
Abstract 
Outbreaks of Rift Valley fever (RVF) in eastern Africa have previous-

ly occurred following specific rainfall dynamics and flooding events
that appear to support the emergence of large numbers of mosquito
vectors. As such, transmission of the virus is considered to be sensi-
tive to environmental conditions and therefore changes in climate can
impact the spatiotemporal dynamics of epizootic vulnerability.
Epidemiological information describing the methods and parameters
of RVF transmission and its dependence on climatic factors are used
to develop a new spatio-temporal mathematical model that simulates
these dynamics and can predict the impact of changes in climate. The
Liverpool RVF (LRVF) model is a new dynamic, process-based model
driven by climate data that provides a predictive output of geographical
changes in RVF outbreak susceptibility as a result of the climate and

local livestock immunity. This description of the multi-disciplinary
process of model development is accessible to mathematicians, epi-
demiological modellers and climate scientists, uniting dynamic math-
ematical modelling, empirical parameterisation and state-of-the-art
climate information. 

Introduction

Rift Valley fever (RVF) is a vector-borne, zoonotic disease charac-
terised by abortion storms and increased mortality rates in livestock.
This disease is caused by the RVF virus of the genus Phlebovirus in the
family Bunyaviridae. RVF mainly affects domestic animals such as cat-
tle, goats, sheep and camels, among others (Meegan and Bailey, 1988).
Epizootics of RVF have occurred throughout Africa following periods of
extensive rainfall and subsequent flooding, promoting an increase in
the activity of associated mosquito vectors (Bird et al., 2009). The
virus has public health impacts as it can also be transmitted to humans
via infectious mosquito bites or, as in the majority of cases, direct con-
tact with the viraemic blood of an infected animal (via slaughter and
butchery for example see Gerdes, 2002). An outbreak of RVF can also
be economically devastating for the cattle owners and businesses
involved in the trading of livestock due to infection and decimation of
the herd (Peyre et al., 2014).
Since initial identification of the virus in the Rift Valley of Kenya in

1931 (Daubney et al., 1931), RVF has become endemic in eastern
Africa with severe epizootics occurring periodically. RVF epizootics in
this area of Africa appear to correlate with El Niño/Southern
Oscillation (ENSO) climate phenomena as anomalous warming sea
surface temperatures in the eastern equatorial Pacific Ocean and
western equatorial Indian Ocean lead to increased rainfall in the Horn
of Africa (Linthicum et al., 1999; Anyamba et al., 2009). The frequent
outbreaks in eastern Africa are also believed to be associated with
regional susceptibility following diminished host immunity. These
inter-epizootic timescales are therefore linked to the natural mortality
rates of RVF hosts as well as climatic drivers that can initiate major
outbreaks in vulnerable populations (Anyamba et al., 2012). Other fac-
tors that contribute to local RVF outbreaks include topography, soil type
(hydromorphic dambos favour breeding sites in the region), host/vec-
tor population density and multiple lineages of the virus (Nguku et al.,
2010; Pepin et al., 2010; Nderitu et al., 2011). Here, we focus on the
impact of climate variables on RVF, since they are the only spatial data
available over a long time period and for which future scenarios based
on climate models are also available.
In order to determine the climatic conditions that make a particular

region vulnerable to outbreaks of RVF, the relationship between the
population dynamics of the RVF vectors and the local environment
must be understood. Anomalously high rainfall in eastern Africa has
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long been associated with RVF outbreaks due to an increase in tempo-
rary water-bodies serving as vector habitats and the ensuing surges in
numbers of infected mosquitoes. The RVF virus can be transmitted by
over 30 mosquito species and in different regions of Africa there
appears to be some variation between species with respect to the dom-
inant vectors of RVF transmission (Fontenille et al., 1998). However,
Aedes and Culex genera are considered to be the main vectors of the
disease (Pepin et al., 2010; Abdo-Salem et al., 2011). Aedes mosquitoes
are the primary vectors of RVF as they can transmit the virus transovar-
ially to their offspring (Linthicum et al., 1985; Pepin et al., 2010),
whereas Culex vectors must bite an infectious host in order to become
infected. Rainfall conditions influence the population dynamics of
Aedes and Culex due to their breeding site preferences. Aedes mosqui-
toes oviposit on damp ground at the sloped edge of wet depressions.
These eggs require inundation of water in order to hatch but must first
undergo a dehydration period. If required, Aedes eggs can remain viable
by resisting desiccation in dry conditions for months before rehydra-
tion occurs (Mondet et al., 2005; Pepin et al., 2010) and therefore have
the potential to act as resevoirs of RVF (Porphyre et al., 2005) via
transovarial transmission (Davies and Highton, 1980; Rolin et al.,
2013). Culex lay their eggs directly on the surface of water bodies and
as such increase greatly in abundance during periods of heavy rainfall
and flooding and can also therefore amplify any RVF transmission (Bird
et al., 2009; Anyamba et al., 2010). A recent statistical modelling study
which correlated the spatial distribution of the RVF vector Culex tritae-
niorhynchus with bioclimatic variables and land use types highlighted
the importance of rainfall during the warmest months of the year and
the presence of wet muddy substrate (Sallam et al., 2013).
Variation in the viraemia of RVF virus across multiple species of

mosquito from region to region is dependent on many underlying fac-
tors such as the relative distribution and size of indigenous popula-
tions, presence or absence of an epizootic and the timing and method
of field measurements. For example, Aedes vexans and Aedes dalzielei
were found to be the most competent RVF vectors in Senegal (Zeller et
al., 1997) with Aedes vexans being the most infected in West Africa gen-
erally. However, it was mainly vector species of the Culex genus (Culex
poicilipes, Culex quinquefasciatus, Culex tritaeniorhynchus and Culex
antennatus) that were found in Mauritania following the RVF outbreak
in 2003, with only Culex poicilipes carrying the RVF virus, but this was
due to the relatively late measurements in the context of the evolution
of an outbreak (Faye et al., 2007). Aedes mcintoshi and various Culex
species (Culex zombaensis, Culex poicilipes, Culex bitaeniorhynchus,
Culex quinquefasciatus, Culex univittatus) were heavily involved in
RVF virus transmission in Kenya and Tanzania during the large 1997-
1998 outbreak (Himeidan et al., 2014). The 2000 RVF outbreak in Saudi
Arabia is believed to have come from East Africa and transmitted by
Aedes vexans arabiensis and Culex tritaeniorhynchus although only
Culex competence was confirmed (Jupp et al., 2002; Sallam et al.,
2013). We conclude that the important distinction between Aedes and
Culex is in their respective roles at different points during RVF out-
breaks and the potential reservoir behaviour of Aedes rather than rela-
tive viraemia of specific species.
Localised, low-level enzootic transmission of the RVF virus can take

place under relatively normal rainfall (Bird et al., 2008). This underly-
ing circulation of the virus is supported by the transovarial transmis-
sion of Aedes and the dormancy of infected eggs during dry spells.
Under the right environmental conditions, such as uncharacteristically
late, heavy rainfall preceded by a dry period at the end of a rainy sea-
son, low-level transmission can be amplified and a major outbreak of
the disease can occur (Ndione et al., 2003, 2008; Nderitu et al., 2011;
Caminade et al., 2014b). This epizootic transition follows a sequence of

large-scale mosquito proliferation events as large numbers of dormant
infected Aedes emerge following flooding followed by a great increase
in the Culex population due to the flooding-induced emergence of
abundant favourable breeding sites (Bicout and Sabatier, 2004).
Previous RVF modelling efforts using dynamic mathematical models

have largely focused on the epidemic stability of susceptible host pop-
ulations when the virus is introduced (Gaff et al., 2007; Mpeshe et al.,
2011; Niu et al., 2012). These studies comprise theoretical exercises
concentrating purely on transmission during different epidemiological
states independent of climate. The effects of the environment on mos-
quito dynamics have been included in some other recent RVF model-
ling that investigate the fluctuating effects of regional seasonality
using a simple oscillating temperature function (Fischer et al., 2013),
spatial effects via weighted contact networks (Xue et al., 2012), hydrol-
ogy (Soti et al., 2012) and effects of vaccination interventions
(Chamchod et al., 2014). However, quantitative risk assessment of the
impact of climate change on RVF dynamics in Africa has not been car-
ried out. These models do not account for long-term impacts of chang-
ing climate patterns and fluctuating immunity with regional vulnera-
bility to epizootics based on historical and projected climate data. In
cases where climate information has been used for previous model-
ling, it is based on simplified fluctuating analytical functions and
there is no evidence of the nuanced relationships between vector lar-
val development and temperature or Aedes emergence and rainfall
dynamics. Neither do these studies account for the significant differ-
ences between young and adult hosts with respect to infection-
induced mortality (Bird et al., 2009). 
There is a clear need for a quantitative, predictive, dynamic mathe-

matical model that describes the complex relationship between climat-
ic factors, vector life-cycles and host epidemiology through explicit
modelling of the underlying processes involved. The University of
Liverpool Rift Valley fever model (LRVF) was developed in response to
this need as part of the FP7 projects QWeCI and HEALTHY FUTURES
(HF), which aimed to improve climate-health early warning and assess
the health impacts of climate change respectively. The LRVF model was
conceived as a dynamic, climate-driven model of RVF based on pub-
lished parameter and field-based data compiled within the HF project.
Simulations were performed for the East African Community (EAC)
region and validation of the model was based on relevant literature
information. As well as enhancing current understanding of the under-
lying processes and drivers of RVF transmission, the eventual intended
application of LRVF is to provide quantitative, spatiotemporal informa-
tion on RVF epidemiology and epizootic susceptibility as part of an
early warning system that assesses the impact of climate change on
vector-borne diseases in eastern Africa.

Materials and Methods

The LRVF model describes the dynamics of Rift Valley fever trans-
mission and its dependence on climatic factors (rainfall and tempera-
ture). The model (Figure 1A) is mathematically and structurally based
on the Liverpool malaria model (LMM) initially developed by Hoshen
and Morse (2004). It is a dynamic, process-based model that follows a
deterministic compartmental approach to the epidemiology of RVF. In
the mathematical model, assumptions of the transmission characteris-
tics of the vector variables are mainly based upon two distinct species,
Aedes vexans and Culex pipiens, which are well-documented in the lit-
erature. The key motivation for this specification however is a more
generalised abstraction based upon significant differences in breeding
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habits and the vertical transmission discovered by a vector of the Aedes
genus (Linthicum et al., 1985). Therefore we refer to two generic vec-
tor populations for simplicity where the Aedes variable represents the
primary vector corresponding to species displaying RVF reservoir char-
acteristics and the Culex variable represents the secondary vector cor-
responding to amplification species. The host component of the model
is subdivided by treating mature and immature livestock as separate
dynamic variables due to considerably different transmission charac-
teristics. Infection occurs indirectly, via interaction between the hosts
and in this case the two vector populations. Vector and host populations
are divided into classes based on their infection status. These classes
follow the standard epidemiological nomenclature of susceptible (S),
exposed (E) and infectious (I) populations. The host component also
includes the recovered (R) class. Recovered hosts maintain lifelong
immunity (Wilson, 1994). 
Spatiotemporal climate dependence is incorporated into the model via

climate-dependent transmission parameters of the vector component.
Daily temperature and rainfall values are linked dynamically to the
gonotrophic cycle, ovipositioning, larval development and mortality-relat-
ed parameters. Although the link between RVF outbreaks and vegetation
cover favouring vector habitat has been established (Linthicum et al.,
1999), here we use the direct approach of considering rainfall as a driving
variable in order to mechanistically model vector dynamics. Parameters
governing livestock population dynamics have no direct dependence on
climatic factors. The model is effectively driven by gridded climate input
data and provides an output that indicates which geographical areas are
susceptible to increased RVF activity as a result of the state of the climate,
e.g. preceding temporal rainfall dynamics in combination with optimal
temperature ranges, and predicted current livestock immunity. The host
immunity feature of the model adds another layer of complexity whereby
the current climate is not sufficient to determine RVF susceptibility but
also the past climate, and potential recent transmission events, must be
taken into consideration.

The mathematical model was formulated following the creation of a
new generalised disease-modelling library, EpiCS. EpiCS
(Epidemiological modelling toolkit for Climate Sensitive disease) is a
C/C++ library of generic functions which allows any host or vector
process (such as mortality, population growth, biting rate) to be asso-
ciated with any transmission model structure. The toolkit was tested by
recreating the Liverpool Malaria Model. The LRVF model is largely para-
meterised using literature-based data and data collected as part of the
HEALTHY FUTURES project as discussed later. 

Host component
The LRVF model contains age-dependent specification in the host

component for a population of livestock susceptible to RVF virus infec-
tion via vector biting; livestock are divided into two subpopulations
based on age, since immature livestock have a much higher infection-
induced mortality rate. These subpopulations represent neonatal live-
stock and adult livestock. The case fatality ratios for adult livestock are
relatively low and recovery is included in the model for livestock who
escape infection-induced death, and attain lifelong immunity. The sub-
populations are dynamically coupled via new births and the neonatal
mature into adult livestock. The population model is derived such that
in the absence of infection both sub-populations have a unique, stable
steady state. 
The system of equations in Table 1 represents the host component

module of LRVF. Neonatal livestock and adult livestock model variables
are represented by X and Y respectively. Similarly parameters with x or
y subscripts represent parameters pertaining to neonatal and adult
livestock. Subscripts S, E, I and R represent epidemiological classes for
susceptible, exposed (infected but not yet infectious), infectious and
recovered (immune) individuals. Total populations are also defined, 
X = XS + XE + XI + XR, Y = YS + YE + YI + YR, N = X + Y. Superscripts A
and C are used for parameters associated with model vectors Aedes and
Culex. Superscripts t and t+1 denote the value of the variable at time t

                   Article

Table 1. System of difference equations representing the epidemiological model for the livestock component of the Liverpool Rift
Valley fever model and associated parameter definitions.
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and t+1 days respectively. This is a representative extraction of the
module such that the vector component is decoupled for simplicity.
Consider here only the values for infected Aedes and Culex in the biting
stage of the gonotrophic cycle,   ZA

I
and ZC

I
..

New births are assumed to be proportional to the current size of the
total adult livestock population. In order to maintain a robust, idealised
population of livestock a constant influx of adult livestock, c, is intro-
duced. When the disease is present surplus deaths due to infection
must be incorporated. This is implemented via the introduction of an
infected removal term that takes into account the probability, ρ, of an
infected individual dying from the infection before either recovering or
dying from natural causes (Keeling and Rohani, 2008):

and similarly 

N is constant in the absence of infection, i.e., if  , then
N=NC (constant). In order to determine the rate of c we analyse the dis-
ease-free equilibria of the system. In the absence of infection the host
module can be simplified: 

with corresponding steady state(s):

To ensure that X* and Y*are positive we impose the condition

This condition is met by enforcing b=dy such that births match the
deaths of mature cattle. Thus, if the size of the ideally maintained adult
population, Y*, is known for a particular site/farm/region, the constant
crude import rate c is defined:

Vector component
Adult Aedes and Culex vectors in the model are divided into three epi-

demiological classes: susceptible (S), exposed (E) and infectious (I)
(Figure 1A). The system of difference equations governing the vector
component of the model is given in the Appendix. Rainfall has an
important impact on the availability of breeding sites for mosquitoes
associated with transmission of the RVF virus. For the two different
vector populations, Aedes and Culex, the impact is slightly different and

this is represented in the immature vector components of the model.
Culex lay their eggs directly on the surface of water bodies and as a
result can amplify the RVF virus during flooding. Here the availability
of Culex breeding sites is modelled by a simple linear function relating
the number of eggs laid per female mosquito to the mean rainfall over
the previous ten days. Larval mortality is also modelled using a rainfall
function (Table 2A), thereby requiring the persistence of surface water
for full maturation of the vector.
In contrast, Aedes oviposit on damp ground at the edges of water bod-

ies but the eggs require a period of dehydration to develop before
hatching upon rehydration. The Aedes mosquito population are there-
fore modelled using a drying/wetting trigger for the egg stage, driven by
rainfall, a physically based version of the rainfall criteria used in sim-
pler RVF models (Mondet et al., 2005; Caminade et al., 2011). In LRVF,
Aedes eggs require a (configurable) period of NE dry days followed by a
re-wetting event before they can proceed to larval and pupal stages
(Figure 1B). For example, to determine if the drying and wetting con-
ditions (respectively) have been met for a given day for Aedes, rainfall
averages  Dtd and  Dtw over drying and wetting periods �τd and τw are
compared to trigger thresholds �qdry� and �qwet. If the drying condition is
not met, all egg drying development is reset to zero. If the wetting con-
dition is not met, fully dry mature eggs remain at stage and do not
hatch. Transovarial transmission in the virus by Aedes to their offspring
is modelled via a further subdivision of the immature Aedes component
into uninfected and infectious categories (Figure 1A).
The primary effects of temperature on vector population dynamics within

this model are involved in determining the biting rate and daily survival
probability of the mosquito. Three different survival probability parameter-
isations developed for LMM are available within LRVF (Table 2A).
Temperature-dependent biting rates can modify the overall rate of

transmission within the system as well as impacting population
dynamics due to the gonotrophic cycles of Aedes and Culex whereby
ovipositioning follows the ingestion of a blood meal. For example, (T-
Tg)/(Dg+T-Tg) describes the gonotrophic cycle rate of the mosquito
dependent on temperature, T, where Tg is a temperature threshold and
Dg a degree-day threshold. This functional form includes the time taken
for a blood meal to be taken (one day, independent of temperature) and
the time for egg development, Dg/(T-Tg) where T represents tempera-
ture (Detinova, 1962). Published studies for Aedes and Culex mosqui-
toes indicate a gonotrophic cycle length of 2-3 days, consistent with the
default LMM parameterisations of Tg and Dg at environmental temper-
atures of 26 and 44°C respectively (high humidity parameters, as given
in Table 2A).

Parameterisation
This model has initially been developed based on RVF information

gathered from its region of origin, the Rift Valley in eastern Africa.
Opportunely, eastern Africa provides a suitable area to build the model
not only due to its extensive history with RVF but also its diverse clima-
tology and geography including a wide range of altitudes, two different
rainy seasons, wetlands and large freshwater bodies. These incredibly
diverse environmental conditions provide an ideal testing ground for
development, parameterisation and validation of the LRVF model.
Parameter values for the vector component of the model (Table 2A)

are taken from field studies in the literature related to Aedes and Culex
where possible. Where these values are unavailable Anopheles-related
parameters are used based on the original LMM model description
(Hoshen and Morse, 2004). Livestock parameters (Table 2B) are based
on cattle and sheep, and rates are measured with respect to time units
of days. In places, parameterisation of the host module is based on the
Ijara District community-based participatory survey that was conducted

                                                                                                                                Article
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as part of the HEALTHY FUTURES project (Bett et al., 2013), and dis-
cussion with local experts at the International Livestock Research
Institute (ILRI), Kenya. For a summary of LRVF host module parame-
terisation (Appendix). The natural lifespan of the livestock is used for
the basal per capita mortality rate, di. The same natural mortality rate
is assumed for both neonatal and adult livestock. The Maturation rate,
m, is inversely proportional to the age at which infant livestock is no
longer considered neonatal. A frequency dependent (mass action)
transmission term is employed since it is expected that the contact
structure is generally independent of population size for vector-borne
pathogens where vectors far outnumber hosts (Keeling and Rohani,
2008). Therefore, using the transmission between neonatal hosts and
infectious Aedes vectors in the biting stage of the gonotrophic cycle as

an example, the force of infection is defined:

with transmission rate

where s represents the susceptibility of the host, i.e., the probability of
becoming infected following a bite from an infectious vector and �κ effec-
tively represents a (temperature dependent) per capita biting rate:

                   Article

Figure 1. Schematic diagram of a prototype dynamic Rift Valley fever (RVF) model. The prototype Liverpool RVF model structure is
described in (A) with separate vector components for Aedes and Culex and separate epidemiological compartments. Transmission is
dependent on cross-infection between vectors and hosts. Climate dependent processes are indicated by different arrow colours for tem-
perature (orange) and rainfall (blue). A detailed representation of the model structure for the Aedes mosquito larval stage is provided
in (B) highlighting the rainfall trigger process required for Aedes emergence following a drying period.
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Table 2. Parameters of the Liverpool Rift Valley fever model for vector (A) and host (B) modules.

Continue on next page.
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Table 2. Continued from previous page
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The biting rate is proportional to the livestock blood index, or LBI,
which indicates the proportion of mosquito bites assumed to be on cat-
tle or sheep (rather than other mammals), and the gonotrophic cycle
rate. For further information regarding the derivation of this transmis-
sion term see the Appendix. The incubation parameter, si, is defined as

the inverse of a 3.5-day latent period (Turell et al., 1985; Gaff et al.,
2007; Niu et al., 2012) and the recovery rate is based on a 6.5-day infec-
tious period (Bird et al., 2009; Nfon et al., 2012). The infection-induced
mortality probability, i.e., the probability of dying due to RVF infection
before recovering, is based on case fatality rates (Bird et al., 2009). 

Climate data, epidemiological data, and model simulations
Model simulations were driven using climate data for 1998 to 2010.

A combination of ERA-Interim reanalysis (temperature) and Tropical

                                                                                                                                Article
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Figure 2. Rainfall and temperature conditions for Kenya and Arusha from 1998 to 2010. Mean climatic conditions for the period are
plotted in (A) for the entire region with study sites marked for the Garissa District (circle) and Arusha (square). Time-series are also
plotted in (B) for study sites. Fifty day smoothing has been applied to the daily time-series provided by ERA-Interim temperature and
Tropical Rainfall Measuring Mission v7 data. 
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                   Article

Rainfall Measuring Mission (TRMM) (rainfall) satellite climate data
were used. ERA-Interim (Dee et al., 2011) is a global atmospheric
reanalysis dataset from January 1979 to the present day providing daily
values for temperature in our model. The TRMM (Huffman et al., 2001)
monitors tropical rainfall via satellite and provides a daily rainfall
amount to LRVF. Climate data were extracted for the domain 34°E to
42°E, 5°N to 5°S (Kenya and NE Tanzania) at a resolution of 0.25° and
used to drive the LRVF model. The model state was initialised for 12
months using the input data for 1998.
Ideally, model calibration and validation would be carried out with

reference to detailed fine temporal resolution epidemiological data of
past RVF epizootics. In the absence of such records, calibration and
structural validation of LRVF was achieved by comparison of the timing
of peaks in the modelled disease transmission with training events for
specific case studies based on the most severe RVF epizootics that
occurred in both Kenya and Tanzania in 1997/98 and 2006/07
(Himeidan et al., 2014). The origins of these major outbreaks were the
Garissa district, Kenya, and Arusha, Tanzania.
Peaks in infectious vector activity were used to calibrate model out-

put. This metric is typically quantified by epidemiologists using the
entomological inoculation rate (EIR) for the vector of the system
(Kelly-Hope and McKenzie, 2009). The EIR of the Culex vector was a
particular source of focus for the understanding of model dynamics.
The motivation behind this is that Culex is the amplifying vector that,
in the model, only shows significant spikes in population dynamics fol-
lowing flooding and a sizeable Culex EIR value can only be the result of
a large population of Culex that has become infected via transmission
from a substantial amount of infectious hosts. These factors are there-
fore indicative of an epizootic. In contrast, population surges of Aedes
are less sensitive to sustained rainfall and waterlogged surfaces due to
a more complex relationship with rainfall patterns, and the vertical
transmission makes interpretation of EIR dynamics more complicated
when compared to Culex. 

Results

Preliminary calibration and examination of the model
for severe outbreak locations
Rainfall is concentrated in the west of the region towards Lake

Victoria while the temperature is highest in the relatively lowland
areas of Kenya including the Garissa district (Figure 2A). A closer look
at the specific study-sites of the Garissa district and Arusha in 
Figure 2B suggest that generally Arusha is wetter and cooler than the
Garissa district over the study timescale.
Model dynamics were explored for these locations by varying the

parameters governing the ovipositioning rates in Culex and Aedes, ΓC
and ΓA, together with the host-vector transmission probability for
Culex, ezc. The remaining model parameters were obtained from the lit-
erature for RVF, or, where unknown, from the default vector model set-
ting used in the Hoshen and Morse (2004) model for Anopheles spp.
malaria vectors. A final calibrated setting for ΓC, �ΓA, and ezc was
obtained by comparing the model peaks in Culex EIR with the timing of
observed outbreaks in 1997/98 and 2006/07, adjusting the parameters
such that both vectors could equally contribute to disease transmission,
and that the 1997/98 and 2006/07 were resolved (as distinct from back-
ground variability). Figure 3 shows plots of EIR dynamics for both Aedes
and Culex and RVF incidence versus time for the two regions, Garissa
and Arusha, for the final setting. Incidence is defined here as the num-
ber of new cases per day. There is qualitative agreement between sig-

nificant increases in LRVF incidence in these plots at the expected
times (1997/98 and 2006/07) based on observations of major RVF epi-
zootics. Note that mean incidence generally coincides with relatively
wetter, cooler regions. Indeed, the lower magnitude of incidence in the
Garissa district is due to the higher temperatures in this region,
decreasing mosquito survival probability (for the more punitive default
survival scheme used in this example). This is why only negligible
Culex EIR is seen in the Garissa district for this parameterisation, and
incidence peaks track peaks in Aedes EIR, which themselves are at least
a factor of ten lower than the Aedes EIR for Arusha. Here, sustained
rainfall and lower temperatures support higher and more frequent
peaks in Aedes EIR. The circulation of the virus is amplified by large
peaks in Culex EIR following climatic conditions that support large
increases in the local Culex population (Figure 4) which translate to
spikes in incidence of RVF in the livestock population. 
The impact of mosquito survival scheme was further investigated by

considering the mean LRVF model outputs over the region for the two
alternative mosquito survival schemes described in Table 2A: the orig-
inal default scheme (based on Martens et al., 1995), and a second
scheme based on Craig et al. (1999). The two schemes yield similar
survival probabilities at temperatures below approximately 20°C, but
for higher temperatures, the Craig et al. (1999) scheme is more per-
missive. Plots of mean EIR for Aedes and Culex together with mean
incidence for immature livestock for the two schemes are shown in
Figure 5. The western region of Kenya, where there is near-continuous
year-round rainfall and Culex presence, dominates mean transmission
by Culex for the default Martens scheme (Figure 5A). For the Craig
scheme (Figure 5B) this region is still dominant but more extensive,
and transmission is also seen on the Kenyan coast. The more permis-
sive survival scheme of Craig et al. has a dramatic impact on Aedes,
with much higher transmission in the high-temperature north-western
and south-eastern regions. Significantly, the Craig et al. (1999)
scheme results in higher levels of RVF cases in livestock in the Garissa
district (approximately 0.5S, 39.5E), consistent with the large 1997/98
and 2006/07 outbreaks reported for this region. This result suggests
that the Craig et al. (1999) scheme is a better approximation for sur-
vival of RVF vectors. LRVF model runs using this scheme will therefore
be considered in the following results.

Spatial distribution of Rift Valley fever transmission
and the 2006/07 outbreak
The 2006/07 RVF outbreak in Kenya followed heavy rainfall in

November 2006 leading to flooding in north-eastern Kenya and
Somalia. Growing evidence of an epidemic led to mosquito surveillance
first in the Garissa District and then three other areas in eastern, cen-
tral and western Kenya in the early months of 2007, as reported by Sang
et al. (2010). These locations, each characterised by different environ-
mental conditions, provide a useful focus for detailed exploration of the
2006/2007 outbreak as simulated by the LRVF model.
LRVF model variables for 2006/2007 season are shown in Figure 6.

For the region around Garissa, rain begins in October and peaks in
November, and this is associated with mass Aedes emergence (Figure
6A and B). Aedes transmission responds immediately (Figure 6C), indi-
cating rapid emergence of infected Aedes as simulated by the model.
The Garissa Culex population remains relatively low, peaking in
January (Figure 6D), approximately two months after the peak rain. In
January, the model-simulated Aedes EIR has already fallen to back-
ground levels around Garissa, and consequently the model does not
simulate an amplification of RVF transmission by the Culex vector in
this location. Interestingly, this seems consistent with the findings of
Sang et al. (2010) who report that while both Aedes and Culex mosqui-
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toes were collected from sites around Garissa between December 2006
and March 2007, only Aedes were found to be infected with RVF, despite
the presence in abundant numbers of Culex poicilipes, a known vector
of RVF. The authors also report lower parity rates found for Culex spp.
mosquitoes from Garissa compared to Aedes (69 and 95 to 100% respec-
tively in January), consistent with a delay in the emergence of Culex. 
Around Kilifi (approximately 3.5S, 40E), the rainy season is longer

and lasts from September to January. Modelled Aedes population and
EIR peak in October, but, unlike Garissa, there are indications of trans-
mission by Aedes through to January for this region. The simulated
Culex population, while small for most of the year, exhibits a large
increase in January (Figure 6D), and Culex EIR (Figure 6E) indicates
some transmission by Culex in January and February with a correspon-
ding secondary peak in immature livestock incidence (Figure 6F) in

February. Again this seems consistent with the findings of Sang et al.
(2010) who report that both infected Culex and infected Aedes were col-
lected from the Kilifi sites in January 2007.
Baringo (approximately 0.5N, 36E), in the Rift Valley, lies within the

high rainfall western region for which the model simulates year-round
Culex presence, with EIR peaking between September and January.
This location is on the very edge of the area of modelled Aedes emer-
gence (and corresponding transmission by Aedes), which occurs in
October and November, and to a lesser extent, in February and April
(not shown). Sang et al. (2010) report that mosquitoes collected in
February 2007 around Baringo were predominately of the Mansonia
spp., although Aedes, Culex and Anopheles spp. were also collected.
From the model results we might have expected both infected Aedes
and Culex to be present, but Sang et al. (2010) report infection was only
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Figure 3. Liverpool Rift Valley fever  model output for Aedes entomological inoculation rate (EIR) (A), Culex EIR (B) and immature
incidence (C) produced using ERA-Interim Temperature and Tropical Rainfall Measuring Mission v7 rainfall input values for the peri-
od 1998-2010 in the Garissa District, Kenya and Arusha, Tanzania. Parameter setting: ΓC=0.3, ΓA=10 mm–1, eC=0.9, default mosquito
survival (Martens et al., 1995).
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found in the Mansonia and Culexmosquitoes, with only small numbers
of these being Culex. Finally, Kirinyaga, a highland region located on
the southern slope of Mount Kenya, lies within a distinct area where
for 2006/7 there are high levels of simulated Culex and low levels of
Aedes. For 2006/7, the EIR plots (Figure 6C and E) indicate very little
transmission of RVF by either vector, most likely because of the nega-
tive impact of cooler temperatures (around 18°C) on the modelled vec-
tor biting rates. There is some agreement here of the model with the
field data; Sang et al. (2010) reported that while both Aedes and Culex
mosquitoes were collected at the sites round Kirinyaga in February
2007, the majority were Culex, and no RVF infections were detected.

Discussion

Transmission of the Rift Valley fever virus is sensitive to driving
environmental factors and in particular the local climate. From major
outbreaks to low-level transmission during inter-epizootic periods, cli-
mate impacts RVF transmission via the lifecycles and activity of the two
chief vectors. The LRVF model distinguishes between two different
genera of vector that transmit RVF: Aedes and Culex, as well as dividing
the host module into mature and immature livestock categories due to
significantly different case fatality ratios. Infection is indirect via inter-
action between the hosts and vectors whose populations are divided
into classes based on their infection status. Recovered hosts acquire
lifelong immunity. LRVF describes the epidemiology of hosts and vec-

tors as determined by climate-dependent transmission parameters.
Climate signal dependence is incorporated into the model by using
observed daily temperature and rainfall values to drive the model,
which then affect various rates including larval development,
gonotrophic cycle, ovipositioning and mortality related parameters. 
The climate-driven LRVF simulations presented here appear to cor-

rectly capture the timing and locations of the 1997/98 and 2006/07 out-
breaks. Furthermore, the EIR and incidence dynamics do not simply
track either or both of the vector population dynamics, highlighting the
complexity of RVF transmission and its correlation with climate, and
comparison with field data for 2006/07 suggests the model is also capa-
ble of capturing the more sophisticated dynamics of infection in the
vector population. That the model can produce these results without
extensive local calibration and fine-tuning of parameter values is very
encouraging. These results partly validate the structure and nature of
the climate-epidemiology relationships inherent within LRVF. That is,
the qualitative dynamics of the model, which are translated to epizootic
characteristics, are features that result directly from the mathematical
kinetic terms, network topology and driving climate data. These results
are therefore not imposed by statistical data-fitting or simple correla-
tive empirical relationships but from the description of underlying
physical processes that contribute to RVF transmission and thus
enhance our understanding of the epidemiology of epizootic suscepti-
bility. The impact of RVF outbreaks can be devastating both economi-
cally, due to stock depletion and restriction of trade, as well as from a
public health perspective. Improved understanding of the relationship
between climate and RVF transmission can help local decision makers

                   Article

Figure 4. Liverpool Rift Valley fever  model output for total Aedes (A) and Culex (B) population dynamics in the Garissa district and
Arusha between 1998 and 2010. Parameter setting: ΓC=0.3, ΓA=10 mm–1, εC=0.9, default mosquito survival (Martens et al., 1995).
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to anticipate and mitigate future epizootics. The inclusion of climate as
the key input signal for these dynamics allows us to predict the poten-
tial impact on disease over a wide range of spatial and temporal scales,
from using local weather forecasts for epizootic early warning to using
long-term climate model projections to assess the impact of global cli-
mate change on RVF. Modelled outputs in combination with local
knowledge will provide the most effective tools for anticipating infec-
tion risk appropriate to short-term decisions of health professionals
and long-term policies of governments in susceptible countries. 
Whether regions susceptible to increased RVF transmission in the

future are capable of supporting a major outbreak depends on short
timescale rainfall dynamics as well as the local vector population and
state of host immunity. Since the model dynamics are essentially deter-
mined by dynamics of the climate input values, the quality of such data
is vital in providing predictive response of sufficient accuracy to advise
decision makers. Evaluating the quality and accuracy of climate data
and climate models is a complex task in itself and previous studies
have used ensemble methodologies in an attempt to address the issues
of uncertainty between different sources of data (Caminade et al.,
2014a; Leedale et al., 2016). This must be taken into consideration for
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Figure 5. Impact of mosquito survival scheme on mean Liverpool Rift Valley fever  model outputs for the period 1998-2010. A) Scheme
based on Martens et al. (1995); B) scheme based on Craig et al. (1999). i) Aedes entomological inoculation rate (EIR), ii) Culex EIR,
and iii) immature incidence. The other parameters were set to the values given in Table 2.
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Figure 6. A) Tropical Rainfall Measuring Mission rainfall and B-F) Liverpool Rift Valley fever (RVF) model outputs for September 2006
to February 2007; B) Aedes population; C) Aedes entomological inoculation rate (EIR); D) Culex population; E) Culex EIR; and F)
immature livestock RVF incidence. The Craig et al. (1999) survival scheme was utilised. The other model parameters were set to the cal-
ibrated values given in Table 2. Approximate centres of field study locations as described by Sang et al. (2010) are labelled as G (Garissa),
K1 (Kilifi), B (Baringo) and K2 (Kirinyaga).
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future work involved in future scenarios and the impact of climate
change. Despite initial parameterisation of this model being based in
eastern Africa it is anticipated that LRVF will translate well in the
future for studying areas outside of this region by refining parameter
settings depending on local conditions and the ecological relationships
between vector, host and environment. 
A challenge in mechanistic disease modelling is in selecting a suffi-

ciently complex formulation to adequately capture important disease
dynamics without excessive calibration of unknown parameter values.
This is particularly relevant for applications where disease data for cal-
ibration and validation is limited. Here, we base our model on two
generic vectors, assuming that by doing so we can represent the mean
contribution over sub-populations for which feeding preferences and
(for Aedes spp.) vertical transmission characteristics will vary. 
A further area where LRVF could become more refined and quantita-

tively accurate is the relative spatial densities of the host and two vec-
tors whose population dynamics and breeding ground fluctuations have
such a great impact on transmission events and epizootic behaviour.
The inclusion of more explicit spatial information would be dependent
on the model application, however; for climate change applications
both historical information and future projections are required. For
example, we would expect the spatial variation in human population
settlements to impact on RVF transmission; however reliable estimates
varying in space and time are not available at sufficient resolution over
such a large region and long period. Recent research initiatives such as
the Afripop project (Tatem et al., 2007) and the use of recent mobile
phone technologies to monitor human population movements (Deville
et al., 2014) are promising; and they should be included in future model
development. Here, we have considered transmission potential given a
continuous low-level background source of infection in the vector pop-
ulation, neglecting the impact of imported animals on RVF transmis-
sion. Livestock trading and movement are often considered a primary
factor in the spread of the disease to previously unaffected areas (Di
Nardo et al., 2014; Hassan et al., 2014), and ideally, future develop-
ments of the model would include detailed geo-referenced and time-
varying animal movements; however, such historical datasets are not
generally available for large areas of Africa. 
The challenges of modelling Rift Valley fever lie within its complex

vector-host structure and intermittent, epizootic nature. Compared to
the relatively well-studied modelling of malaria for example, identifying
and replicating the spatiotemporal transmission of RVF is an inherent-
ly more dynamically complex problem. This is partly due to the multi-
scale nature of RVF, where short timescale dynamics of severe RVF epi-
zootics are contrasted with longer-term weather events, low-level
enzootic activity and immunity prevalence. It is also relatively difficult
to evaluate the current transmission and immunity states of the system
when compared to other more endemic vector-borne disease such as
malaria. These problems lead to difficulties in verifying mathematical
models that aim to describe and quantify the epidemiological sequence
of events of climate-dependent disease transmission covering large
areas over long periods of time. Increased surveillance data is crucial
during major epizootic events but sufficient inter-epizootic data may
prove more difficult to acquire and justify to decision makers, especial-
ly among potential alternative RVF reservoirs. 

Conclusions

Finally, by considering only the climate-related component of RVF
risk, the model developed here can only form part of a suite of tools nec-

essary to provide a comprehensive assessment of potential future RVF
distributions and dynamics. Accurate prediction of the location and
timing of epidemics, will require a combination of climatic risk togeth-
er with detailed local serological and ecological information (Nanyingi
et al., 2015). Furthermore, risk assessment must account quantitatively
for both exposure via disease-enhancing environmental conditions,
and vulnerability of an exposed population. A preliminary assessment
of future RVF risk, using LRVF driven by climate projections in combi-
nation with a spatial vulnerability assessment for eastern Africa is
described by Taylor et al. (2016). Future work will expand this assess-
ment to include the impact of uncertainty in both RVF model formula-
tion and climate projections on our understanding of the future poten-
tial impact of RVF. 
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