
Abstract

Many entomological studies have analyzed remotely sensed data to
assess the relationship between malaria vector distribution and the
associated environmental factors. However, the high cost of remotely
sensed products with high spatial resolution has often resulted in
analyses being conducted at coarse scales using open-source, archived
remotely sensed data. In the present study, spatial prediction of poten-
tial breeding sites based on multi-scale remotely sensed information 
in conjunction with entomological data with special reference to

presence or absence of larvae was realized. Selected water bodies were
tested for mosquito larvae using the larva scooping method, and the
results were compared with data on land cover, rainfall, land surface
temperature (LST) and altitude presented with high spatial resolution.
To assess which environmental factors best predict larval presence or
absence, Decision Tree methodology and logistic regression tech-
niques were applied. Both approaches showed that some environmen-
tal predictors can reliably distinguish between the two alternatives
(existence and non-existence of larvae). For example, the results sug-
gest that larvae are mainly present in very small water pools related to
human activities, such as subsistence farming that were also found to
be the major determinant for vector breeding. Rainfall, LST and alti-
tude, on the other hand, were less useful as a basis for mapping the
distribution of breeding sites. In conclusion, we found that models
linking presence of larvae with high-resolution land use have good
predictive ability of identifying potential breeding sites.

Introduction

Malaria is caused by Plasmodium parasites, which are transmitted
to people through a bite by an infected female Anopheles mosquito.
Most mosquito species oviposit in standing waters and pools of varied
amounts and sizes depending on the preference of each particular
species. Targeting mosquito larvae and pupae with larvicides in stand-
ing water or breeding sites is one of the most important intervention
measures in the fight against, and elimination of, malaria (Clennon et
al., 2010; Dambach et al., 2014). Identification and mapping of all
potential vector breeding sites is a prerequisite for successful vector
control, especially larval source management (LSM) applied for effec-
tive elimination of residual foci. A national inventory of all residual
foci is necessary if transmission is to be interrupted and remaining
foci cleared (Chanda et al., 2013). Past statistical modelling and map-
ping efforts have predicted vector distributions at continental scales
based on climatic suitability and low-resolution remotely sensed (RS)
data (Kulkarni et al., 2010). However, very few studies have used ento-
mological data in conjunction with remotely sensed data to identify,
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map and predict potential malaria vector breeding sites at explicit geo-
graphical locations (Ahmad et al., 2011; Bøgh et al., 2007; Li et al.,
2008). The spatial resolution of the satellite-generated imagery is cru-
cial for identifying potential vector habitats, and high spatial resolu-
tions must be applied in order to capture not only larger water bodies,
but also smaller ones, which are potentially as important for breeding. 
Previous studies using satellite-generated imagery to identify suit-

able vector habitats, also based their approach on existing knowledge
on how factors, such as temperature, humidity and rainfall, influence
mosquito population dynamics and distribution (Beck et al., 2000).
Dambach et al. (2009) used imagery from the SPOT-5 satellite with
supervised classification to identify land cover types known to be suit-
able as Anopheles mosquito breeding sites. Since no field-generated
data were used in the analysis, the classification of relative risk was
entirely based on the literature on Anopheles mosquito presence in dif-
ferent land cover types. Oesterholt et al. (2006) approximated vector
breeding sites by assessing malaria incidence in relation to the dis-
tance to the nearest water body using geographical information sys-

tems (GIS). In their study, 10 houses were mapped and light traps hung
at the end of an occupied bed to catch mosquitoes. Traps were emptied
and mosquito species counted and determined the following morning.
The identification of potential breeding sites using adult mosquito
entomological data relies on the ability and precision to map distance
to the nearest water bodies rather than distance to the actual breeding
sites, which can be assessed, for instance, through larval scooping.
However adult mosquito dispersal could be influenced by wind speed
and wind direction (Bøgh et al., 2007) making it a challenge to approx-
imate the breeding sites. 
Strong progress in the fight against malaria has been made in

Swaziland. In 2002, insecticide-treated bed nets were introduced to
complement the ongoing indoor residual spraying (IRS) activities. In
2008, after 15 years of progressive reduction of the disease burden
(from 4005 to 369 cases, the country was nominated to spearhead the
malaria elimination in the Southern African Development Community,
which is being pursued according to the strategic plan for the period
2008-2015; Malaria Indicator Survey, 2010). Although the country has
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Figure 1. Altitude map showing the location of larva sampling sites.
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consistently and annually applied IRS using DDT as its mainstay vector
control intervention strategy, studies designed to support these
attempts with empirical evidence on its effect on the number of vector
breeding sites and their distribution have not been conducted.
Identification and elimination of residual foci along with efforts to
reduce the number of local malaria cases to zero remains a challenge,
especially if there is a lack of geographically explicit supporting maps
to target intervention efforts. Following the Stockholm Convention on
Persistent Organic Pollutants (http://sites.duke.edu/malaria/the-stock-

holm-convention/), many countries will soon have very limited supply
of DDT, so optimal ways to use this chemical in high priority areas
must be sought. This is possible with spatially explicit maps guiding
ground IRS activities, thus avoiding the indiscriminate use of DDT that
leads to unnecessary waste and environmental damage in addition to
potentially increased vector resistance.  
The objective of this study was to analyze the relationship between

environmental factors and malaria vector breeding sites in Swaziland
by linking entomological data with multi-scale RS data and scooping for

                   Article

Figure 2. A) Land cover map covering the malaria-endemic area of Swaziland; B) distance-to-large-scale agriculture (m); C) distance-
to-subsistence farming (m); D) distance-to-roads/tracks (m).

Non
 co

mmerc
ial

 us
e o

nly



larvae in selected water bodies and dams, feeding collected information
into a statistical regression model and using data mining tools to inves-
tigate potential associations. By this approach we aimed to contribute
to the existing knowledge about malaria vector breeding habitats in
Swaziland and provide high-resolution, spatially explicit maps to assist
ongoing conventional control efforts as the country targets elimination
by 2015.

Materials and Methods

Study area
Swaziland covers an area of 17,363 km2 and consists of a mountain-

ous Highveld (the wet western part of the country), which has an alti-
tude of about 1800 m above the sea, and the relatively flat, dry eastern
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Figure 3. Land surface temperature: A) first week; B) second week; C) third week; D) fourth week.
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part (between 100-300 m in altitude) called the Lowveld (Figure 1). The
rain that falls on the Highveld flows towards the Lowveld, where it stag-
nates creating pools of standing water suitable for mosquito breeding
because of the flat terrain and high temperatures in this dry zone.
Malaria transmission in Swaziland is prevalent along the eastern

part of the country borders with Mozambique and north-east South
Africa. Transmission occurs in the rainy season between November
and May with a peak in February and March, sometimes extending to
April. Transmission is unstable and follows the quantity of rainfall in

each particular year and the amount of standing water accumulated
during the latest rain episode. The entire population is at risk as it gen-
erally lacks acquired immunity and is therefore highly vulnerable. The
situation is particularly serious with respect to pregnant women and
children under the age of 5 years (Malaria Indicator Survey, 2010).
Plasmodium falciparum dominates and about 99% of malaria cases are
infected with this species, while infections due to the other malaria
species are occasional. 

                   Article

Figure 4. Data rainfall estimate (mm) of A) first 10-day period; B) second 10-day period; C) third 10-day period; D) fourth 10-day
period.
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Entomological data
The National Malaria Control Programme (NMCP) of Swaziland

recently developed a geo-database of all potential vector breeding sites
and ongoing larva scooping activities. Data on vector control and ento-
mology were extracted from the NMCP database and used in this study
for an analysis including multi-scale RS data. 
Mosquito larvae were collected from 30 selected water body/wetland

sites and peripheral shallow pools of standing water as well as water-
filled cattle hoof prints that were identified as potential breeding sites

in the Lowveld region. Figure 1 shows the larvae sampling locations in
the different constituencies, locally known as Tinkhundla. The mor-
phology of all visible larvae in the water was closely observed in an
attempt to collect those larvae known to be anopheline. The larvae were
scooped up from high-density larval areas in the water and the number
of larvae per scoop counted. Where the larval density was extremely
low, or no larvae visible, about 100 scoops were done and the density
determined on the basis of the larvae present in each one. Following
speciation by a senior entomologist, the mosquitoes belonging to the
An. gambiae complex and An. funestus were kept in Eppendorf tubes,

                                                                                                                                Article

                                                                              [Geospatial Health 2015; 10:302]                                                             [page 93]

Figure 5. Example of the spatial distribution of some sampled vector breeding sites and the distance-to-subsistence farming in
Swaziland.
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labeled and preserved in iso-propanol for later polymerase chain reac-
tion (PCR) analysis. For identification purposes, the larvae from each
sampling location were placed in a plastic bucket leaving a breeding
space on top and closed with a lid. Both buckets and lids were both
marked to indicate the locality and date for the collection and then
transported to NMCP’s insectary, where the larvae were transferred by
pipette into marked plastic bowls with clean water placed on a cage to
secure them from being accidentally tilted and spilled while in the
insectary. Each bowl was covered with a net and a cotton wool soaked
in 10% sugar solution was placed on top for feeding. A heater was used
to ensure maintenance of warm temperatures and to facilitate growth.
When the larvae hatched and became adults, they were removed using
a sucking tube, placed in marked paper cups and covered with a net.
The mosquitoes were still fed by the sugar solution, which was placed
on the side of the cups for daily morphological identification by the
entomologist.

Remotely sensed data
Mosquito vector habitat requires specific characteristics, such as

sufficient surface water for reproduction, a certain humidity level for

adult mosquito survival and a suitable temperature allowing acceptable
development rates for both vector and parasite (Ceccato et al., 2005).
For that reason, for a period starting 4 weeks prior to the study until the
end of the entomological survey, Collection-5 (Land Surface,
Temperature & Emissivity data) from the Moderate Resolution Imaging
Spectroradiometer (MODIS) (http://modis.gsfc.nasa.gov) was down-
loaded from the Land Processes Distributed Active Archive Center in
USA (https://lpdaac.usgs.gov/) for land surface temperature (LST) data
at 1-km spatial resolution. We relied on the MOD11A2 product, which
is the average value of clear-sky LSTs during an 8-day period. In addi-
tion, a 24-day temperature average was obtained for the three weeks
prior to the entomological survey. Rainfall estimates (RFE) at 8-km spa-
tial resolution were downloaded from the Famine Early Warning
Systems Network (FEWS NET) Africa (http://earlywarning.usgs.gov/
afghan/downloads/index.php?regionID=af&productID=3&periodID=6).
In addition, a digital elevation model (DEM) from the Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER)
(http://asterweb.jpl.nasa.gov) at 30-m spatial resolution was used for
altitude data.
High-resolution data from the RapidEye satellite (http://www.

satimagingcorp.com/satellite-sensors/other-satellite-sensors/rapid-

                   Article

Figure 6. Example of the final potential vector breeding sites classification of the malaria-endemic area covered by the 5 m resolution
RapidEye data (northern part of the Lowveld).
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eye/) obtained from the ESA Data Warehouse (http://gmesdata.esa.int/
web/gsc/news/latest_20110607) covering the malaria-endemic area of
Swaziland at 6.5-m spatial resolution was used in order to determine
the various land cover types. The RapidEye pixel resolution was resam-
pled to 5-m pixel size during ortho-rectification by the data provider. A
standardized atmospheric correction was applied to the 62 RapidEye
tiles obtained to ensure consistent image pre-processing and thus a
more reliable land cover classification. Land use/land cover (LULC)
classification of the high-resolution data was conducted by applying an
object-based image analysis with a predefined hierarchical Ruleset
(supervised classification) using the software eCognition (Trimble
GeoSpatial, Munich, Germany). The overall accuracy of the land cover
classification was 80.7% with a Kappa coefficient of 0.78. As separate
layers, high-resolution, Euclidean distance-to-land cover layers were
generated as input for the statistical modelling of potential mosquito
breeding sites. Figure 2A shows the land cover classification, while
Figure 2B-D shows a set of three examples of distance-to-land cover
layers used in the statistical model for prediction. The high spatial res-
olution of the land cover classes allowed the identification of small
water bodies and wetlands that can be potential breeding sites for
malaria vectors. An analysis, based on a total of 18 different environ-
mental variables for each larvae sampling point (Table 1), was carried
out with the aim of identifying which parameters that best describe a
vector breeding focus and its environmental requirements (Figures 3A-
D and 4A-D). Eight LULC classes were used: settlements, subsistence
farming, large-scale agriculture, savannah, forest, bush, bare soil/rocks
and roads. All eight distance-to-land cover variables were categorized
into three distance categories, which were defined by the 33rd and 66th

centiles. This made it possible to estimate the effect of the different
distances on the presence or absence of vector breeding sites. The dis-
tances from the vector breeding sites to each of the distance-to-land
cover classes were defined by calculating the Euclidean distance from
each sampling point to the centroid of the pixel with the specific land
cover type. 

Statistical analysis 
The relationship between the above environmental factors and the

presence or absence of larvae were analyzed using a data mining
approach in the statistical software See5 (RuleQuest Research, St Ives,
Australia), which uses a Decision Tree R3 Ruleset induction engine
developed by Quinlan (1993). The algorithm classifies data according
to independent variables a branching method, which splits the data to
illustrate every possible outcome of a probability-based decision.
ArcGIS 10.1 (ESRI, Redlands, CA, USA) was used to conduct zonal sta-
tistical analyses at each larval sampling location in order to retrieve the
environmental parameters for each location. The Decision Tree Ruleset
was thus based both on larval field data from the sampling points and
the local environmental variables.
A training dataset was used to select independent variables relevant

for the classification of the presence of larvae and to obtain the
Decision Tree Ruleset for classification accuracy using the field data
provided. Due to the low sample size, the analysis was performed based
on the results from all 21 positive sampling points. The classifier con-
struction options in the statistical analysis were set so that it would
provide a final Ruleset for classification of unknown water bodies/wet-
lands. The location of standing water bodies and wetlands from the
high-resolution LULC map was afterwards applied to the final Ruleset
for analysis. Based on the final classification rule, a map of all potential
breeding sites in the malaria-endemic area of Swaziland was produced.

Logistic regression
As a first step, the data were explored for any redundancies between

variables via a statistical correlation analysis using Pearson`s correla-
tion coefficient. Bivariate analyses were performed to determine the
relationship between each of the environmental covariates and pres-
ence of vector breeding sites using logistic regression (Stata Statistical
Software, version 13.0). In order to evaluate and compare the results
from the Decision Tree analysis a backward-selection, stepwise logistic
regression analysis with a 15% significance level for removal was car-
ried out based on the same input data set as used in the Decision Tree
approach. Covariates included in the stepwise regression were all
those significant at the 15% significance level in the bivariate results.
We used the 15% significance level to reduce the chance of excluding
important predictors from the stepwise multiple regression. This analy-
sis enabled finding the most effective and parsimonious set of vari-
ables predicting the dependent variable (presence or absence of lar-
vae). 

Results and Discussion

The field campaign
Larvae were found in 21 out of the total of 30 sample sites (70%) of

water bodies. However, these were mostly areas where it had not
rained in the past two to three weeks prior to sampling. In areas where
it had rained recently, no larvae were found and it was difficult to ascer-
tain whether this was due to the fact that the site was not suitable or
the larvae had been washed away due to the rain.
In total, 152 mosquito larvae were collected during the field scooping

campaign. Upon rearing, about 60% of the captured larvae was found to
be An. pretoriensis and 15 % An. gambiae. The rest of the mosquitoes
were Culicines (20%) and Culex (5%) species. Sites where no larvae
were found were mainly large dams, open turbulent dams and areas
where rain was reported less than a week prior to sampling. Most of the
larvae were collected from the edges of shallow and sheltered water
bodies, but where there was enough sunlight. Larvae were also found
in clear pools of water with little aquatic flora and fauna.
Geographically, the highest larval densities were found in the southern
and northern part of the Lowveld as well as on the eastern plateau bor-
dering Mozambique. These were areas with large-scale irrigated farms
such as sugarcane surrounded by subsistence farming. Excess runoff
water was common in these areas as most of the fields had sprinklers
continually wetting various parts of the field; hence drainage water
accumulated in small depressions around each field assuring availabil-
ity of water also in the dry season. 

Decision Tree analysis
The analysis of the 21 sample points with larvae using 18 environ-

mental variables showed that the combined use of only 3 variables in 3
rules correctly classified 95.2% of the larvae present sites and they
included: distance-to-subsistence farming, 10-day RFE of the second
10-day period and distance-to-savannah. The variable with the highest
attribute usage was the distance-to-subsistence farming that appeared
in 90% of the rulesets in predicting a class. Indeed, distance-to-subsis-
tence farming less than 216 m turned out to be a major determinant for
vector breeding sites (Figure 5). However, no relation could be found
between breeding sites and distance-to-settlements. In addition to the
variable distance-to-subsistence farming, the 10-day RFE with 1-week
lag had an attribute usage of 38% in the ruleset and the distance-to-
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grassland/savannah showed an attribute usage of 33%. According to
these results, the LST over the 4 weeks before the sampling and alti-
tude had no influence on the occurrence of vector breeding sites. This
was also the case for all other LULCs except distance-to-subsistence
farming and grassland/savannah and the other three remaining RFEs.
As a final step, the classification ruleset derived from the Decision Tree
analysis, which used the variables distance-to-subsistence farming,
distance-to-grassland/savannah and the 10-day RFE, was applied to the
wetland and water body layer with 5-m spatial resolution in order to
identify potential vector breeding sites with similar environmental
characteristics as those identified through the entomological survey.
The resulting map of predicted vector breeding sites for the whole
malaria-endemic area in Swaziland identified potential breeding sites
of various sizes (from 5 to >100 m of standing water). This high-reso-
lution map can be used as a guide for larval sampling activities. Figure
6 shows an example of the final potential vector breeding sites classi-
fication of the malaria area covered by the 5-m resolution RapidEye
data (northern part of the Lowveld) in Swaziland.

Logistic regression
The exploration for variable redundancies via correlation analysis

showed that the average temperature for the 24 days before the larval
sampling, which is an aggregate measure of all four temperature peri-
ods, was highly correlated with all other temperature variables
(Pearson’s r>0.8) and was therefore removed from the analysis. The
bivariate regression analysis indicated that the following variables
were significant at the 15% significance level: distance-to-subsistence
farming, temperature and rainfall of the fourth week prior to larval
sampling, altitude and distance-to-settlement. Results from the step-
wise logistic regression suggest that the best model was the one
including only distance-to-subsistence farming. The higher the dis-
tance from subsistence farming the lower the odds of presence of mos-
quito breeding sites with an odds ratio (OR) 0.21 [95% confidence
interval (CI): 0.06-0.71] and a P value of 0.012 (Table 2).

Conclusions
In this study, we argue that exclusive reliance on RS and knowledge

on how climatic factors and other environmental variables influence
vector breeding is inadequate for the prediction of potential breeding
sites, unless conducted with satellite-generated, high-resolution
imagery in conjunction with information on presence or absence of lar-
vae. To effectively guide control activities, it is imperative that actual
entomological data on vector breeding and distribution be taken into
account, e.g., when constructing regression models, so that previously
not fully understood ecological effects and spatial breeding site hetero-
geneity can be elucidated. Linking entomological field collection with
adequate remotely sensed environmental data does not only increase
the accuracy of prediction models, but it also assists specification and
identification of spatial heterogeneities with regard to vector breeding
habitats. Understanding such variations may further facilitate deter-
mining the contribution and impact of vector control and other malaria
control measures. In addition, as countries move towards malaria elim-
ination, endemic transmission becomes limited to residual foci (Cohen
et al., 2013), where prevention of larval breeding will be necessary.
Most countries already have geographic databases on water bodies as
well as entomological data such as larva scooping. It would be impor-
tant that this information is incorporated into future databases.
Due to the current availability of only limited number of studies with

detailed and explicit spatio-temporal variations on malaria transmis-

sion in Swaziland, it is not surprising that the country has not yet
reached the goal of zero malaria cases, although current control efforts
have been successful to reduce the overall burden. The present work is
the first attempt to map potential breeding sites in Swaziland using
remotely sensed data in conjunction with information on
presence/absence of mosquito larvae. We have demonstrated that dis-
tance-to-subsistence farming is the main predictor for presence of
active breeding sites. This can be explained by the fact that subsistence
farming is a full-time occupation for most rural communities and the
proximity of human hosts may explain the strong association between
distance-to-subsistence farming and vector breeding sites. This finding
is also consistent with a study by Ahmad et al. (2011), which deals with
vector breeding habitats located between 100 and 400 m from human
settlements. In the rural areas of Swaziland, almost every household is
surrounded by hectare-sized subsistence farming fields and this trans-
lates to a continuous land use type as fields join at the edges. This sit-
uation supports the presence of foci and is thus an important factor for
malaria endemicity. Similar result was found in a study by Li et al.
(2008), which concluded that houses in great proximity to streams
have more abundant mosquitoes than other places and that breeding
was high in the nearby valley bottoms.
No relation could be found between breeding sites and distance-to-

settlements in the present study. This could further be explained that
cattle are not near settlements but exist in abundance at subsistence
farming sites. From the field survey results, it was clear that the vector
breeds very well in small water bodies down to the size of cattle hoof
prints, which provide sheltered conditions. Turbulent water does not
favour larvae development, which has already been observed in previ-
ous studies (e.g. Ageep et al., 2009), while Dejenie et al. (2011) remark
that it is very likely that peripheral water bodies from irrigation chan-
nels and small depressions like cattle hoof prints, rather than the larger
main dams, become preferred sites for mosquito larvae. Hence, it is
very likely that locations characterized by cattle and proximity to water
bodies are at risk due to the probable presence of vector breeding sites.
Rainfall was not found to be associated with vector breeding, which

is not surprising as the more frequent and heavy the rainfall, the high-
er the possibility that mosquito larvae are washed away (Savage et al.,
1990). As already alluded to, mosquito larvae were not likely to be found
in areas reporting rain less than a week prior to the survey. However,
as irrigation played a major role in providing excess water, it was not
unexpected that rainfall had a lower attribute usage percentage (38%)
in the Decision Tree analysis. Indeed, availability of water also in the
dry season results in suitable habitats the year round facilitating ovipo-
sition compared to other parts where irrigation is not applied. This tells
us that rainfall may not always be a useful predictor and that mosqui-
toes can be plentiful even without rainfall. Based on the discussion
above, it would not be unusual that the use of rainfall as a covariate in
logistic regression models even indicates a negative correlation, which
is not always the case with other studies analyzing environmental fac-
tors in relation to malaria transmission (Briët et al., 2008; Laneri et al.,
2010). Thus, in areas where larval breeding occurs in the absence of
rainfall, other environmental proxies will have to be used to identify
and map potential breeding sites. 
The maps produced in this study are not only useful for targeting

residual foci, but could also help reducing the LSM budget. This would
be achieved through the implementation of larvicide application guided
by risk maps (Dambach et al., 2014). 
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Table 1. Data sources and properties of the environmental covariates used in predicting potential mosquito breeding sites.

Type of data                    Source                                        Date                         Temporal resolution (days)             Spatial resolution

Altitude                                          DEM                                                       2012                                                              -                                                              30 m
Land cover                                RapidEye                                                   2011                                                              -                                                               5 m
LST                                           MODIS data                                  01.11.2012-05.11.2012                                               8                                                             1 km
RF                                             FEWS NET                                   01.11.2012-10.12.2012                                              10                                                            8 km
DEM, digital elevation model (http://asterweb.jpl.nasa.gov); RapidEye, RapidEye satellite imagery (http://gmesdata.esa.int/web/gsc/news/latest_20110607); LST, land surface temperature; MODIS, Moderate Resolution
Imaging Spectroradiometer (http://modis.gsfc.nasa.gov); RF, rainfall; FEWS NET, Famine Early Warning Systems Network (http://earlywarning.usgs.gov/afghan/downloads/index.php?regionID=
af&productID=3&periodID=6).

Table 2. Analytical results using three different statistical methodologies.

Predictor              Bivariate logistic         Stepwise logistic   Decision Tree analysis
                                   regression                    regression     
                                                  OR (95% CI)                 P°                    OR (95% CI)         P                            Ruleset             Cumulative
                                                                                                                                                                            attribute          classification 
                                                                                                                                                                           usage (%)          accuracy (%)

Subsistence farming#                                       
       Distance (m): <370                               1.00                                  -                                         -                         -                                            -                                     -
       Distance (m): 370-470               0.05 (0.01; 0.49)                   0.003                        0.05 (0.01; 0.49)        0.009                                       90                                 47.6
       Distance (m): ≥470 m               0.21 (0.06; 0.71)                   0.003                        0.21 (0.06; 0.71)        0.012                                       90                                 47.6
Distance-to-savannah (m)                              
       <150                                                           1.00                                  -                                         -                                                                        
       150-620                                           0.56 (0.90; 3.52)                   0.536                                     -                        33                                       95.2§
       ≥620                                                0.93 (0.38; 2.24)                   0.864                                     -                        33                                       95.2§

Temperature                                                       
       First week                                     0.64 (0.25; 1.63)                   0.337                                     -                         -                                            -
       Second week                               0.76 (0.31; 1.87)                   0.549                                     -                         -                                            -
       Third week                                   0.93 (0.39; 2.25)                   0.873                                     -                         -                                            -
       Fourth week#                              3.98 (1.20; 13.23)                  0.008                                     -                         -                                            -
24-day average temperature             0.75 (0.30; 1.84)                   0.520                                     -                         -                                            -
Rainfall                                                                 
       First week                                      0.80 (0.33; 1.95)                   0.614                                     -                         -                                            -
       Second week                                 1.03 (0.43; 2.48)                   0.951                                     -                        38                                      76.2^
       Third week                                    0.81 (0.34; 1.97)                   0.647                                     -                         -                                            -
       Fourth week#                                2.57 (0.85; 7.79)                   0.060                                     -                         -                                            -
Altitude#                                                3.50 (1.08; 11.29)                  0.016                                     -                         -                                            -
Distance-to-bare soil/rocks (m)                    
       120                                                              1.00                                  -                                         -                         -                                            -
       120-700                                           1.20 (0.22; 6.68)                   0.835                                     -                         -                                            -
       ≥700                                                0.75 (0.30; 1.88)                   0.536                                     -                         -                                            -
Distance-to-bush land (m)                             
       <420                                                             -                                     -                                         -                         -                                            -
       420-460                                           1.25 (0.22; 7.08)                   0.801                                     -                         -                                            -
       ≥460                                                0.94 (0.36; 2.41)                   0.890                                     -                         -                                            -
Distance-to-forest (m)                                    
       <700                                                           1.00                                  -                                         -                         -                                            -
       700-720                                          1.75 (0.31; 10.02)                  0.528                                     -                         -                                            -
       ≥720                                                0.72 (0.26; 2.00)                   0.525                                     -                         -                                            -
Distance-to-agriculture (m)                           
       <200                                                           1.00                                  -                                         -                                                                       -                                     -
       200-450                                          2.63 (0.45; 15.31)                  0.277                                     -                         -                                            -
       ≥450                                                1.39 (0.57; 3.43)                   0.465                                     -                         -                                            -
Distance-to-main road (m)                        <340                                 -                                         -                         -                                            -                                     -
       340-720                                          1.80 (0.32; 10.20)                  0.504                                     -                         -                                            -
       ≥720                                                1.16 (0.46; 2.88)                   0.757                                     -                         -                                            -
Distance-to-settlement# (m)                     <100                                 -                                         -                         -                                            -                                     -
       100-510                                           0.38 (0.07; 2.22)                   0.277                                     -                         -                                            -
       ≥510                                                0.39 (0.12; 1.30)                   0.089                                     -                         -                                            -
OR, odds ratio; CI, confidence interval. °Based on likelihood ratio test; #variable included in the stepwise regression; §combined use of subsistence farming, rainfall in the 2nd, week and savannah; ^combined use of
subsistence farming and rainfall_week_2.
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