidence rate significantly higher than the specified incidence rate
level (Figure 1). Incidence rate (ri) within district (i) is then defined
as the ratio of the number of patients (di) to the number of individ-
uals in an exposed population (ni) within this district:

                                                                              
Eq. 1

It would be unrealistic to expect that the incidence rate will be
exactly the same as the specified incidence rate level in each dis-
trict. Particular districts will be characterised by various incidence
rate, but the observed variability should be within a certain margin
of error. Districts with incidence rates above this range may con-
stitute the beginnings of potential clusters. 

Here, a cluster is defined as a collection of districts (or a single
district) with a significantly higher incidence rate than the speci-
fied incidence rate level. Any district that has the potential to build
a cluster may independently form a cluster or, if it occurs in the
vicinity of districts with high incidence rate, has the opportunity to
join them and form a larger cluster. These designated potential
clusters are tested for statistical significance in two separate steps:
Step 1 - Locating the potential cluster(s) of greater incidence
rate(s) than those of the reference; Step 2 - Testing the statistical
significance of the potential cluster(s). The results of these two
steps (i.e. localised clusters) are automatically displayed onto a
map.

Step 1 
In the proposed CutL method, potential clusters are located

based on a specified incidence rate (cut-off level) above which the
investigator expects the emergence of a cluster. This requires the
investigator to define the neighbouring districts. In general, the
Queen matrix is the standard used for defining contiguity of bor-
ders between districts (areas sharing any boundary point are taken
as neighbors; Lloyd, 2010). 

Cut-off level
Cut-off can be calculated automatically as the overall inci-

dence rate or given by the investigator. The choice of cut-off level
(XCutL) has a significant impact on the interpretation of clusters. If
the researcher is interested in showing the location of unusual clus-
ters – only within the area under study – the proposed cut-off level
will be calculated as a ratio of all patients to the entire population
of that area. This is also known as the overall incidence rate and
calculated as follows:

                                      
Eq. 2

where m is the number of districts.
If the investigator is interested in identifying clusters compared

to the specified incidence rate of wider areas or of different areas

than those under study (e.g., those referenced in other studies),
then the proposed cut-off level should be the incidence rate of the
wider/different area. Under specific situations, for example, when
the whole area under study or a substantial portion makes up the
cluster, a reference analysis using the externally specified inci-
dence rate of the wider/different area is one way of locating such
clusters. 

Incidence rate smoothing
The method of data aggregation is most commonly associated

with the administrative division of the investigated region, where
subdivisions are the districts with varying populations, for exam-
ple, cities (numerous), predominately urban (less numerous) and
predominately rural (sparse). The stability of the incidence rate
mainly depends on the number of people exposed. Districts with
small populations are naturally characterised by high variability in
the incidence rate, which has a tendency to include outliers.
Because the task of the proposed method is to search for clusters
with incidence rate values higher than the cut-off level (including
outlier districts), incidence rate smoothing is used during the clus-
ter detection stage. In the present study, incidence rate was
smoothed using the Empirical Local Bayes Smoothing method
(Waller and Gotway, 2004).

During smoothing, the incidence rate is determined based on
the number of patients and individuals within the population of a
given district and in its neighbouring districts (according to neigh-
bourhood matrix). The potential value for a given district, i.e. the
diagonal element of a neighbourhood matrix, is set as the sum of
elements outside the diagonal of particular district. As a result, the
given, smoothed district has the same influence on the result of
smoothing as its adjacent districts altogether:

      
Eq. 3

where smooth (ri) is the smoothed incidence rate within district (i);
Ci the shrink factor:

      
Eq. 4

where wij is the value of the neighbour matrix element of i and j
and districts (that equals one when districts are neighbouring 
districts and zero when they are not); and .

                   Article

Figure 1. The idea of searching for clusters at a preset cut-off level.
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Building of clusters

Localisation of anchoring points
The location of anchoring points and the determination

of cluster size is automatic. Since the purpose of the analysis is
localisation of cluster(s) with significantly higher incidence rate(s)
than the cut-off level(s), anchoring points are districts that in them-
selves (alone) may constitute a cluster. The idea behind this proce-
dure was taken from the method described by Choynowski (1959),
which presents the probability on a map. For each district, a margin
of error was built around the smoothed incidence rate. This margin
was built based on the smoothed population size of a given district
smooth (ni) and the corresponding number of patients in the district
calculated as smooth (ni) • smooth (ri). The location of smooth (ri)
along with the entire margin of error above the specified cut-off
level XCutL qualifies this district as an anchoring point in the build-
ing of a cluster. A 95% Clopper-Pearson (1934) confidence interval
was chosen for the margin of error.

Cluster size determination
After identifying the anchoring points, further analysis moves

from the smoothed incidence rate towards the actual incidence rate
(unsmoothed) in order to determine the size of clusters. They can
take place in one of three situations (Figure 2): i) the designated
anchoring districts independently constitute a cluster – if there are
no districts with high incidence rates in their surroundings; ii) the
anchoring districts may be joined with neighbouring districts cre-
ating an aggregated cluster – if the neighbouring districts are char-
acterised by a high incidence rate (a description of the algorithm is
presented in the next section: (Increasing cluster); iii) the clusters
built according to points i) and/or ii) above are combined into one
aggregated area to form a larger cluster – if there are common dis-
tricts. 

Increasing cluster 
As a result of finding anchoring points by use of the smoothed

incidence rate, there may be neighbouring districts with high inci-
dence rates that are not anchor points. This may occur especially
when these districts are found on the border of potential clusters.
In order to allow the joining of such districts, for each district (j)
neighbouring with an anchoring district (i), the distance of the inci-
dence rate from the cut-off level is calculated. The obtained differ-
ence is multiplied by the weight, which is the square root of the
population size of the given district. In this way, the resulting dif-
ference is increased for districts with larger population sizes. This
factor is given by: 

                                                  
Eq. 5

Next, to the anchoring districts, successively, its neighbours
starting with those neighbours whose value cj is greatest, are
joined. In aggregated areas, the coefficient:

              
Eq. 6

is re-set. The next neighbours are joined until their addition causes
an increase in the coefficient ci of a built cluster. 

Step 2
Clusters were identified in the first step and now in the second

step the statistical significance of these clusters will be determined.
This is done using the binomial exact test for one proportion. This
test compares the real (unknown) incidence rate inside the cluster
(Rcluster) to the cut-off level (XCutL):

HO:Rcluster = XCutL                                                                   Eq. 7

based on the known incidence rate in cluster:

                                                  
Eq. 8

where dcluster is the sum of patients within the cluster; and ncluster
the population size within the cluster.

A one-tailed hypothesis test is then used due to the fact that a
statistical verification of clusters with higher incidence rate than
the given cut-off level is performed. The problem of multiple com-
parisons is solved using the criterion of false discovery rate (FDR)
discussed by Benjamini and Hochberg (1995). The criterion is con-
sidered to be more effective in the detection of spatial clusters than
the family-wise error rates (Caldas de Castro and Singer, 2006;
Catelan and Biggeri, 2010). The Benjamin-Hochberg (1995) cor-
rection was used for a relatively small number of districts – only
those indicated as potential clusters. In accordance with this
method, clusters are sorted by descending P values. Next correc-
tions are sequentially applied to decreasing number of the remain-
ing hypotheses.

                                                                                                                                Article
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Figure 2. Possible situations encountered when determining the
size of clusters around the anchoring district using the CutL
method. i) The anchoring district independently constitutes a
cluster; ii) the anchoring district joined with neighbouring dis-
tricts creating an aggregated cluster; iii) the clusters combined
into one aggregated area to form a larger cluster.
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Pseudo-code
For readability purposes of the Methods section, we present

the following procedure:
//Getting data
DataMap.pt = GetDataFromMap

//Creating neighbourhood matrices for Spatial Polygons (Queen
matrix - calculated automatically, or matrix given by investiga-
tor)
DataMap.mx = GenMatrix(DataMap.pt)

//Cut-off level (automatically calculated from data or given by the
investigator)
CutL = SumCases / SumPopulation 

//Calculating smoothed incidence rates (Empirical Local Bayes
Smoothing method)
DataSmooth = LocalEmpiricalBaysSmooth(DataSheet,
DataMap.mx); 

//Localisation of anchoring points (smoothed incidence rate of a
district along with the entire margin of error (95%CI) above the
specified cut-off level qualifies the district as an anchoring point)
for i=0 to Length(DataSmooth[0])-1
if (ClopperPearson_CI_Low(DataSmooth[i][1] /
DataSmooth[i][0]) > CutL)
GenAnchoringPoints(i) 

//Cluster size determination (based on ci coefficient) 
for i=0 to Length(DataMap.mx)-1 
for k=0 to Length(DataMap.mx[i])-1 
MainMatrix[i][k]:=( (case / pop) - CutL) * Sqrt(pop) 
max := SearchMaxValueMainMatrix(MainMatrix) 
sumMatrix := SearchNeighboursAboveCutL(MainMatrix, CutL,

max)
CLUST_ID := BuildSubClusters(sumMatrix)
CLUST_ID :=
SearchAndExtendConnectedSubClusters(CLUST_ID)

//Statistical significance analysis for clusters
test_Binom = ComputeBinomExTest(CLUST_ID) 
P value_multi =
ComputeMultiCompareTest(test_Binom,BenjaminHochberg)

Simulation studies

The project
As the basis for our simulations, the population of

Wielkopolskie Province in 2013 (3,467,016) was used, which was
provided by the Central Statistical Office of Poland, Local Data
Bank). The province is divided into 315 municipalities, which con-
stitute the smallest units of administrative division. This division in
is the basis of the regional planning using Geographic Information
System (GIS) and the perceived need for medical care. The munic-
ipalities vary greatly by the number of inhabitants. The largest
municipality by population (provincial capital) had 548,028 resi-
dents in 2013, while the least numerous one had 1,454 residents at
this time. The median and quartiles were respectively: 6,298
(4,462; 9,621) residents, the number of patients (d) was set at
3,467. The cut-off level beyond which we searched for clusters,

was therefore the overall incidence rate: d/N=0.001.
To show accuracy of the presented methods, three different

spatial distributions were tested: (1) the null hypothesis of no clus-
tering, i.e. the data distributed randomly in accordance with multi-
nomial distribution; (2a) two separate clusters, one round in the
northern part of the province (5% of the population), a second
elongated located along the western border of the province (1% of
the population); and (2b) a cluster following the course of the river
through the capital of the province (28% of the population).
Districts that belong to the defined clusters (2a) and (2b) received
the status of a true cluster.

We simulated regional count data sets (d1, d2, …, dm) based on
multinomial distribution:

      
Eq. 9

where

                                                             

(1) In the absence of a cluster, under the null hypothesis of con-
stant relative risk, RRi is the relative risk at geographic unit i, that
is set to 1.

(2) In the presence of a cluster, under the alternative hypothe-
sis, RRi is the relative risk at geographic unit i, which is higher for
units that belong to defined clusters (set as true clusters).

The procedure was repeated by drawing 200 times for the ran-
dom data (1) and 200 times for each value of the relative risk with
a spatial pattern forming clusters (2), and thus for RR=1.5, RR=2.5
and RR=4. These simulation data can be downloaded from the
website http://pqscut.ump.edu.pl.

Since searching for clusters aims to identify both the location
and size of clusters and investigate the statistical significance of
selected locations, usually checking the quality of the analysis
takes into account both of these aspects. Clusters presented in this
study range from 6% of the population (197,712 individuals) - in
the case of the first two clusters - and up to 28% (959,045 individ-
uals) for clusters located along the river. The power of the CutL
analysis and Kulldorff’s scan statistic is over 99.9%, when RR>1.5
and type I error=0.05. Thus, both analyses are powerful enough to
detect statistically significant clusters. The main focus of this study
is the aspect of precision in detected location(s) and cluster size(s). 

If we denote the number of municipalities that are truly clus-
ters (i.e. correctly detected as clusters) as TP; the municipalities
that are not clusters (i.e. incorrectly detected as clusters) as FP; the
municipalities that are not clusters (and not identified as such) as
TN; the municipalities that are truly clusters (and not identified as
such) as FN; the compatibility of the location and size of clusters
detected with actual clusters can be examined by using five mea-
sures: Sensitivity - the proportion of municipalities identified as
clusters to those that are true clusters: TP/(TP+FN); Specificity -
the proportion of municipalities identified as non-clusters among
those that are non-clusters: TN/(TN+FP); Positive Predictive Value
- the proportion of municipalities that are true clusters among all
those identified as clusters: TP/(TP+FP); Negative Predictive
Value - the proportion of municipalities that are non-clusters
among all those identified non-clusters: TN/(TN+FN); and
Accuracy - the proportion of correctly classified municipalities:
(TP+TN)/(TP+TN+FP+FN).

This study compared the results obtained with the CutL
method to the most popular method, i.e. Kulldorff’s scan statistic.

                   Article
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The flexible scan statistic and the Bayesian partition model for
cluster detection are both more flexible than Kulldorff’s scan
statistic and allows for searches of any shape. However, this com-
parison was only done for RR=2.5 because the flexible scan statis-
tic algorithm and the Bayesian partition model for cluster detection
are slow and it is time-consuming to carry out repeated analysis for
simulation data. During the analysis, the default settings of these
methods were not changed.

For statistical analyses the significance level α=0.05 was
assumed. The PQScut program was used for the CutL method and
for plotting data on the map. Kulldorff’s scan statistic was calcu-
lated in SatScan, the flexible scan statistic by the FlexScan pro-
gram and the Bayesian partition model for cluster detection in R
(SpatialEpi package). 

For the simulation study, sensitivity, specificity, positive pre-
dictive value, negative predictive value and accuracy were all cal-
culated to describe the precision of detected clusters 2a and 2b
(compliance with the municipalities set as true clusters).
Specificity was calculated for the null hypothesis (1) representing
the absence of clustering.

Results
The results of the simulations for all tested levels of relative

risk of random data (1), with two clusters (2a), and clusters located
along the river (2b) are shown in Table 1, For RR=2.5, results are
also illustrated on a map (Figures 3 and 4). For RR=1 (i.e. absence
of clusters) both methods obtained very high results of designated
measures where they reached 99%.

Both CutL and Kulldorff’s scan statistic yielded satisfactory
results in the analysis for simultaneously detecting two regions
forming clusters (2a). All the designated measures remained at a
high level from RR=2.5. However, compared to the Kulldorff’s
scan statistics, CutL characterised higher accuracy at each level of
RR. The individual measures (sensitivity, specificity, positive pre-
dictive value, and negative predictive value) were also higher with
the exception of RR=1.5, at which the Kulldorff’s scan statistic
yielded a higher sensitivity and a higher negative predictive value.
Compared to the Bayesian partition model for cluster detection,
CutL reached a higher value for all of the designated measure-
ments at RR=2.5. In comparison to the flexible scan statistic, the

                                                                                                                                Article
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Figure 3. Simulation results comparing CutL, Kulldorff ’s scan statistics, flexible scan statistics and Bayesian partition model for cluster
detection based on 200 replications when applied for two separate clusters. The percentage of municipalities classified as true clusters
when the relative risk is 2.5 times higher with respect to clustering for the municipalities (2a); CutL cut-off level=overall incidence
rate=0.001.
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CutL method obtained higher values for sensitivity and negative
predictive value.

Weaker results were obtained for clusters located along the
river (2b). All the indicated measurements increased with increas-
ing levels of RR. Compared to the Kulldorff’s scan statistic, CutL
revealed greater values for all the indicated measurements at each
RR level. Measures designated for the flexible scan statistic con-
cerned only those at RR=2.5 where they revealed slightly better
results than the CutL method and much better results than both
Kulldorff’s scan statistic and the Bayesian partition model for clus-
ter detection.

Cluster detection for standard data files (Turnbull et al., 1990)
of leukaemia cases in New York from 1978-1982, was carried out
at the overall incidence rate level. As described by Waller and
Gotway (2004), these cases were georeferenced at the level of cen-
sus block groups, but some of the cases could not be georeferenced
at this resolution. These cases were originally allocated proportion-
ally among the block groups, so that some of the resulting disease
counts were not necessarily integers. That was a problem for scan
statistics, therefore disease counts were rounded to the closest inte-
ger and all analysis performed on rounded data. The data included
574 leukaemia cases among 1,057,673 people at risk. The map of
smoothed incidence rates and clusters location (detected by vari-
ous methods) is presented in Figure 5.

Discussion
The presented CutL method serves to detect clusters with sig-

nificantly higher incidence rates than the cut-off incidence rate
specified by the investigator. This approach provides the
researcher with a unique level of control in defining the cut-off
level in a given analysis. For example, it is no longer necessary to
compare the incidence rates within and outside clusters, but instead
compare the incidence rate within a cluster at a specified incidence
rate level. Comparisons of incidence rates within and outside clus-
ters lead to difficulties in interpreting the results due to the lack of
knowledge about the area with which the potential cluster is com-
pared. Of concern is whether that area is free from any threat and
therefore does not contain any cluster. A distinct advantage of the
CutL method is that is offers the possibility to compare results
obtained using the same cut-off level for different populations and
geographical areas, which in turn facilitates comparison of results
from various studies. Furthermore, the possibility to define the cut-
off level by the investigator allows searches in areas where the fre-
quency of an event is not alarmingly high, but higher than expect-
ed. For example, an area under study may be characterised by a
high incidence rate of a certain illness, but does necessarily contain
significant clusters at a specified level, then all you have to do is to
decrease cut-off level. In this way, identification of areas in need
of improved prophylactic measures to achieve the desired effect
can be identified.

Another advantage of CutL is that this method permits the use
of classic statistical methods. The binomial exact test for one pro-
portion, used in this method, determines the p-value in an analyti-
cal way. In contrast to the Monte Carlo approach, the problems
seen in multiple sampling techniques, disappears when using the
CutL method. The selection of the type of generator, which is crit-
ical for each programme based on simulations (Gentle, 2003), rep-
resents one such problem. Another is the prolonged duration of cal-
culations when many potential clusters are present. For example,

one of our analyses using the Bayesian partition model for cluster
detection took 66 minutes on a 2GHz Intel Core i7 processor with
8GB of 1333MHz DDR3 RAM. The problem of multiple compar-
isons encountered by all the cluster detection methods has been
solved by use of one of the standard procedures: Benjamin-
Hochberg (1995) correction. This correction is possible due to the
detection of only a small number of potential clusters and the p-
value is determined using a classical approach.

In contrast to other methods, such as those introduced by
Turnbull et al. (1990), Besag and Newell (1991), Kulldorff (1997),
Tango and Takahashi (2005), CutL does not require defining addi-
tional technical parameters, e.g., expected shape of a cluster or the
maximum size of the scanning window. Appropriate selection of
these parameters requires prior knowledge of the shape or size of
clusters, which are typically not known. This problem does not
appear with CutL, where the detected clusters can be of the any
shape and size and therefore can be unknown before the analysis is
performed. The most important parameter in the CutL methodolo-
gy is the cut-off level, which can be defined by the investigator. 

Applying CutL and Kulldorff’s scan statistic on the same
dataset provides a comparison of their levels of accuracy. In loca-
tions with round or oval clusters, as well as the unusual shape
along the course of the river, CutL yielded the most accurate results
(Table 1). This has to do with the fact that the results obtained from
a known dataset by the application different methods cannot be
exactly the same. In the current case, CutL and FlexScan both indi-
cate the existence of a statistically significant cluster in the centre,
but it covers 1 district with CutL vis-à-vis 6 districts with
FlexScan. The Kulldorff scan statistic found the significant cluster
in the South, but Bayesian partition model did not locate any sta-
tistically significant cluster. These results were reached by the
default settings of each analysis, i.e. the change of output settings
allows the detection of more clusters in the scan methods
(Wakefield and Kim, 2013). In the CutL method, on the other hand,
the location of a larger number of clusters can be achieved by low-
ering the cut-off level. 

Due to the nature of cluster detection when based on data
smoothing and combining neighbouring clusters, information from
the neighbourhood matrix is particularly important. This matrix
may be based on contiguity of borders such as the Queen matrix.
It is also possible to use a binary matrix based on distances, for
example Euclidean distance, where neighbours are objects within
a predetermined radius. The default matrix in CutL analysis is the
Queen matrix, but this poses a difficulty because it may take a rel-
atively long time to build this matrix if unusual great detail can be
required to describe borders of neighbouring districts. In this case,
we recommend building a matrix prior to analysis and chose that
matrix during the CutL analysis. Furthermore, the way in which
the neighbourhood is defined influences the results of each analy-
sis, including CutL, and Kulldorff’s scan statistics, which warrants
performing future studies on the influence of the matrix type on the
accuracy and power of CutL analysis in locating clusters of any
shape.

Besides a number of advantages offered by CutL, there is a
clear disadvantage in what regards the sensitivity for the level of
data aggregation. This is a familiar problem that affects many
methods as is evident from its discussion by many authors
(Fotheringham and Wong, 1991; Amrhein, 1995; Openshaw and
Alvanides, 2005; Ozonoff et al., 2007; Lemke et al., 2013; Luo,
2013; Jeffery et al., 2014). The level of data aggregation is espe-
cially important when comparing studies from different areas.

                   Article
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Figure 4. Simulation results comparing CutL, Kulldorff ’s scan statistics, flexible scan statistics and Bayesian partition model for cluster
detection based on 200 replications when applied for a cluster following the course of the river through the provincial capital. The per-
centage of municipalities classified as true clusters when the relative risk is 2.5 times higher with respect to clustering for the munici-
palities (2b); CutL cut-off level=overall incidence rate=0.001.

Table 1. Comparison among CutL Kulldorff ’s scan statistics, flexible scan statistics and Bayesian partition model for cluster detection
based on 200 replications.

Spatial distributions                                                Methods                                Sensitivity         Specificity         PPV          NPV        Accuracy

(1) The null hypothesis of no clustering    RR°=1                CutL method                                              -                             0.990                     -                    -                       -
                                                                                                           Kulldorff’s scan statistics                       -                             0.997                     -                    -                       -
(2a) Two clusters                                             RR°=1.5             CutL method                                          0.234                         0.999                 0.631            0.955               0.956
                                                                                                           Kulldorff’s scan statistics                    0.473                         0.970                 0.491            0.968               0.942
                                                                              RR°=2.5             CutL                                                          0.838                         0.995                 0.890            0.990               0.985
                                                                                                           Kulldorff’s scan statistics                    0.714                         0.968                 0.579            0.982               0.954
                                                                                                           Flexible scan statistics                        0.710                         0.995                 0.892            0.983               0.979
                                                                                                           Bayesian partition model                    0.679                         0.994                 0.854            0.985               0.981
                                                                              RR°=4                CutL method                                          0.986                         0.996                 0.939            0.999               0.996
                                                                                                           Kulldorff’s scan statistics                    0.698                         0.965                 0.545            0.981               0.949
(2b) Clusters located along the river          RR°=1.5             CutL method                                          0.195                         0.991                 0.764            0.894               0.890
                                                                                                           Kulldorff’s scan statistics                    0.185                         0.972                 0.492            0.891               0.872
                                                                              RR°=2.5             CutL method                                          0.522                         0.995                 0.944            0.935               0.935
                                                                                                           Kulldorff’s scan statistics                    0.335                         0.973                 0.647            0.910               0.892
                                                                                                           Flexible Scan Statistics                        0.587                         0.997                 0.961            0.943               0.945
                                                                                                           Bayesian partition model                    0.116                         0.998                 0.886            0.886               0.886
                                                                              RR°=4                CutL method                                          0.744                         0.999                 0.986            0.964               0.966
                                                                                                           Kulldorff’s scan statistics                    0.431                         0.969                 0.666            0.921               0.900
RR, relative risk; PPV, positive predictive value; NPV, negative predictive value. °The degree of RR for the presence of true cluster(s) set at 1 or 1.5, 2.5, 4 times higher for all municipalities, respectively. The cut-off
level=overall incidence rate=0.001.
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However, for methods that aim to reference results from studies of
different areas this is especially important. So, if one would like to
compare results of cluster detection, it is important that the degree
of aggregation in the compared areas be similar. Another problem
of CutL is that there is currently no possibility to add additional
dimensions or confounding variables (e.g., gender or age).
However, because of the nature of the proposed method, it should
be possible to develop this method and implement standardisation
in future studies. 

Conclusions
A new method, CutL, for analysing clusters characterised by

significantly higher incidence rates than those specified by the
investigator is presented. Without resorting to the Monte Carlo
approach, sensitivity and specificity are preserved. A strong con-
tributing factor afforded by the statistical software that allows anal-
ysis and presentation of the results cartographically. CutL has been
implemented in PQScut free statistical software that can be down-
loaded from the http://pqscut.ump.edu.pl website, and PQStat soft-
ware that is available at www.pqstat.com.
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