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Estimating malaria burden in Nigeria: a geostatistical modelling approach
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Abstract

This study has produced a map of malaria prevalence in Nigeria
based on available data from the Mapping Malaria Risk in Africa
(MARA) database, including all malaria prevalence surveys in Nigeria
that could be geolocated, as well as data collected during fieldwork in
Nigeria between March and June 2007. Logistic regression was fitted
to malaria prevalence to identify significant demographic (age) and
environmental covariates in STATA. The following environmental
covariates were included in the spatial model: the normalized differ-
ence vegetation index, the enhanced vegetation index, the leaf area
index, the land surface temperature for day and night, land use/land-
cover (LULC), distance to water bodies, and rainfall. The spatial model
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created suggests that the two main environmental covariates correlat-
ing with malaria presence were land surface temperature for day and
rainfall. It was also found that malaria prevalence increased with dis-
tance to water bodies up to 4 km. The malaria risk map estimated from
the spatial model shows that malaria prevalence in Nigeria varies from
20% in certain areas to 70% in others. The highest prevalence rates
were found in the Niger Delta states of Rivers and Bayelsa, the areas
surrounding the confluence of the rivers Niger and Benue, and also
isolated parts of the north-eastern and north-western parts of the
country. Isolated patches of low malaria prevalence were found to be
scattered around the country with northern Nigeria having more such
areas than the rest of the country. Nigeria’s belt of middle regions gen-
erally has malaria prevalence of 40% and above.

Introduction

In spite of being entirely preventable, malaria has a high level of
mortality and is the world’s most prevalent parasitic disease. It is
caused by infection with single-celled parasites of the genus
Plasmodium, which are transmitted by the bite of Anopheles mosqui-
toes. Apart from the endemic tropical and sub-tropical regions, malaria
was once widespread in North America and other temperate countries.
Today the disease occurs mostly in sub-Saharan Africa and Southeast
Asia. In 2013, 97 countries had ongoing malaria transmission (WHO,
2013). According to the World Health Organization (WHO, 2014),
malaria is the second leading cause of death from infectious diseases
in Africa after HIV/AIDS, with Nigeria and the Democratic Republic of
Congo (DRC) accounting for 40% of the global malaria deaths. Almost
20% of all deaths of children under-five in Africa are due to malaria
(WHO, 2014).

Each year, over 500 million people suffer clinical malaria episodes
caused by P falciparum infection alone, resulting in a conservative
estimate of 1 million deaths annually (Guinovart et al., 2006; Vaughan
et al., 2008). Despite concerted efforts, of which the Roll Back Malaria
programme (httpz//www.rollbackmalaria.org/) is an example, malaria
remains a major health challenge. Between 2000 and 2012, the scale-
up of interventions helped reduce malaria incidence rates by 25% glob-
ally, while reaching as high as 31% in WHO’s African region (WHO,
2013). The global malaria mortality rate was reduced by 42% during
the same period, while the decrease in African was 49% (WHO, 2013).
During the same period, an estimated 3.3 million lives were saved by
the scaled-up malaria interventions, 3 million of which (90%) con-
cerned the under-five age group in sub-Saharan Africa (WHO, 2013).
In Nigeria, statistics shows that malaria accounts for 25% of the under-
five mortality, 30% of childhood mortality and 11% of maternal mortal-
ity (Okonko et al., 2009). All Nigerians are at risk of malaria and the
problem is compounded by the increasing resistance of malaria to
hitherto cost-effective drugs (Okonko et al., 2009).

Describing spatial and temporal variation in transmission and dis-
ease risk is fundamental to epidemiological understanding and control
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of malaria. Risk maps are, by definition, outcomes of models of disease
transmission based on spatial and temporal data. These models incor-
porate, by varying degrees, epidemiological, entomological, climate and
environmental information (Kitron, 2000). Decades of experience con-
firm that successful malaria control depends on accurate identification
and geographical reconnaissance of high-risk areas (Wijeyaratne,
1999; Carter et al., 2000). In the past, malaria risk maps at different
geographical levels were largely based on expert opinion based on lim-
ited data, crude climate isolines with no clear and reproducible numer-
ical definition (Craig et al., 1999). In recent years, the availability of
new data sources such as remote sensing (RS) and mapping tools,
such as computerized geographic information systems (GIS) for quan-
titative analysis of spatial data, have provided an unprecedented
amount of information and increased capability to describe, predict and
communicate risk and outcome of interventions (Hay et al., 2000;
Kitron, 2000; Thomson and Connor, 2000; Berquist, 2001).

Measures that might be mapped include categories of endemicity
(e.g. unstable, mesoendemic or holoendemic), vector density and
capacity, entomological inoculation rate (EIR) and incidence of dis-
ease. However, although malaria endemicity can vary widely over only
short distances, most of these measures have only been studied in a
few, widely separated localities. In general, results from different sites
differ. The most broadly available measure is point prevalence assessed
by microscopy. Estimates of malaria prevalence at unsampled locations
can be made by incorporating information from environmental covari-
ates (Hay et al., 2000). The precision of such estimates can be further
improved by using spatial smoothing or geostatistical methods (Ribeiro
et al., 1996; Kleinschmidt et al., 2000, 2001a, 2001b; Diggle et al., 2002),
while Bayesian geostatistical methods have demonstrated their value
for mapping childhood malaria risk in the Gambia (Diggle et al., 2002)
and generally for relating infant mortality to malaria risk (Gemperli
and Vounatsou, 2004). Spatial statistical models have also been used to
produce malaria maps of Mali (Kleinschmidt ez a/., 2000) as well as for
the whole of West Africa (Kleinschmidt ez al., 2001a). All these analyses
modelled the prevalence data directly without taking into account age-
dependence of the malaria risk. Malaria prevalence data are usually

Table 1. Summary of fieldwork in Nigeria.
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reported by age, but with different age-groupings used in different sur-
veys. Direct mapping of age-prevalence data therefore involves choos-
ing a target age-group (with some flexibility in the choice of age-cate-
gory boundaries), and discarding data for other age-groups and for
sites where data for the age-group are not available. A number of malar-
ia distribution maps are available for Africa based on climatic and other
environmental predictors of malaria transmission (Craig et al., 1999;
Snow et al., 1997; Kleinschmidt et al., 2000; Rogers et al., 2002;
Gemperli, 2003; Gosoniu et al., 2006; Gething et al., 2011). However,
they make little or no use of the data from field surveys of malaria
prevalence, which form the largest body of relevant information.

The Mapping Malaria Risk in Africa (MARA) project is a collaborative
network of key African scientists and institutions with the aim of pro-
viding empirical risk maps of malaria in Africa (Snow et al., 1999).
Initially, this involved the development of continent-wide climate-based
theoretical models of climatic suitability (Craig et al., 1999) and the
collection of parasite prevalence data to validate and/or improve these
models. The MARA database was established in 1996 using published
and unpublished malaria survey data compiled by a collaborative net-
work of African scientists and institutions with the aim of providing an
atlas of malaria for evidence-based and targeted malaria control in
Africa. This is the most comprehensive database on malaria data in
Africa so far, but information with respect to Nigeria, comprising 2581
age-specific surveys carried out at 126 distinct locations between 1930
until 2007, is comparatively scarce. As malaria is an environmentally-
driven disease, the Swiss Tropical and Public Health Institute (Swiss
TPH), in collaboration with its partners at the Malaria Research and
Training Centre (MRTC) in Bamako, Mali initiated an updating the
MARA database for Nigeria. This is important, not only because recent
climate changes, but also given the absence of recent data from large
parts of northern Nigeria. We aimed to estimate malaria prevalence in
areas without survey data using rigorous statistical methods with envi-
ronmental parameters as predictors. In this study, we used Bayesian
geostatistical approaches to assess the malaria-environmental rela-
tionship for the purpose of malaria risk mapping.

University of Port-Harcourt 3 (2000 to 2006) Community-based surveys 50 to 500
University of Calabar 1 (2004) Published community-based 594
University of Benin 4 (1998 to 2005) Published surveys 120 to 500
Imo State University 15 (1999 to 2006) Unpublished theses (5) surveys, published surveys (10) 134 to 1200
University of Nigeria 4 (1998 to 2006) Unpublished thesis work 80 to 500
University of Lagos 10 (1999 to 2004) NA 150 to 1563
Nigerian Institute for Medical Research 2 (2000 to 2006) Published surveys 165 to 350
University of [badan 3 (1996 and 2003) Published surveys 100 to 405
Ahmadu Bello University 8 (2000 to 2005) Unpublished theses 150 to 220
University of Abuja 1 (2000) Published survey 200
University of Jos/Federal University 5 (2000 to 2005) Published works 120 to 250
of Technology Yola (two of the surveys were malaria

drug efficacy trials)

NA, not available.
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Materials and Methods

The data collected over the years by MARA up to 1999 form part of the
data used for this study. As data for Nigeria were sparse or relatively
old, more data had to be collected from the year 2000 and onwards and
these included both published and unpublished survey data.

Malaria prevalence data

The fieldwork was carried out from March 1 to June 30 2007 and was
aimed at obtaining unpublished malaria prevalence data from various
Nigerian sources. The data collection was done in phases according to
Nigeria’s six geopolitical zones. For the south-south zone, I visited the
Ministries of Health in Calabar (Cross River State), Port-Harcourt
(Rivers State) and Benin (Edo State). However, these Ministries had
no survey data in their archives except recent malaria incidence data.
I also visited the local universities in these states obtaining unpub-
lished malaria survey data from all three states with the University of
Port-Harcourt providing the greatest number.

In the southeastern zone, University of Nigeria campuses at Nsukka
and Enugu city (Enugu State) were visited. Imo State University pro-
vided a much larger number of malaria surveys than any other institu-
tion in the entire country. From this location, I got data not only from
Imo State and the rest of the southeast zone, but also from just about
every other part of the country. The visit to the southeastern zone was
followed by a visit to the Capital of Nigeria, Abuja, to get a national per-
spective on the malaria situation. From the Roll Back Malaria Office (a
division of the Federal Ministry of Health), I got only malaria incidence
data, which were ultimately not used for this study. However [ was able
to get some malaria prevalence data from the University of Abuja.

Data from the southwestern zone was collected from Ibadan (Oyo
State) and Lagos city. At the University of Ibadan, our data came from
the College of Medicine and the Department of Zoology. In Lagos, the
data was sourced from the Nigerian Institute of Medical Research and
the Department of Zoology of the University of Lagos. These two insti-
tutions are both strong in malaria research.

Finally, data from the North (the north-eastern, north-central and
north-western zones) were obtained from the University of Abuja (as
mentioned earlier), the University of Jos, Ahmadu Bello University
Zaria, and the Federal University of Technology in Yola. The bulk of the
data came from Ahmadu Bello University, which provided much of the
data from the northeastern and north-central zones. A summary of the

Table 2. Sources and resolution of remote sensing data.

data collection in Nigeria is shown in Table 1.
Additional survey data were obtained through online searches.
Longitude and latitude co-ordinates were determined for each parasito-

logical survey using the Geonames geographical database
(http//www.geonames.org/). Each location was described as a set of
either a first, second or third order administrative region in Nigeria.

Environmental data

The following factors were considered: the normalized difference
vegetation index (NDVI), the enhanced vegetation index (EVI), the leaf
area index (LAI), the amount of rainfall, the land surface temperature
for day and night (LSTa.y and LSThyign), respectively, land use/land-cover
(LULC), elevation and distance to the nearest water body. The databas-
es from which the environmental data emanate are given in Table 2.

Environmental predictors were extracted from RS sources at spatial
and temporal resolutions and shown in Table 2. To take into account of
the elapsing time between the climatic suitability for malaria transmis-
sion and parasitaemia, the climatic data were gathered for different
periods (up to one year) prior to the survey starting from July 2006. The
variables LST, NDVI, EVI, LAI and land-cover were downloaded from the
Moderate Resolution Imaging Spectroradiometer (MODIS)
(httpz/modis.gsfc.nasa.gov/), from the U.S. Geological Survey (USGS)
Land Processes Distributed Active Archive Center (LP DAAC). LST data
were extracted as averages over 8-day periods at 1-km spatial resoluti-
on. The NDVI was obtained as a 16-day average at 0.25-km spatial reso-
lution. EVI data, available from MODIS for the year 2006, represents an
improvement on the NDVI because it corrects some distortions in the
reflected light caused by particles in the air as well as ground cover
below the vegetation (Weier and Herring, 2000). The EVI data product
also does not become saturated as easily as NDVI when viewing rainfo-
rests and other areas of the earth with large amounts of chlorophyll
(Weier and Herring, 2000). The LAI data for 2006 were used. They defi-
ne the number of equivalent layers of leaves relative to a unit of the
ground and are computed daily at 1-km resulotion from MODIS spectral
reflectances for all vegetated land surface globally (USGS, 2014). The
MODIS data, obtained at a spatial resolution of 1 km, not only provides
land-cover (characterising five global land cover classification sys-
tems) and land-cover type assessment, but also includes a quality con-
trol mechanism (USGS, 2014). Altitude data were extracted from an
interpolated USGS digital elevation model (DEM) available at a spatial
resolution of 1 km.Digital maps for three different kinds of water
bodies in Nigeria (lakes, rivers and wetlands) were acquired from the

LST gy MODIS 1x1 8 days
LSTright MODIS Ix1 8 days
LAI (vegetation) MODIS Ix1 8 days
NDVI (vegetation) MODIS 0.25%0.25 16 days
EVI (vegetation) MODIS Ix1 16 days
Land cover MODIS Ix1 1 year
Rainfall estimate ADDS 8x8 Daily
Evapotranspiration ADDS 8x8 Daily
Elevation USGS Ix1 -
Water bodies (rivers, lakes, wetlands)HealthMapper Ix1 -

LST, land surface temperature; LAl leaf area index; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index.
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HealthMapper database (WHO, 2010). The distance from each location
to the nearest water body source was calculated in IDRISI 32, which is
an integrated geographic information system (GIS) and RS software
developed by Clark Labs (http:/www.clarklabs.org/). Rainfall estimates
were obtained daily at a spatial resolution of 8 km from the Aviation
Digital Data Service (ADDS) (http-//www.aviationweather. gov/adds).
The MODIS reprojection tool (USGS) was used to convert the RS data
to geo-referenced maps and ArcMap, v. 9.1 (http/www.esri.com/) was
used as mapping tool. Additional data processing was performed in
STATA/SE 9.2 (Stata Corporation, College Station, TX, USA).

Statistical modelling

Logistic regression was fitted to malaria prevalence to identify sig-
nificant demographic (age) and environmental covariates using STATA
v. 9.0. Covariates with a significance level below 0.15 were fitted into
Bayesian geostatistical logistic models using WinBUGS v. 1.4 (Imperial
College and Medical Research Council, London, UK) in Fortran code. To
take into account spatial heterogeneity, location-specific random
effects were integrated in the logistic models, assuming that they were
distributed according to a multivariate normal distribution with vari-
ance-covariance matrix parameterizing the correlation structure in the
data as an exponential function of distance.

Let Vi be the number of children tested at location si, i =1,...,n, Yi the
number of those found with malaria parasites in a blood sample and Xi
=(Xil,Xi2,... Xip)T the vector of p associated environmental predictors
observed at location si. We assumed that Y7 arised from a binomial dis-
tribution Y7 ~ Bin(Ni,pi) with parameter pi measuring the malaria risk
at location si and modelled the relation between the malaria risk and
environmental covariates Xi via the logistic regression logit(pi) =Xi T
8, where 8 = (81,82,...,8p)T are the regression coefficients. This model

@ e

assumes independence between the surveys. However, the geographi-
cal location introduces correlation since the malaria risk at nearby
locations is influenced by similar environmental factors and it is there-
fore expected that the closer the location, the more similar the way
malaria risk varies. To account for the spatial variation in the data we
introduced an error term (random effect) ®i at each location si,
logit(pi)= Xi T 8 + ®i and modelled the spatial correlation on the i
parameters, ie. the i’s are not independent but derive from a distribu-
tion which models the correlation, or equivalently the covariance
between every pair of random effects. We adopted the multivariate nor-
mal distribution, for the ®i’s since they represent error terms and are
therefore defined on a continuous scale, ie. @i =(P1,92,...,.Pn)T ~
N(0,> ). > is a matrix with elements Y/ quantifying the covariance
Cov(Pi,®j) between every pair (®i,®)) at locations si and sj, respec-
tively. The distribution of random effect ® defines the Gaussian spatial
process.

To complete the Bayesian model formulation of the geostatistical
models mentioned above, we needed to specify prior distributions for
their parameters. For the regression coefficients we adopted a non-
informative uniform prior distribution with bounds-c and . For the
spatial parameters 02, g2, p, and pk we adopted inverse gamma and
gamma prior distributions, respectively, with parameters chosen to
have means equal to 1 and variances equal to 100. We estimated the
parameters of the model using Markov chain Monte Carlo simulation
with Gibbs sampling (Gelfand and Smith, 1990). Starting with initial
values about the parameters, the algorithm iteratively updates the
parameters by simulating from their full conditional distributions, i.e.
the posterior distribution of each parameter is conditional on the
remaining parameters. The full conditional distributions of G2 and g2,
k=1,..., K are inverse gamma distributions and simulation from them

Table 3. Bivariate associations between malaria prevalence and environmental indicators arising from non-spatial and spatial logistic

models.

LSTeay
>300K 0.59 0.55, 0.63 0.18 0.06, 0.53
>305 K 0.64 0.60, 0.68 0.14 0.03, 0.57
LSTnight 0.95 0.94, 0.96 1.00 0.99, 1.01
Altitude 1.001 0.999, 1.002
Land use
Forest 145 1.33,1.58 0.12 0.02,0.77
Build 0.70 0.68, 0.73 0.81 0.31,2.00
Crop 10.65 8.84,12.83 544 0.47, 86.53
Distance to water bodies (km)
1-2 1.04 0.97, 111 0.71 0.29, 1.78
2-3 1.25 1.18,1.33 1.50 0.59, 3.1
3-4 2.11 1.97,2.27 1.16 0.36, 2.98
>4 1.65 1.58, 1.72 1.37 0.63, 3.15
Vegetation
NDVI >0.35 1.53 1.48,1.59 1.23 0.61, 2.64
EVI >0.20 1.21 1.17,1.26
LAI 1.013 1.011, 1.014
Rainfall 1.00 1.00, 1.00 0.78 0.39, 1.28
Spatial correlation parameters
2303.0 136.8, 4486.0
g’ 0.88 0.56, 1.5

PE, posterior estimates; CI, confidence interval; LST, land surface temperature; NDVI, normalized difference vegetation index; EVI, enhanced vegetation index; LAl leaf area index. Regression coefficients represent-

ing odds ratios estimated by the median of the posterior estimates of the corresponding coefficients.
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is straightforward. The rest of the parameters do not have full condi-
tional distributions of known forms. We simulated from the non-stan-
dard distributions by employing a random walk Metropolis Algorithm
(Tierney, 1994) having a normal proposal density with a mean equal to
the estimate of the corresponding parameter from previous Gibbs iter-
ation and a variance equal to a fixed number, iteratively adapted to
optimize the acceptance rates. We ran five chains with a burn-in of
5000 iterations. Convergence was assessed by inspection of ergodic
averages of the selection model parameters. The analysis was imple-
mented using Fortan 95 (Compaq Visual Fortran Professional 6.6.0)
and standard numerical libraries supported by the Numerical
Algorithms Group (NAG) Ltd (http//www.nag.co.uk/).

The model was used to predict malaria risk throughout Nigeria. This
approach treats the malaria risk at a new location as random and cal-
culates its predictive posterior distribution, which not only provides a
single risk estimate, but also gives a whole range of likely values
together with their probabilities to be the true values at a specific loca-
tion. This makes it possible to estimate the prediction error, a substan-
tial advantage over the classical Kriging methods. We estimated the
predictive posterior distributions at prediction locations by simulation.

Results

The univariate non-spatial analysis indicated that the environmental
factors, NDVI, EVI, LAl distance to water bodies, rainfall, LST for day
and night and land-use, were related to malaria prevalence. Malaria
prevalence in Nigeria, estimated at 46 locations, had a median of about
45% with values ranging from 0 to over 70%. The results of the bivariate
associations between malaria prevalence and environmental indicators
arising from non-spatial and spatial logistic models are shown in Table
2.

Estimates of the odds ratios (OR) indicate that in the non-spatial
analysis, all the environmental covariates were related to estimated
malaria prevalence after adjusting for other risk factors. All covariates
significant at the 5% significance level and having low area under the
curve (AIC) values were included in the spatial analysis. The relation
between malaria risk and rainfall was linear. The logarithmic transfor-
mation of NDVI described its relation with malaria risk the best.
Second order polynomial terms for minimum temperature, maximum
temperature and distance to water bodies gave the best associations
with the malaria prevalence. The spatial model suggests that only
LSTay and land use (forest) were related to malaria. Surprisingly, the
models estimated a positive relation with the distance to water bodies,
implying that the risk of malaria increased with the distance from per-
manent water bodies until about 4 km and then decreased. The func-
tion 3/rho*100 gives the minimum distance in km with a spatial corre-
lation less than 5%.

Figure 1 shows the malaria prevalence at the various survey loca-
tions in Nigeria. There were relatively fewer surveys from northern
Nigeria compared to the South. The southern part of the country also
generally had more areas with malaria prevalence above 70%. This
agrees with the generally held view considering that the southern part
has more water bodies, is heavily forested and has more rain than the
North.

The malaria risk maps (Figures 2 and 3) estimated from the spatial
model shows that malaria prevalence in Nigeria varied from less than
20% in certain areas to over 70% in others. The highest prevalence
rates of 70% and above were found in the Niger Delta states of Rivers
and Bayelsa, the areas surrounding the confluence of the Rivers Niger
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and Benue and in isolated parts of the northeastern and northwestern
parts of the country. Isolated patches of low malaria prevalence were
scattered around the country with northern Nigeria having more such
areas. The middle belt regions had general malaria prevalence of 40%
and above. This pattern of malaria distribution is shown in Figures 2
and 3 with the standard deviation (SD) of the median malaria preva-
lence ranging from 0.1 to 0.32.

@
L o
o &
-
®e
) @
° @
f8 . o
@ ° O9 . @
@ o
Malaria prevalence
. at survey locations
. s =02
@ i | @ 02-04
® o04-05
+ 0o 75 180 300 Kilometers @ os-07
—— . =07

Figure 1. Malaria prevalence at the various survey locations in
Nigeria.
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Figure 2. Median of the malaria prevalence across Nigeria.
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Discussion

Malaria is an environmental disease and environmental factors are
good predictors of transmission, but the relationship between environ-
mental factors, mosquito abundance and malaria prevalence is not lin-
ear. This relationship can be established only by means of adequate,
spatial statistical models, which can be used for improving predictions
of malaria transmission not only in space (for risk mapping) but also
in time (for developing early warning systems for malaria epidemics).
The Bayesian model that was used has the advantage that it is age-
adjusted and makes use of all the survey data available, so I did not
have to discard any surveys because of inappropriate age groups. The
Bayesian approach also allows flexible model fitting and estimation
and mapping of the prediction error. The prevalence map produced
(Figures 2 and 3) broadly corresponds to the known distribution of
malaria in Nigeria and in particular indicate high transmission in the
areas around the main rivers. The result of the survey showed that
NDVI, EVI, LAl distance to water bodies, rainfall, LSTq.,, and land-use
were related to malaria prevalence with rainfall having a linear rela-
tionship with malaria risk. The models, however, estimated a positive
relation with the distance to water bodies up to 4 km before decreasing.
This could be due to the fact that even if people like to live near perma-
nent water bodies, they do not usually live on the banks but rather
about 500 m away. This implies that water collected in cans, open jars,
pits and drainage canals — which serve as vector breeding grounds
— will mostly be found at distances at least 500 m away from the banks.
Thomas et al. (2013) found that 95% of female Anopheles gambiae
moved within 1.67 km from the nearest breeding site, which means
that from about 500 meters from permanent water bodies, malaria
prevalence will increase for as far as the flight range of the female
anopheles mosquitoes before decreasing. Thomson et al. (1997);
Kleinschmidt et al. (2000); Carter et al. (2000); Gosoniu et al. (2006);
Gemperli et al. (2006) also found this relationship. Indeed,
Kleinschmidt et al. (2000), in their work on the analysis of malaria
prevalence in Mali, found that malaria risk was estimated to be reduced
to a level lower than that measured close to water only for distances of
more than 4 km away from the nearest permanent water body. While
vector abundance is supposed to be high closer to the breeding sites,
Carter et al. (2000) found a negative association between malaria
infection and vector abundance. They attributed this to the propensity
of people to use bednets (Thomson et al., 1997) or the stimulated devel-
opment of immunity during early childhood in high-risk areas (Thomas
and Lindsay, 2000). Most malaria surveys include people from areas of
several km?, so surveys close to water bodies may include some people
from the riverbank and some further away. It is therefore not obvious
what relationship to expect with respect to distance to water. The exact
relationship between proximity to rivers and malaria appears to be very
sensitive to which data points are included and to the details of the
model, especially when there are very few data points in the critical
areas. It may also be that the lack of adjustment for age in earlier mod-
els biased some of the covariate effects.

Empirical maps of malaria risk are important tools in malaria control
as they can guide interventions and help assess their effectiveness.
Maps are useful in malaria control by identifying areas according to
their degrees of risk, thereby guiding resource allocation. They are
easy to understand and can therefore be appreciated by people of dif-
ferent educational levels. With accurate maps the effectiveness of
malaria control measures can be evaluated after a few years, by com-
paring the baseline map with subsequent maps. By identifying survey
points it was possible to show areas of the country, for which there are
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hardly any data and for which future surveys should be done. These
maps rely on predictions of risk at locations without observed preva-
lence data. The prevalence estimates from both the non-spatial and
spatial approaches have broad agreement, though the spatial estimates
tend to have larger standard errors. This may be due to the fact that in
the non spatial analysis there is the assumption of independence
which was not upheld. There is still much to be done in the area of
malaria control and elimination in Nigeria. The data collection for this
work was difficult, primarily due to the fact that malaria prevalence
data are few and old. The data that were used to produce the prevalence
maps were collected from 1983 to 2007 with about 60% of these surveys
done before 2000, which means that these maps may not accurately
capture the current malaria prevalence picture of Nigeria.

The maps shown here (Figures 2 and 3) belong to a series of maps
that have been produced showing malaria prevalence in Nigeria.
Previous malaria maps (Kleinschmidt et al., 2000; Gemperli et al., 2003;
Gosoniu et al., 2006) concern all of West Africa and that of Gething et
al. (2011) for the whole world. A comparison of the estimated malaria
prevalence shown in the maps in this paper with those produced by
Kleinschmidt et a/. (2001a) for West Africa reveals similar patterns, but
the predicted prevalence in the present maps show more regions with
prevalence above 70% and below 30%. There is, however, agreement
between the maps, with both showing high risk for malaria in the
region of central Nigeria. The maps shown here, however, are in dis-
agreement with the map produced by Gemperli et al. (2006b). Their
map shows only two regions of Nigeria with prevalence of malaria
above 70%. These are in the far north in the area of Kano State and in
the southwestern tip of the country in the area of Lago state. These dif-
ferences may be due to the use of different dataset and also the fact
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that their map was for malaria prevalence in children ten years old and
below. The Gemperli map also has 80% of the Nigerian population liv-
ing in places with malaria prevalence of 40% and below. The map pro-
duced here, on the other hand, shows that 50% of the Nigerian popula-
tion live in places with malaria prevalence of 50% and above. The
Gethin map, however, generally agrees with the map shown here as it
shows that virtually every region of Nigeria with a P. falciparum para-
site rate of at least 50% with the southern tip of the country having a
rate of 70% and above as shown here.

Conclusions

A national risk map for Nigeria will allow planners to identify malar-
ia high-endemicity areas, where long term use of insecticide treated
nets (ITNs) would be useful. Two distinct areas that can be identified
with the aid of these maps are epidemic-prone areas and malaria-
endemic areas. These areas require distinct intervention measures.
For the epidemic areas, surveillance, indoor spraying of insecticides
would be helpful in controlling malaria. In the endemic areas, wide-
spread use of ITNs, behavioural changes, such as avoiding storing
water in open cans outdoors and clearing of bushes around dwelling
places would help. Planners can also assess the possible health impacts
of measures aimed at improving food security through the promotion
of large-scale irrigation and wetland management projects. Road con-
struction companies should be requested to fill up construction ponds
(burror pits) once they are no longer needed. Finally, the maps con-
structed will also guide public health researchers in identifying appro-
priate study environments for intervention trials as well as assist with
identification of populations potentially benefiting from new interven-
tions.

Though the data used for this study came from an imperfectly sam-
pled population of Nigeria, this study nevertheless is the first known
attempt to produce a malaria risk map for Nigeria based entirely on
malariometric data. It is anticipated that it will provide useful addition-
al guidance to control programme managers, and that it can be refined
once sufficient additional data become available.
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