
Appendix 
 
 
Part A: Statistical models  
Incidence model  
Given a set of n areas, the statistical model for area i (i = 1, . . . , n) can be written as follows,  

𝑦𝑖   ∼   Poisson 𝑒𝑖𝜃𝑖 , 
𝑙𝑜𝑔(𝜃𝑖) = 𝛼 + 𝑥𝛽𝑘  + 𝑢𝑖  + 𝑣𝑖,   where yi are the observed counts of area i, ei are the expected counts of area i, and θi is the SIR of 

area i. Here α is the intercept term, x is the predictor variable, and βk is the coefficient of the 
predictor variable. The component that accounts for spatial correlation between neighbouring areas 
is denoted by ui, and vi accounts for the unstructured (non-spatial) variation in the model.  
 
Relative survival model  
The statistical model can be written as  

𝑑𝑖𝑗𝑘   ∼   𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜇𝑖𝑗𝑘),   
log  (𝜇𝑖𝑗𝑘  –𝑑

∗
𝑖𝑗𝑘) = log  (𝑦𝑖𝑗𝑘)+   𝛼𝑗  +   𝑥𝛽𝑘  +   𝑢𝑖  +   𝑣𝑖,    

where for age group k, follow-up interval j and area i; dijk is the number of deaths and µijk is the 

expected number of deaths. Here d∗ijk is the expected number of deaths due to causes other than 
the disease of interest and yijk is the person-time at risk. The intercept varied by follow-up year and 
is denoted by αj, x is the predictor variable, and βk is the coefficient of the predictor variable. Also, 
ui accounts for spatial dependence between neighbouring areas, and vi denotes the unstructured 
(non-spatial) random effects in the model.  
 
 
Part B: WinBUGS code  
WinBUGS code for the incidence model  
Model 
{ 
for (i in 1 : N) { 
# Likelihood 
O[i] ~ dpois(mu[i]) 
Opred[i] ~ dpois(mu[i]) 
log(mu[i]) <- log(E[i]) + alpha + u[i] + v[i] 
# Area-specific relative risk (for maps) 
RR[i] <- exp(alpha + u[i] + v[i]) 
# Prior distribution for the uncorrelated heterogeneity 
v[i] ~ dnorm(0, tauv) 
} 
# CAR prior distribution for spatial random effects 
u[1 : N] ~ car.normal(adj[], weights[], num[], tauu) 
for(k in 1:sumNumNeigh) { 
weights[k] <- 1 
} 
# Other priors: 
alpha ~ dflat() 
# Hyperpriors on precisions  
tauu ~ dgamma(0.1, 0.1) 
tauv ~ dgamma(0.001, 0.001) 



sigmau <- sqrt(1 / tauu) 
sigmav <- sqrt(1 / tauv) 
#Standard deviations 
sdv <- sd(v[]) #marginal SD of heterogeneity 
sdu <- sd(u[]) #marginal SD of clustering 
} 
 
WinBUGS code for the relative survival model  
Model 
{ 
# Likelihood 
for (i in 1 : datarows) { 
d[i]  ~ dpois(mu[i]) 
mu[i]<-d_star[i] + excessd[i] 
log(excessd[i]) <-  log(y[i])+ alpha[RiskYear[i]] + beta[1]*agegp2[i] 
+ beta[2]*agegp3[i]+ u[slaNo[i]] + v[slaNo[i]] 
for (j in 1:N_RiskYear){ 
alpha[j] ~ dnorm (0, 0.001) 
} 
} 
# CAR prior for spatial effects 
u[1:Nsla] ~ car.normal(adj[], weights[], num[], tauu) 
for (k in 1:sumNumNeigh) {weights[k] <- 1 } 
for (i in 1:Nsla) { 
# Prior distribution for the uncorrelated heterogeneity 
v[i] ~ dnorm(0, tauv) 
logRER[i]<-u[i]+v[i] 
RER[i]<-exp(logRER[i]) 
}  
# Other priors 
tauu ~ dgamma(0.5, 0.001) 
tauv ~ dgamma(0.5, 0.001) 
varv <- 1/tauv 
varu_con <-1/tauu 
varu_marg<-sd(u[])*sd(u[]) 
} 
 
 
Part C: R-INLA code  
R-INLA code for the incidence model Assume that data are available for a set of areas as 
{yi,ei,x1i,x2i} for i = 1,...,n, where yi is a count, ei is an expected count, and x1i and x2i are two 
predictors/covariates. These data should be read into R as vectors and can be held in a list. In the 
code below, n represents the number of areas, obs represents disease count, expe represents 
expected count, cov1 and cov2 represent the covariates, u represents the spatial random effects, and 
v represents the unstructured (non-spatial) random effects.  
u=seq(1:n) 
v=seq(1:n) 
data.incid = list(obs=obs, expe=expe, cov1=cov1, cov2=cov2, u=u, v=v) 
formula1 = obs ~ cov1 + cov2 
 + f(u, model="besag", graph="queensland.graph", param=c(0.1, 0.1)) 
 + f(v, model="iid", param=c(0.001, 0.001)) 
result1 = inla(formula1, family="poisson", data=data.incid, 



control.compute=list(dic=TRUE, cpo=TRUE, mlik=TRUE), E=expe) 
summary(result1) 
 
R-INLA code for the relative survival model  
In the code below, n represents the number of areas, d represents the number of deaths (dijk), d_star 

represents the expected number of deaths due to causes other than the disease of interest (d∗ijk), y 
represents the person-time at risk (yijk), cov1 and cov2 represent the covariates, u represents the 
spatial random effects, and v represents the unstructured (non-spatial) random effects.  
u=seq(1:n) 
v=seq(1:n) 
data.surv = list(d=d, d_star=d_star, y=y, cov1=cov1, cov2=cov2, u=u, v=v) 
formula2 = d ~ offset(d_star) + cov1 + cov2 
 + f(u, model="besag", graph="queensland.graph", param=c(0.5, 0.001)) 
 + f(v, model="iid", param=c(0.5, 0.001)) 
result2 = inla(formula2, family="poisson", data=data.surv, 
   control.compute=list(dic=TRUE, cpo=TRUE, mlik=TRUE), E=y) 
summary(result2) 
 
 
Part D: Glossary 
Box plot A visual display that summarizes data using a “box and whiskers” format 

to show the minimum and maximum values (ends of the whiskers), 
interquartile range (length of the box), and median (line through the box). 

Case-control study A type of observational analytic study. Enrollment into the study is based 
on presence (“case”) or absence (“control”) of disease. Characteristics 
such as previous exposure are then compared between cases and controls. 

Covariate  In statistics, a covariate is a variable that is possibly predictive of the 
outcome under study. A covariate may be of direct interest or it may be a 
confounding or interacting variable. 

Credible interval  An interval in the domain of a posterior probability distribution used for 
interval estimation. A 95% credible interval is interpreted as “a 95% 
probability the true estimate lies in this range” 

Direct method of 
standardisation  

Apply stratum-specific rates observed in the populations of interest to a 
standard population. The ratio of two directly standardised rates is called 
the comparative incidence ratio. 

Excess mortality  A measure of the deaths which occur over and above those that would be 
expected for a given population. These are deaths considered to result 
from the disease of interest  

Hierarchical model  A model written in a hierarchical form or in terms of sub-models  
Hierarchical structure  A hierarchy of parameters which are related to one another in a model 
Hyperparameter  A parameter in a hyperprior distribution  
Hyperprior 
distribution  

A prior distribution on a hyperparameter, i.e., on a parameter of a prior 
distribution 

Incidence  A measure of the risk of developing a disease within a specified period of 
time  



Indirect method of 
standardisation  
 
 

Apply stratum-specific reference rates to the populations of interest. The 
ratio of two indirectly standardised rates is called the SIR. 

Inference, statistical  In statistics, the development of generalizations from sample data, 
usually with calculated degrees of uncertainty. 

Likelihood Likelihood is a tool for summarizing the data’s evidence about unknown 
parameters. It is the probability of a given sample being randomly drawn 
regarded as a function of the parameters of the population. 

Markov chain  A mechanism for generating plausible parameter value, whereby the 
value to be drawn depends on the previously drawn value in some way 

Markov chain Monte 
Carlo (MCMC)  

A class of algorithms for sampling from probability distributions by 
constructing a Markov chain that has the desired distribution as its 
equilibrium distribution  

Parameter A value used to represent a certain population characteristic which is 
usually unknown and therefore has to be estimated 

Percentile  The set of numbers from 0 to 100 that divide a distribution into 100 parts 
of equal area, or divide a set of ranked data into 100 class intervals with 
each interval containing 1/100 of the observations. A particular 
percentile, say the 5th percentile, is a cut point with 5 percent of the 
observations below it and the remaining 95% of the observations above 
it. 

Posterior distribution  A probability distribution on the values of an unknown parameter that 
combines prior information about the parameter contained in the 
observed data to give a composite picture of the final judgements about 
the values of the parameter  

Predictor A predictor variable is also known as an independent variable 

Prevalence The number or proportion of cases or events or conditions in a given 
population. 

Prior distribution  A probability distribution that represents the uncertainty about the 
parameter before the current data are examined 

Random effects  Effects that account for differences among the individual observational 
units in the sample, which are randomly sampled from the population. 
These effects usually conform to a specified distribution (typically a 
Normal distribution) and have a mean of 0  

Regression  A statistical technique for estimating the relationships among variables. 

Relative excess risk 
(RER)  

A measure that informs the relative survival of a disease, by reporting the 
risk of death within a certain number of years of diagnosis after adjusting 
for broad age groups, compared to the average 

Relative risk A comparison of the risk of some health-related event such as disease or 
death in two groups. 

Relative survival  A standard measure of excess mortality due to a disease in population-
based disease survival studies  

Risk factors An aspect of personal behavior or lifestyle, an environmental exposure, 
or an inborn or inherited characteristic that is associated with an 
increased occurrence of disease or other health-related event or condition. 



Sensitivity analysis  A sensitivity analysis is the study of how the uncertainty in the output of 
a mathematical model or system (numerical or otherwise) can be 
apportioned to different sources of uncertainty in its inputs. 

Standardised 
incidence ratio (SIR)  

An estimate of relative risk within each area based on the population size, 
that compares the observed incidence against the expected incidence  

 
 
 
Part E: Boxes 
Box 1: Bayesian model  

Given Bayes’ theorem (Gelman et al., 2014), 
 

P(A│B)∝P(A)P(B|A) 
 
The posterior distribution (P(A│B)) is proportional to the prior distribution for parameters (P(A)) 
multiplied by the data-based distribution given parameters (also known as the likelihood 
(Appendix Part D)) (P(B|A)). 
• Posterior estimates (model output) are a combination of the prior information and the data  

• Parameter Parameters in the model are assigned prior distributions   

• A prior distribution is the probability distribution that represents the uncertainty about the 

parameter before the current data are examined   

• Parameters in the prior distribution can also be assigned distributions   

• Parameters in the prior distribution (called ‘hyperparameters’) can also be assigned distributions 

  

 
Box 2: Normal distribution  

A distribution contains information on every possible observation and its associated probability. 

For instance, a Normal distribution is a continuous distribution that is “bell-shaped”, at which data 

are most likely to be distributed around the mean and are less likely to be farther away from the 

mean. A Normal distribution is often specified in terms of its mean (µ) and variance (σ2) and can 

be written in the form of Normal(µ, σ2). A parameter can be assigned a Normal distribution with 

mean 0 and variance 100 which can be denoted as parameter~Normal(0, 100). Alternatively, 

instead of specifying the values (0, 100), uncertainty about these parameters can also be described 

probabilistically. For example, instead of specifying ‘100’ for the variance, the prior distribution 

could be written as Normal(0, σ0
2) and then σ0

2 is described by another probability distribution. 

Here σ0
2 is termed a hyperparameter (Appendix Part D) and the distribution on σ0

2 a hyperprior 

distribution (Appendix Part D).  

 



Box 3: Selecting regional scale  

Important questions to consider when deciding on an appropriate area scale to conduct the analysis 

include:  

1. Is there a risk of patient confidentiality being compromised?  

2. Are population data available at the same scale as disease occurrences?  

3. Will boundaries change over time? If so, what options are possible for keeping your data 
consistent?   
4. Is there a digital boundary file available?   
5. Will areas have a practical and relevant interpretation?   
6. How does the size of the areas compare relative to the spatial pattern of the variation? If there is 
a lot of variation in an environmental effect within areas, this will limit the scope to measure the 
effect.   
7. How many areas will there be? This affects computational time.   
8. Are some areas likely to have zero population? This is likely to cause difficulties in modelling 
and estimation, e.g., zero denominator causes difficulties when using a Poisson distribution.   
9. What scale have other similar studies used?   
10. What spatial scale is available for covariate data? If spatial variation that takes fixed effects 
into account is of interest, it is not necessary to have a spatial scale finer than the available 
covariate data.  
 
Box 4: Data required to produce incidence estimates  

Given a disease of interest, the information required to produce incidence estimates includes  

• Number of disease cases among people within a certain time period for each small area  

• Estimated population counts by age group, sex, year and small area of residence − this is used as 

the denominator for calculating rates and for age-standardisation (see Appendix Part D direct 

and indirect methods of standardisation)    

• Geographical boundaries − this is used to compute the adjacency matrix required for spatial 
smoothing   

• Optional: any desired small area level covariates (if available) such as rurality and 
socioeconomic status   

 
Box 5: Data required to produce survival estimates  

To produce relative survival estimates of a disease of interest, the input data required include  

• From the patients with the disease of interest (if not available for each individual then aggregated 

over each small area, any covariates and follow-up time intervals):  

− The observed number of deaths (from any cause) within a certain time period  

− Person-time at risk (the length of time between diagnosis and either death or censoring)   

• General population mortality data used to calculate the expected number of deaths, which 

represents deaths due to causes other than the disease of interest for each small area, sex and 



broad age group  

• Geographical boundaries − this is used to compute the adjacency matrix required for spatial 

smoothing  

• Optional: individual or area-level covariates, including age, tumour stage, or area rurality and 

socioeconomic status  

 
Box 6: Probability distributions used in epidemiology  

• For common diseases, the Binomial distribution models the number of disease occurrences in a 

sample size n from a population size N. The Binomial distribution is also commonly used in the 

analysis of disease prevalence data and case-control studies (see Glossary) (Thomas, 2014).  

• When the disease is rare or less common (i.e., the probability of a disease is small), the Poisson 

distribution is used as an approximation to a Binomial distribution (Wakefield, 2003, 2004). A 

Poisson distribution expresses the probability of a given number of events occurring in a fixed 

interval of time and/or space. 

• For over-dispersed count distributions (where the data admit more variability than expected 

under the assumed distribution), a Negative Binomial distribution may be appropriate (Gardner 

et al., 1995). 

• For empirical data that show more zeroes than would be expected, zero-inflated models may be 

employed (Gardner et al., 1995) 

 
Box 7: The incidence model  

Given a set of n areas, the model for area i (i = 1,…, n) can be written as follows,  

Observed counts in area i � Poisson(expected counts of area i × SIR of area i),  

log(SIR of area i) = intercept term + coefficient × predictor variable vector for area i + spatial 

random effect of area i + unstructured random effect of area i.  

o Apply stratum-specific reference rates to the populations of interest.  

o The ratio of two indirectly standardised rates is called the SIR. 

 
Box 8: The relative survival model  

The model can be written as below, where for area i, follow-up interval j, and age group k,  

Number of deaths(ijk) � Poisson(expected number of deaths(ijk)),  

log(expected number of deaths(ijk) − expected number of deaths due to causes other than disease 

of interest(ijk)) = log(person-time at risk(ijk)) + intercept varied by follow-up year j + 



coefficient(k) × predictor variable vector + spatial random effect of area i + unstructured random 

effect of area i.  

 
Box 9: Prior distributions for the random effects  

Unstructured 

The unstructured random effects are assumed to follow a Normal distribution with mean zero and 

a hyperparameter for variance.  

Unstructured random effect of area i � Normal(0, variance hyperparameter).  

Spatial 

The spatial random effects are assumed to follow a conditional autoregressive (CAR) prior (Besag 

et al., 1991) with some hyperparameters, as follows  

Spatial random effect of area i � Normal (average of spatial effects of neighbours of area i, 

variance hyperparameter / number of neighbours of area i).
  

 
 
 
References 
Gelman A, Carlin JB, Stern HS, Rubin DB, 2014. Bayesian Data Analysis (Vol. 2). London: 

Chapman & Hall/CRC. 
 


