
Abstract

Schistosomiasis continues to impact socio-economic development
negatively in sub-Saharan Africa. The advent of spatial technologies,
including geographic information systems (GIS), Earth observation
(EO) and global positioning systems (GPS) assist modelling efforts.
However, there is increasing concern regarding the accuracy and pre-
cision of the current spatial models. This paper reviews the literature
regarding the progress and challenges in the development and utiliza-
tion of spatial technology with special reference to predictive models
for schistosomiasis in Africa. Peer-reviewed papers identified through
a PubMed search using the following keywords: geo-spatial analysis OR
remote sensing OR modelling OR earth observation OR geographic
information systems OR prediction OR mapping AND schistosomiasis
AND Africa were used. Statistical uncertainty, low spatial and temporal
resolution satellite data and poor validation were identified as some of
the factors that compromise the precision and accuracy of the existing
predictive models. The need for high spatial resolution of remote sens-

ing data in conjunction with ancillary data viz. ground-measured cli-
matic and environmental information, local presence/absence inter-
mediate host snail surveys as well as prevalence and intensity of
human infection for model calibration and validation are discussed.
The importance of a multidisciplinary approach in developing robust,
spatial data capturing, modelling techniques and products applicable
in epidemiology is highlighted. 

Introduction

Schistosomiasis, caused by Schistosoma haematobium and S. man-
soni, is a disease that mainly affects under-resourced communities
and is often not prioritized in national budgets in sub-Saharan Africa
(WHO, 2014). Approximately 600 million people are at risk worldwide
and over 200 million people are infected (Chitsulo et al., 2000; King,
2009). The Schistosomiasis Control Initiative (SCI) works with
national governments in sub-Saharan Africa to control and eliminate
schistosomiasis. A recent national schistosomiasis survey contributed
to the development of the schistosomiasis and soil transmitted
helminths (STH) National Control Program in Zimbabwe that involves
mass drug administration (MDA) (Midzi et al., 2014). Despite the
efforts to control the disease in sub-Saharan Africa, 80-95% of the
global, total number of schistosomiasis infected individuals still live in
Africa (WHO, 2002; Steinmann et al., 2006; Utzinger et al., 2009;
Hurlimann et al., 2011). It is estimated that about 200 000 deaths per
year are caused by schistosomiasis in sub-Sahara Africa (WHO, 2014).
The distribution of schistosomiasis is reflected by the geographical
distribution of the intermediate host snail species (Despommier et al.,
1994), which is a well-known phenomenon but difficult to predict and
monitor. It is envisaged that knowing the drivers of the current distri-
bution of schistosomiasis could improve our understanding on how cli-
mate and environmental changes may influence the distribution of
schistosomiasis in the future. This is critical to effectively and effi-
ciently manage surveillance, control and prevention of the disease
(Stensgaard et al., 2005). King et al. (2006) emphasize that the next
generation of schistosomiasis control will be optimized using new
monitoring tools and effective transmission containment. Enhanced
by the advancements in statistical ecological modelling, spatial tech-
nologies which provide spatial data and tools for spatial analysis and
predictive modelling have opened a new way for developing such mon-
itoring tools. The development of geo-spatial technology such as geo-
graphical information systems (GIS) and global positioning system
(GPS) have facilitated the integration of Earth observation (EO) driv-
en environmental parameters with health data for the development of
disease surveillance and control models (Beck et al., 2000). GIS appli-
cations in public health include the estimation of spatial variation of
disease, determination of risk factors of disease, and improved deliv-
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ery of health services (Tanser et al., 2003). This review looks at the
progress and challenges in the application of spatial technologies in
mapping and modelling schistosomiasis in Africa. It was inspired by
the works of Brooker et al. (2002a) and Brooker (2007) and Simoonga
et al. (2009), who published detailed reviews of the past developments
and use of GIS and remote sensing in schistosomiasis mapping and
modelling in Africa. The potential future research priorities with
emphasis on application of spatial technology in schistosomiasis model-
ling at local levels in Africa are discussed. 

Selection criteria for the literature search under-
taken

This review is based on a systematic search for relevant literature in
the PubMed electronic search engine (http://www.ncbi.nlm.nih.gov/
pubmed) following the method used by Simoonga et al. (2009). This
search considered the studies using geo-spatial technologies for schisto-
somiasis prediction, modelling and mapping in Africa based on the follow-
ing combination of terms and Boolean operations: geo-spatial analysisOR
remote sensing OR earth observation OR geographic information systems
OR prediction OR mapping OR modelling AND schistosomiasis AND
Africa. Any literature which did not satisfy these criteria was excluded.
The snowballing technique was used to obtain more literature based on
the bibliography or reference list of previous reviews obtained by the
search strategy described above. Literature on schistosomiasis without
the element of geo-spatial analysis were used to strengthen the discus-
sion and understanding why geo-spatial technology has been and/or can
be used to understand the schistosomiasis transmission. The relevant lit-
erature was used to determine the levels of appreciation and use of geo-
spatial technology in schistosomiasis modelling and/or mapping by
extending the yearly publication graph by Simoonga et al. (2009). These
authors accessed the PubMed database in early 2009 and gave a snapshot
of the number of publications on GIS and remote sensing applications
used with reference to schistosomiasis in Africa between 1996 and 2008.
In this review, we extended the snapshot up to 2013 using the methodol-
ogy mentioned above. 

Search results

The search for literature conducted for the period 2009 - 2013 revealed
59 hits of which 36 were considered relevant. The relevant publications
(36) were further categorized by year of publication and combined with
Simoonga et al. (2009) results for the period 1996-2008 as presented in
Figure 1. The annual number of publications on remote sensing and GIS
with application to schistosomiasis in Africa has generally increased over
the years as shown in Figure 1. This indicates the increased appreciation
and usefulness of geospatial technology for schistosomiasis control and
management through mapping, modelling or prediction. The key publica-
tions from 2009 to 2013 and 2 from 2008 which were not captured by
Simoonga et al. (2009) as well as one for 2014 were categorized into the
following three groups: modelling intermediate snail hosts (Table 1),
modelling schistosomiasis (Table 2) and those modelling co-infection or
co-endemicity of schistosomiasis and STHs (Table 3).  The subsequent
sections give a detailed discussion based on these publications as well as
those mentioned elsewhere for example by Simoonga et al. (2009).
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Progress in geo-spatial technology application
in schistosomiasis modelling

Spatial technologies have provided an invaluable analytical tool to
better understand the determinants and distribution of schistosome
infections in Africa (Figure 1 and Tables 1-3). It is well known that cli-
mate and environmental factors determine the distribution of schisto-
somiasis (Appleton, 1978; Brown, 1994; Brooker, 2002) hence it is
restricted in space and time by environmental factors (Rollinson et al.,
2001; Malone, 2005). In this regard, spatial technologies are useful in
understanding the distribution of parasites and their hosts as depicted
in the maps showing the interplay with spatial and temporal features
of the environment. The general objective of the models is to link the
variables related to schistosomiasis transmission or snails with spatial
parameters (Simoonga et al., 2009). Most studies use spatial modelling
techniques such as logistic regression (Brooker et al., 2001, 2002b),
Maxent (Stensgaard et al., 2013; Pedersen et al., 2014), genetic algo-
rithm for rule-set prediction (GARP) (Stensgaard et al., 2006), general-
ized linear models (GLMs) and generalised additive models (GAMs)
(Pfukenyi et al., 2006). There are also non-regression models such as
the Bayesian geostatistical approach for modelling intermediate host
snails distribution and prevalence of schistosomiasis (Raso et al., 2005;
Vaunatsou et al., 2009; Schur et al., 2013). The use of GIS and remote
sensing in these models has contributed towards optimized schistoso-
miasis control efforts at different spatial scales through identifying vul-
nerable populations for mass treatment (Brooker, 2007) and permitting
more rational allocation of resources for cost-effective control (Beck et
al., 1997, 2000). However, there are limitations with regards the appli-
cability and robustness of these models that compromise their effec-
tiveness in promoting community public health especially at local lev-
els. 

Geo-spatial technology in schistosomiasis mod-
elling: pros and cons 

Earth observation has been providing spatial data (and will continue
to do so) for developing GIS models for predicting and mapping the risk
of schistosomiasis, mostly in inaccessible regions of Africa and in sce-
narios involving environmental or climate change. However, there are
still challenges which warrant further research and refinements/
improvements (Herbreteau et al., 2007; Simoonga et al., 2009). In the
early stages of the development of GIS and remote sensing technology,
the main challenge was the possible resistance to the uptake of EO
technology mainly attributed to costs of image processing equipment,
expertise and subsequent ground validation (Hay, 1997). To date, it
might be true that remote sensing has not become the wonder tool as it
was expected to be, to echo Herbreteau et al. (2007), mainly because of
limited capacity in processing and use of remote sensing data especial-
ly in Africa. EO data requires processing and understanding of the pur-
pose for which it is intended without which the output may be as mean-
ingless as the raw data. Therefore the existing schistosomiasis predic-
tive models are weakened by several factors, including statistical
uncertainty in variable selection criteria and methods used, low spatial
resolution, failure to utilize the temporal aspect of EO data for spatio-
temporal prediction of schistosomiasis, limited application of the devel-
oped models in different areas as well as uncertainty and lack of vigor-
ous validation as discussed below.

Unjustified variable selection criteria

The role of non-climatic factors such as topography, distance to
water and soil types have been considered in large-scale studies
(Tables 1-3). However they have not been given considerable attention
compared to climatic factors as determinants of the spatial distribution
of schistosomiasis particularly at the local level. These factors could
easily be mapped using GIS to determine their influence on schistoso-
miasis transmission. For example, the distance to water determines

                                                                                                                               Review
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Figure 1. Number of publications pertaining to remote sensing
and geographic information system with application to schisto-
somiasis in Africa from 1996 to 2008 (Simoonga et al., 2009)
and 2009 to 2013 (this review).

Figure 2. Theoretical framework for a schistosomiasis predictive
modelling.
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the human water-contact behaviour, which has a strong influence on
the prevalence and intensity of schistosomiasis (Stensgaard et al.,
2013; Chimbari et al., 2003). Furthermore, studies have shown that
Biomphalaria pfeifferi can tolerate a maximum flow speed of up to 0.3
m/s (Appleton, 1978; Kloos et al., 2001) and soil types determine the
water-soluble calcium (Ca) and pH levels. Together, these factors have
an effect on the presence and density of snails that ultimately decides
the risk for infection. Further, Raso et al. (2005) observed that distance
to permanent rivers was significantly associated with S. mansoni infec-
tion in the non-spatial logistic regression but showed no significant
association in spatially explicit models. Saathof et al. (2002) also con-
cluded that most of the environmental factors (slope, distance to water
and vegetation cover) inadequately explain the spatial pattern of schis-
tosomiasis infection at the sub-district level except with regard to alti-
tude. Although this is probably true, this assertion still requires further
investigation.  Moreover, rainfall and temperature were not used in this
particular study as the necessary data for that spatial resolution were
not available and it was anticipated that the variation within such a
small area would have been small (Moodley et al., 2003). Rainfall and
normalized difference vegetation index (NDVI) have been widely used
as proxies for water availability. In their study, Standley et al. (2012)
noted that water availability may be insignificant in the context of per-
manent large water bodies. However, the significance of these environ-
mental factors may still need to be investigated as they may be proxies
for water availability in temporal and spatial modelling of schistosomi-
asis at the local level. 
In their large review, Simoonga et al. (2009) noted that a few

researchers have attempted to relate disease prevalence and socio-eco-
nomic profiles of the local population using GIS applications. Such
analyses may be linked to intermediate host snails distribution
datasets explained by EO environmental and climatic factors.
Schistosomiasis is heterogeneous, so there is need to undertake
localised studies to establish exposure risk factors and link water con-
tact patterns with malacological surveys (Simoonga et al., 2008). Schur
et al. (2013) used Bayesian modelling and they believe that their model
could have performed better if they had included intermediate host
snail data. Sturrock et al. (2013) highlighted the need to consider loca-
tions of transmission sites and not just distance to water bodies (a
river in their case) to improve the performance of their prediction
model. Simoonga et al. (2009) reported that socio-economic factors,
such as availability of sanitary facilities and safe water supply may bet-
ter explain different levels of transmission at local-scale than for
instance, poverty quintiles as seen in a the micro-level study in Côte
d’Ivoire by Raso et al. (2005). Chimbari et al. (2003) attributed differ-
ences in schistosomiasis distribution and intensity between Lake
Kariba (Zimbabwe) and Siavonga (Zambia) (10 km apart) to different
sanitation (better in Lake Kariba) and access to water from the lake
(easy access for Siavonga compared to Kariba). Seto et al. (2012) used
wearable GPS data-loggers for mapping and assessing the exposure of
women and children to risk factors such as access to water. This, how-
ever may have influenced behaviour and affecting the performance of
the prediction model. This opens avenues for further research as the
inclusion of these factors may improve the performance of the model.

Statistical uncertainty

The use of simple threshold analysis (Malone et al., 2001) or logistic
regression (Brooker et al., 2001, 2002a; Ekpo et al., 2008) modelling to pre-
dict infection risk are both limited by the inability of these methods to con-

sider spatial correlation of infection and environmental variables. This
leads to underestimation of standard errors of covariate coefficients result-
ing in erroneous inference and justifies the need for assessment of uncer-
tainties inherent in data and modelling techniques (Brooker, 2007).
Variable selection in predictive modelling is a major challenge due to ana-
lytical problems caused by over-fitting, confounding and non-indepen-
dence of data (Craig et al., 2007). Schistosomiasis transmission predictive
models mostly derived from regression models are conservative, because
they use only a few (two or three) climate variables to model the disease.
While this is simple to understand as required in most models, it could be
more reasonable and realistic to include more factors such as the effects
of sanitation, water-related activities (Simoonga et al., 2009; Stensgaard et
al., 2013), snail presence and absence data (Moodley et al., 2003; Schur et
al., 2013). The mapping of infected snails could also help clarify the com-
plex interaction between snail, parasites and the environmental factors
that are usually used to predict the distributions (Simoonga et al., 2009).
However, the approach requires systematic and repeatable staged variable
selection procedures, including spatial analysis to achieve a parsimonious
model with the desired level of internal and external validity (Craig et al.,
2007). This could be resolved by using the machine-learning algorithms
such as Maxent (Stensgaard et al., 2013; Pedersen et al., 2014) and GARP
(Stensgaard et al., 2006), which can handle larger number of variables
(continuous and categorical) than regression models. Bayesian geostatis-
tical approach has been widely used in schistosomiasis modelling over the
seven latest years (Raso et al., 2005; Clements et al., 2006; Vaunatsou et al.,
2009; Schur et al., 2011a, 2011b, 2011c; 2013). This approach is regarded
as a flexible and robust (Brooker, 2007) that takes into account spatial vari-
ability of epidemiological and environmental data as it uses the semivari-
ogram of the spatial process (Chiles and Definer, 1999). However, only a
few aspects of geostatistical methods have been explored in schistosomia-
sis modelling. For example isotropy is more often used than anisotropy
(Simoonga et al., 2008; Vaunatsou et al., 2009). Isotropy is independent of
location and direction and assumes that spatial correlation is only a func-
tion of distance (Gosoniu et al., 2009). This is contrary to anisotropy, which
assumes that spatial correlation is a function of distance in relation to both
location and direction. It is likely that there is high correlation of intensity
and prevalence of schsistosomiasis towards transmission sites
(Vaunatsou et al., 2009) and linked to the main flow direction of the river
(Beck-Wörner et al., 2007).  Schur et al. (2013) applied anisotropy at the
regional scale in East Africa and recommend the application of this method
at the local scale. These authors emphasise that ignoring anisotropy could
influence the strength of association and thus also the spatial range
parameter estimates, which might reduce model ability, especially in the
presence of strong anisotropy. Most of the studies on geospatial modeling
and/or mapping of schistosomiasis at the local scale do not consider co-
indemicity or co-infection of S. mansoni and S. haematobium (Gryseels,
1996; Raso et al., 2005; Brooker and Clements, 2009). Advanced geostatis-
tical capabilities, such as shared component modelling (Schur, 2011a) and
Bayesian geostatistical multinomial regression modelling (Magalhães et
al., 2011), which can model co-infections, have not been fully exploited
with reagrd to schistosomiasis co-infections and/or co-endemicity model-
ling. These techniques allow simultaneous modelling of co-endemicity or
co-infection of the two common schistosome species in Africa (S. mansoni
and S. haematobium) and investigate the independence between the two
and how they respond to different climatic and environmental factors.
However, the results are affected by inconsistency in data that can be due
to different samples, different sample sizes and time of sampling, which
may compromise the quality of model outputs (Hodges et al., 2012). This
type of inconsistencies can be handled well using geostatistical methods
such as shared component modelling as compared to Bayesian geostatis-
tical multinomial regression modeling which can only use data from sur-
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veys screening for multiple infections simultaneously (Schur et al.,
2011a). Generally, there is paucity of information on the geographical dis-
tribution of both species within co-endemic regions and knowledge of
micro-geographical variation of single and mixed schistosoma infections
and morbidity. Thus, modelling the two parasites could provide important
insights into the drivers of infection and disease, which could help tailor-
ing schistosomiasis control and elimination efforts (Meurs et al., 2013). It
is believed that chronic infections cause adverse morbidity-related effects
that are exacerbated by infections by multiple species and high parasite
loads (Pullan and Brooker, 2008). Modelling schistosome co-infections
could make it easier to determine whether these infections impact
species-specific morbidity compared to single species infection (Gouvras
et al., 2013). To date, the effects of schistosome co-infection on morbidity
are not clear (Sang et al., 2014; Meurs et al., 2012) and modelling these co-
infections could help targeting specific micro-geographical locations for
further research on design of superior intervention strategies.

Low spatial resolution – remote sensing data

The increasing use of spatial low-resolution imagery (500 m or less)
has provided an opportunity to explore the distribution of schistosomi-
asis at broad scales (country, regional and continental) (Brooker and
Michael, 2000; Brooker, 2002; Clennon et al., 2006). Still, however, inef-
fective schistosomiasis prediction remains a public health concern in
geographically restricted areas as low-resolution investigations do not
consider local heterogeneity of snails and schistosomiasis (Kitron et
al., 2006). The small-scale focality of schistosomiasis is well recognised
and the causes of heterogeneity are varied and reflect many human
and ecological factors (Kloos et al., 1997, 1998; Woolhouse and
Chandiwana, 1989). This makes the small-scale distribution difficult to
predict (Brooker, 2002) as the effects of local heterogeneity are aver-
aged out at broader scales and ecological patterns often appear more
regular (Wiens, 1989; Levin, 1992). Brooker (2002), emphasized that
the use of remote sensing has not been very successful in capturing the
well-known local variation of schistosomiasis transmission, for exam-
ple, the 8-km  advanced very high resolution radiometer (AVHRR) used
by Brooker et al. (2002a, 2002b) may generalize the spatial variation of
schistosomiasis. Although satellite instruments can deliver higher
resultion imagery, such as SPOT 5 and 6 (http://www.geo-
airbusds.com/en/147-spot-6-7-satellite-imagery) and Landsat 8
(http://landsat.usgs.gov/landsat8.php) even most recent African studies
are based on low-resolution satellite products from the moderate reso-
lution imaging spectroradiometer (MODIS)  (http://modis.gsfc.
nasa.gov/) and American National Oceanic and Atmospheric
Administration (NOAA) (http://www.noaa.gov/) AVHRR (Tables 1-3).
There is need for the use of high-resolution instruments to capture the
local ecological spatial variation of intermediate host snails or preva-
lence of schistosomiasis (Brooker et al., 2001, 2002a). Indeed, high-
resultion imagery is available but has only been used occasionly due to
the current high cost. For example, the very recent study of De Roeck
et al. (2014) on Fasciola hepatica in Belgium using drones and very
high resolution (VHR) imagery from the commercial  WorldView2
staellite (https://www.digitalglobe.com/sites/default/
files/DG_WorldView2_DS_PROD.pdf) is a case in point. Fine-scale
monitoring is of key importance to refine currently existing broad-scale
infection risk models, and costs might dimish with time alowing a
more widely use of the technology. Generally, however, there is no sin-
gle natural scale, at which ecological patterns are studied (Levin,
1992). In each case, the appropriate scale is dictated by the goals of the

study, system and available data. Hence, there is need for developing
remote sensing predictive models for targeting schistosomiasis control
at local levels. There is also need to focus on the household as spatial
points in high endemic areas instead of schools, as this will help to
avoid spatial aggregation and allow appropriate finite scale spatial
mapping and give insight into the micro-epidemiology of schistosomi-
asis (Simoonga et al., 2008).

Failure to utilize the temporal domain of
remote sensing

The temporal characteristic of remote sensing has not been fully uti-
lized in modelling the temporal variation of schistosomiasis in Africa.
Brooker (2002) has highlighted that the temporal variation of schisto-
somiasis has received far too little attention despite its relevance in
understanding the spatial distribution of infection. Seasonal and intra-
seasonal modelling of schistosomiasis may capture the variation of
snail density and occurrence as some snails maybe washed away dur-
ing the rainy season (Appleton, 1978; Kloos et al., 2001) and some may
die due to desiccation during the dry season (Rollinson et al., 2001).
This may also explain the spatial and temporal variability of point
prevalence, infection rate and intensity of schistosomiasis especially at
local levels. This emphasizes the relevance of intra-seasonal and sea-
sonal modelling of schistosomiasis in timely allocation of resources as
well as targeting of control programs. Most of the schistosomiasis pre-
dictive models consider annual distribution of schistosomiasis
(Stensgaard et al., 2013; Pedersen et al., 2014) but not the component
of seasonality. Considering the temporal resolution of satellite data
could help to syncronise the temporal differences between data collec-
tion of variables and disease or parasitological data as highlighted by
Sturrock et al. (2013). There is need for ecological niche modelling of
seasonal vector population dynamics combining ecological niche mod-
els with purpose-built, temporal high-resolution satellite remote sens-
ing data (Kulkarni et al., 2010). On the other hand, remote sensing
technology has been available for more than 30 years, but only a few
studies such as that by Pedersen et al. (2014) have taken up the chal-
lenge to model the changes in snail habitats over the past years to esti-
mate the possible distribution of schistosomiasis in relation to climate
and environmental changes. 

Application limitations

Brooker (2002) emphasized the need to develop separate models for
each snail-schistosome system due to their different habitat types and
environmental suitability. Thus, these models are not transferable to
other regions or places. This is evident from the work of Malone et al.
(2001), who developed a region-specific schistosomiasis predictive
model with limited application elsewhere where different ecological
conditions and snail species prevail. This compromises the validity of
the continental- and regional-level models, advocating the local scale.
Until 2009, there was no schisotosmiasis model at a continental level
(Simoonga et al., 2009) and, to our knowledge, Stensgaard et al. (2013)
is the only study investigating schistosomiasis distribution in Africa as
a whole. Simoonga et al. (2009) highlight several challenges that must
be overcome in order to further improve the GIS-based mapping of
intermediate host snails at the continental scale. Consequently, there
is a lack of large-scale, geo-referenced quality data on the presence/
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absence of snails as well as parasite-snail compatibilities. There is also
need for a more complete understanding of snail species identities and
their efficiencies as intermediate hosts as prescribed by Stothard et al.
(2002). The challenge is to develop a composite risk map of schistoso-
miasis (Brooker, 2002), which could be achieved through shared com-
ponent modelling technique as highlighted above.

Lack of vigorous validation or accuracy assessment

An important but often difficult part of a disease model is the assess-
ment of applicability and validity, especially if outputs are to be used for
disease control. The quality of predictive (presence or absence) models
of a species is normally judged by the number of prediction errors or its
accuracy (Fielding and Bell, 1997). Accuracy refers to the correctness
of remotely sensed data or model outputs, which measures the agree-
ment between a standard assumed to be the correct and classified
image or the result of a model of unknown quality (Foody, 2001;
Campbell, 2006). Despite the wide use of predictive models, most appli-
cations do not give sufficient consideration to model error and uncer-
tainty (Barry and Elith, 2006). Datasets used to statistically develop the
models are often of uncertain accuracy and are not always easily repro-
ducible as the results vary with training data and methods used
(Tanser et al., 2003). These generic disadvantages vary from worldwide
or continent-wide (Stensgaard et al., 2013) to regional (Schur et al.,
2011a, 2011b, 2011c) statistically-driven models; the models are too
coarse to guide intervention efforts and their capacity to predict preva-
lence remains uncertain (Kulkarni et al., 2010). 
Evaluating the predictive models is a crucial step for determining its

suitability for specific applications (Guisan and Hofer, 2003; Allouche et
al., 2006). In this case, the focus is on schistosomiasis control and the
possibility of comparing with other models and classification tech-
niques (Powell et al., 2004). Any approach to ecological modelling has
little merit if predictions cannot be assessed (Verbyla and Litvaitis,
1989) and any maps or satellite products or models without associated
accuracy remain untested hypotheses (Strahler et al., 2006). The most
commonly used statistical measures of error of predictive models
include error matrix (Morisette et al., 2005), the Cohen Kappa statis-
tics, the threshold-independent receiver operating characteristic
(ROC) approach (Fielding and Bell, 1997) achieved by calculating the
area under the ROC curve (AUC), a Gini coefficient AUC (Copas,
1999), the true skill statistic (TSS) (McPherson et al., 2004), Cohen’s
Kappa z-test and MacNemar’s test.  Most of the studies use EO and dis-
ease data for schistosomiasis predictive modelling from electronic
databases and only a few models for example Schur et al. (2011a,
2011b, 2011c, 2013) have been adequately evaluated and provided with
proper statistical quantification of error. The main constraint in valida-
tion is lack of updated, comprehensive, good quality empirical data
(Moodley et al., 2003; Tanser et al., 2003). This has compromised the
quality, applicability and reliability of the developed models. The maps
representing the world-wide or country-wide burden of schistosomiasis
generally reflect the reported distribution of clinical episodes of this
disease. However, the scope and accuracy of such reports are limited by
the extent of health care coverage, the efficacy of surveillance and also
by the quality of the reporting systems (Kiszewski et al., 2004). This
paucity of epidemiological data hinders large-scale quantification of
the burden of a disease (Brooker et al., 2002a, 2002b). 

Potential future research priorities

Availability of affordable treatment of schistosomiasis (praziquan-
tel) has led to increased interest and commitment to effective and effi-
cient control of this disease. However, control resources are inevitably
limited, necessitating predictive models that can rapidly and accurately
identify and map high-risk communities so that interventions can be
targeted in a spatially-explicit and cost-effective manner  (Brooker,
2009). Geospatial technologies are promising with respect to meeting
this objective. However, disease data, climatic and environmental data
must not only be reliable, but also be possible to collect at suitable spa-
tial and temporal resolutions. Figure 2 illustrates the proposed theoret-
ical framework for schistosomiasis predictive modeling considering
four phases; data collection, snail prediction modeling, schistosomiasis
predictive modeling and validation which are based on data quality and
availability as well as model accuracy. The whole system is sustained by
health research institutional capacity in terms of skills, funds and
equipment to generate high quality data and achieve desirable predic-
tive model accuracy (Figure 2).
Although remote sensing has proved to be a reliable source of climat-

ic and environmental data, there is need to consider satellites with
higher spatial resolution such as SPOT-6 as opposed to low spatial res-
olution imagery of 1 and 8 km for MODIS and AVHRR, respectively,
while ultrahigh-resultion imagry will have to wait until cost dimishes.
The EO technology could offer higher spatial and spectral, more fre-
quent coverage and lower cost data as suggested by Lleo et al. (2008),
however, specialized skills and expertise are a pre-requisite so as to
realize the full advantages of these developments. Mostly, EO data are
developed for a wide range of applications and epidemiologists have to
develop specific products or applications for specific purposes rather
than relying on already processed or off-shelf products such as the nor-
malized difference vegetation index (NDVI) and land surface tempera-
ture (LST) with no metadata. These products may have been developed
for different purposes at different scales and may not serve the same
purpose with same level of accuracy required in schistosomiasis mod-
elling. This indicates the need for investing more time and resources
in the development, application and use of the space technology in epi-
demiology. 
Field studies will still be needed to generate high quality data includ-

ing climatic and environmental factors for calibration of EO data as
shown in Figure 1. The output predictive models should also be validat-
ed against field observations as argued by Bergquist et al. (2009) to
realize their usefulness in community health and climate change deci-
sion making process especially at the local level in Africa. This will help
to capture the local focality of schistosomiaisis as the use of high qual-
ity and reliable data could help to refine the geostatistical techniques
and adoption of ecological tools such as Maxent (Phillips et al., 2006),
which are promising to produce highly performing schistosomiasis pre-
dictive models (Stensgaard et al., 2013). The field measured data could
also be complemented by laboratory experiments as the behavior of
snails and schistosome parasites could change due to climatic and
environmental changes. For example Brown (1994) studied the distri-
bution of freshwater host snails in Africa and divided them into two
groups (tropical and temperate species) based on the climate where
they occur. However the snail species tolerance ranges for temperature
might have changed over time, which requires more field studies for
verification and comparison. On the other hand, systematic field stud-
ies on the relationship between densities and infection rates in snails
and those in humans would still be highly useful (Gryseels, 1996). The
rational use of remote sensing data is dependent of the quality of infor-
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mation from the field (De la Rocque et al., 2005), which requires
sophisticated geo-spatial statistical methods for analysis and predictive
modeling and dedicated fieldwork to validate the observations
(Herbreteau et al., 2005). Hence, the need for interdisciplinary
approach in which epidemiologists collaborate with software program-
mers, geographers and spatial analysts to create robust techniques and
products for use with epidemiological data (Jacquez, 2000; Graham et
al., 2004; Herbreteau et al., 2007). 

Conclusions 

Geo-spatial technologies are invaluable for schistosomiasis mapping
and transmission prediction, particularly in Africa. However, more
extensive applications of these tools have been hampered by lack of
training, gaps in data (quality and quantity, particularly climatic, envi-
ronmental, epidemiologic and parasitologic data) and inadequate tools
for data gathering (Hay, 2000). These are clear indications of possible
sources of errors and uncertainties that have propagated the schistoso-
miasis transmission modelling in Africa. Therefore, Herbreteau et al.
(2007) is correct in saying that major elements of geospatial technolo-
gies have not yet met our current needs. However, in China, Yang et al.
(2005) viewed future prospects of GIS and remote sensing application
in disease mapping as bright and promising; hence, it might be too
early to blame the technology. Instead, there is need to take advantage
and sharpen ideas and skills to develop more and better methods
through further research and refinement of the schistosomiasis predic-
tive models to meet community needs. This could be achieved through
collaboration between epidemiologists, geographers and software pro-
grammers, use of high-quality remote sensing and ground measured
data and thorough validation protocols. It would also allow the adoption
and use of some tools developed in ecology such as Maxent and GARP
machine-learning algorithms and refining geostatistical techniques for
predictive modelling of schistosomiasis at the local level.
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