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Abstract. With the aim of exploring the usefulness of spatial analysis in the formulation of a strategy for schistosomi-
asis japonica control in different environmental settings, a population-based database was established in Dangtu coun-
ty, China. This database, containing the human prevalence of schistosomiasis at the village level from 2001 to 2004,
was analyzed by directional trend analysis supported with ArcGIS 9.0 to select the optimum predictive approach. Based
on the approach selected, different strata of prevalence were classified and the spatial distribution of human infection
with Schistosoma japonicum was estimated. The second-order ordinary kriging approach of spatial analysis was found
to be optimal for prediction of human prevalence of S. japonicum infection. The mean prediction error was close to 0
and the root-mean-square standardised error was close to 1. Starting with the different environmental settings for each
stratum of transmission, four areas were classified according to human prevalence, and different strategies to control
transmission of schistosomiasis were put forward. We conclude that the approach to use spatial analysis as a tool to
predict the spatial distribution of human prevalence of S. japonicum infection improves the formulation of strategies
for schistosomiasis control in different environmental settings at the county level.
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Introduction

Schistosomiasis japonica is one of many zoonotic
parasitic diseases along the Yangtze River and in the
south of China. The central Government has, how-
ever, noted the serious situation and the national
disease control programme has recently instituted a

high-priority approach with regard to the major,
communicable diseases in the area, in particular
schistosomiasis, HIV/AIDS, tuberculosis, and hepa-
titis B (Utzinger et al., 2005). Due to its great impact
on the populations in endemic areas, schistosomia-
sis restrains social and economic development
(Zhou et al., 2005b).

In spite of great efforts and the remarkable
progress made over the past 50 years since the
inception of the national programme on schistoso-
miasis control, hyper-endemic areas still remain in
lake and marshland regions, as well as in some of
the mountainous regions in seven provinces of
southern China. While, especially in the lake and
marshland regions, the control strategy on schisto-
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somiasis is far from ideal due to large variations in
environmental settings and social-economic status
(Yuan et al., 2002; Utzinger et al., 2005; Zhou et al.,
2005c). Therefore, it is necessary to study the con-
trol strategy for different ecosystems in hyper-
endemic areas for sustained control of schistosomi-
asis, under the current situation.

The advent of geographical information systems
(GIS) and remote sensing (RS) techniques provides
important advances to our understanding of key
environmental factors for the transmission of infec-
tious diseases. Incorporation of these new technolo-
gies, often in conjunction with innovative spatial
statistical approaches, are increasingly used for the
prediction of the prevalence of Schistosoma japon-
icum infection (Zhou et al., 2001; Guo et al., 2005;
Yang et al., 2005). Kriging is a widely used geosta-
tistical technique for the analysis of spatial correla-
tions and for constructing prediction maps in the
field of public health (Waller and Gotway, 2004;
Jerrett et al., 2005; Goovaerts, 2006).

The purpose of this study is to present kriging
based on data from a few sites as a solution to the
problem of predicting the spatial distribution of
S. japonicum infection over a whole region. A fur-
ther aim is to attempt formulating a schistosomia-
sis control strategy based on predictions for differ-
ent environmental settings also at small scales, i.e.
at the county level.

Materials and methods

Study area

For the study, we selected a highly endemic area,
i.e. the Dangtu county, Anhui province, located in
the lower researches of the Yangtze River. Most of
this area belongs to the plain regions with waterway
networks. However, some marshes and lakes also
exist, as well as a few hilly and mountainous regions
(Yuan, 1993). Schistosomiasis has been relatively
well controlled in Dangtu but has recently re-
emerged due to environmental and social factors.

For example, snail infested-areas, both in terms of
snail density and the number of positive snails in the
county, were all found to be increasing (Shen,
2005). The Dangtu county carries a total population
of 220,000 and there are 13 S. japonicum-endemic
townships. In 2003 the average S. japonicum infec-
tion rate of humans and cattle was 1.2% and 1.3%,
respectively (Chen et al., 2005).

Epidemiological data

The historical data about human infection from
2001 to 2004 were collected and used to establish
an epidemiological database using FoxPro 6.0 soft-
ware (Microsoft Corporation, USA). There are 282
villages in Dangtu, 114 of which identified as
endemic villages (Chen et al., 2005; Yao, 2006).

Each year about one-third to half of the endem-
ic villages were surveyed and residents were
screened for S. japonicum infection by the indirect
hemagglutination test (IHA) (Wang et al., 2000)
and then confirmed by the Kato-Katz thick smear
method (Katz et al., 1972). Those with the highest
rates of human infection for each of the 114 histor-
ically identified endemic villages were extracted for
further analysis.

Spatial data

The geographical coordinates (latitude/longitude)
of the centre of each endemic village were recorded
using GPS Map76 (Garmin Corp., Kansas, USA).
The GIS database was established using ArcGIS 9.0
(ESRI Corp., USA) to record the coordinates and the
highest infection rates for each village that had been
deemed endemic in the 2001-2004 period.

Spatial correlation analysis

Spatial correlation analysis (Paul and Michael,
1996; Elliott et al., 2000; Eileen et al., 2004) was
performed by the semivariogram model, which pro-
vides a measure of variance as a function of distance
between data points. The semivariance is calculated
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as half of the mean-squared difference between two
values separated by the distance h, i.e.

where Z is a value at a particular location, N(h)
the number of paired data at the distance h, and
γ (h) the semivariance. Denoting the spatial corre-
lation parts of Z, it equals the expected squared
difference value of observed points based on the
fixed distance h.

Semivariogram, a graph of semivariance plotted
against separation distance h, conveys information
about the continuity and spatial variability of the
process. If observations close together are more
alike than those farther apart, the semivariance
increases as the separation distance increases,
reflecting the decline of spatial autocorrelation with
distance. Often, the semivariance will level off to
nearly a constant value (called the sill) at a large sep-
aration distance (called the range). Beyond this dis-
tance, observations are spatially uncorrelated,
reflected by a (near) constant variance in paired dif-
ferences. We used the spatial analyst module of
ArcGIS 9.0 and selected the exponential model
instead of the spherical model to fit the spatial cor-
relation of infection rate with S. japonicum. Since
the semivariance in our study did not really level off
to a constant value, but increased very slowly
beyond the range of distance, the formula is as fol-
lows:

where C0 is the nugget effect and Ce is the partial
sill (so C0+Ce is the sill). Although ae is called the
range, the “effective range” is 3ae since the semi-
variance γ (h) approaches the sill (C0+Ce) asymptot-
ically, i.e. the minimum distance at which spatial
autocorrelation becomes less than 0.05 is 3ae.

Directional trend analysis

Using the explore data tools of the spatial analyst
module of ArcGIS 9.0, we investigated the direc-
tional trend of the infection data identifying the
presence/absence of trends at a certain direction in
the input dataset, and selected the suitable order for
the ordinary kriging analysis for the next step.

Ordinary kriging analysis

The ordinary kriging model is Z(s) = µ+ε (s) where
s is a point location and Z(s) the value at that loca-
tion. The model is based on a constant mean µ for
the data (no directional trend) and random errors
ε (s) with spatial dependence. The predictor forms as
the weighted sum of the data, i.e.

where Z(si) is the measured value at the ith point,
i = 1, …, N, λi an unknown weight for the measured
value at the ith point, s0 the prediction location, and
N the number of observed points. The weight, λi,
where 

depends on the semivariogram, the distance to the
prediction location, and the spatial relationships
among the measured values around the prediction
point. By using the geostatistical module of ArcGIS
9.0, in accordance with the result of directional trend
analysis, we selected the suitable order to carry out
the ordinary kriging analysis and developed the pre-
diction map based on the human infection rate for
each endemic village. We then categorized the pre-
dicted infection rate to create the schistosomiasis
endemic map with classified strata, based on the
“Chinese Operational Scheme of Schistosomiasis
Control” enacted by the Ministry of Health (MoH)
in 2004 (Zhou et al., 2005c). The five epidemic stra-
ta were classified according to directives issued by
the MoH (2000) and depicted in Table 1.

N(h)

Σ
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2

γ (h)=  { C0 + Ce [1-exp(-h/ae)] h > 0
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At the same time, the map of the standard error of
the prediction, i.e. the uncertainty of the prediction,
was produced to qualify the prediction result
enabling us to put forward a particular control
strategy for each endemic stratum according to their
specific environmental characteristics.

Results

Spatial correlation of infection rates

Fig. 1 depicts the semivariogram demonstrating
spatial correlation of the infection rates. The x-axis
refers to the distance between any two observed
points and the y-axis refers to the corresponding
semivariance. Each dot in the semivariogram repre-
sents a pair of locations, not the individual location
of the endemic village itself.

The fitted semivariogram model was:

In this exponential model, the range was 30.115
km, the “effective range” about 90 km, the nugget
value 0.628, and the sill value 1.449. The ratio of
nugget to sill was 0.433, and the spatial correlation
of the infection rate was moderate within the effec-
tive range (90 km). More than half (56.7%) of the
total spatial variability came from spatial autocorre-
lation and 95% of the observed points became
uncorrelated beyond this distance.

Directional trend analysis

The result of the directional trend analysis is
shown in Fig. 2. Each vertical stick in the direction-
al trend analysis plot represents the location and
infection rate value of each village. All the points
were projected onto the perpendicular planes of
east-west and north-south. Two best-fit lines, calcu-
lated using polynomial models, were drawn through
the projected points modeling trends in specific
directions. The light green line in Fig. 2 presents as
a U-structure, which indicates that the infection rate
exhibits a strong trend in the east–west direction,
while it is weaker from north to south. Thus, we

Fig. 1. Graph of semivariogram in the spatial correlation
analysis based on the population-based prevalence of schi-
stosomiasis in Dangtu county.

Fig. 2. Result of trend analysis of S. japonicum infection rate
in Dangtu county.

γ (h)=  { 0.62804 + 1.449 [1-exp(-h/ae)] h > 0
0 h = 0

S. japonicum infection rate Stratum

Human prevalence above 10%

Human prevalence between 5 and 10%

Human prevalence between 1 and 5%

Human prevalence below 1%

No infection found in humans, cattle or 

snails for 5 years

1

2

3

4

5

Table 1. Definition of the five strata of schistosomiasis pre-
valence.
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could use second-order ordinary kriging to remove
the impact of this prediction trend.

Prediction by ordinary kriging

Based on the result of directional trend analysis,
we developed a prediction map by using second-
order ordinary kriging, which is shown in Fig. 3.
The darker the colour, the higher the predicted
S. japonicum infection rate. The apparent spatial
pattern of S. japonicum infection in Dangtu county
presented an infection situation which was the most
serious in the north-west and south-east, while the
south-western, north-eastern and central areas were
much less affected with medium infection rates in
the transition areas. From the category map, devel-
oped as part of the study, we found that most
endemic villages in Dangtu county fell in the 4th and
5th epidemic strata accounting for 72.7% of all the
endemic villages in the north-west and south-east
part of the county. This was followed by the 3rd

stratum, accounting for 14.1% of all the endemic
villages, and the 2nd stratum, accounting for 13.2%
of the endemic villages which were found in the cen-
tre of the county (Fig. 4).

Prediction error analysis

Cross-validation was used to evaluate the predic-
tion error which could be expressed by several sta-
tistics including mean prediction error (mean), root-
mean-square prediction error (root-mean-square),
average kriging standard error (average standard
error), mean standardised prediction errors (mean
standardised), and root-mean-square standardised
prediction errors (root-mean-square standardised).
The former four statistics should be as small as pos-
sible, and the root-mean-square standardised should
be close to 1. The analysis results, shown in Table 2,
suggest that the second-order ordinary kriging
model is good enough for the prediction.

Fig. 5 depicts the standard error of the prediction
based on second-order ordinary kriging, in which
the darker colour indicates the higher prediction

Fig. 4. Category map of epidemic strata of S. japonicum
infection in Dangtu county.

Fig. 5. Map of the standard error of the prediction based on
the second-order ordinary kriging model.

Fig. 3. Prediction map of S. japonicum infection in Dangtu
county.

Table 2. Prediction errors based on the second-order ordinary
kriging model.

Variables Value

Mean
Root-mean-square
Average standard error
Mean standardised
Root-mean-square standardised

0.007
1.124
1.022
0.005
1.068 
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error indicating that the prediction errors are larger
in marginal areas due to the lower number of
observed points in these areas.

Discussion

The last half-century of schistosomiasis control in
China has reduced the overall prevalence of human
S. japonicum infection by more than 90%, an
achievement which is basically the result of a sus-
tained, multifaceted national strategy adapted to dif-
ferent eco-epidemiological settings. This approach
continues to be successful but with a steadily falling
prevalence, the input from local resources and envi-
ronmental factors will become increasingly impor-
tant (Utzinger et al., 2005; Zhou et al., 2005a,c). At
present, health resources are still scarce in China,
forcing schistosomiasis surveillance to rely on small
regions or sampled villages. For this reason it is very
important to reliably predict the overall status of
schistosomiasis from sampled points and to formu-
late an improved strategy for the national schistoso-
miasis control programme (Zhou et al., 2005b). The
aim of the present study has been to show the abili-
ty to predict the spatial distribution of infection
rates by using ordinary kriging at the county level.
Moreover, we have shown that the approach on spa-
tially mapping epidemic strata could provide a basis
for the formulation of an improved strategy for the
control of schistosomiasis.

Geostatistics theoretically combines geology and
statistics to produce a novel methodology linking a
geological analysis with various statistical
approaches to highlight spatial correlated variabili-
ty. Kriging, one of spatial analytical approaches in
geostatistics for optimal spatial prediction, can be
used to comprehensively consider structural
changes and randomness of the variables. In this
way, breaking the restriction of classic statistics, by
setting semivariogram function as the main tool, a
practical approach is provided for the study of the
spatial phenomena and their regulation. There are
now many different types of kriging software which

differ in underlying assumptions and analytical
goals (Curran and Atkinson, 1998). Ordinary krig-
ing is a common way of interpolation used in, for
example, mining for block modeling to find the best
unbiased linear interpolated estimate. Recently, this
method has been used to analyze the spatial corre-
lation and for the construction of spatial prediction
maps in the field of public health to estimate the
strength and scale of disease patterns, which can be
used to produce a continuous surface map of infec-
tion (Solymosi et al., 2004; Waller and Gotway,
2004; Jerrett et al., 2005; Allen and Wong, 2006;
Goovaerts, 2006). For instance, Sakai et al. (2004)
analysed more than 2.5 million cases of influenza-
like illnesses (ILI), which occurred between 1992
and 1999, based on kriging analysis and showed
the starting areas of peak ILI activity were mostly
found in western Japan. Applying the kriging
method allowed better visualization and under-
standing of spatio-temporal trends in seasonal ILI
activity and this approach is likely to be an impor-
tant tool for future influenza surveillance. The krig-
ing approach has also been used in the field of
schistosomiasis by exploring the spatial distribu-
tion of Oncomelenia snails in marshland of
Jiangning county in 2000 (Zhang et al., 2005).
Prediction maps, based on temperature, vegetation
and wetness only, resulting from this study show
that the variation of snail distribution, and the spa-
tial autocorrelation, are related to the distance
when the distance is less than 30 m (Zhang et al.,
2005). Law et al. (2004) analyzed and mapped the
distribution of four reportable sexually-transmitted
diseases and suggested that geostatistical tech-
niques could be used to visualize disease patterns
and to identify emerging outbreaks.

It is suitable to predict the spatial distribution of
the prevalence of S. japonicum infection with popu-
lation-based prevalence data for each endemic vil-
lage. Because the annually sampled villages in
Dangtu county during 2001 to 2004 overlapped in
some areas, we conducted the spatial analysis by
selecting the highest infection rate during four years
as study variable.
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To reflect the infection status the following four
steps were instituted. Firstly, we conducted spatial
autocorrelation analysis by using semivariogram
function analysis to decide whether there were spa-
tial correlations within these observed points or vil-
lages. In the parameter of the semivariogram func-
tion, the sill value usually means total variability
inside the system and there are no spatial correla-
tions outside this range since the semivariance does
not change with distance. The range is the most
important part in the semivariogram function and
it describes some characteristics of spatial variety
with distance difference. Within the range, the
nearer two points are, the more similarities they
have. If the distance between the observed point
and the unobserved point exceeds the above-men-
tioned range, the known point has no effect on the
interpolation of the unknown point (Paul and
Michael, 1996; Elliott et al., 2000). The ratio of the
nugget value to the sill value indicates the degree of
spatial correlation.

In case the ratio is less than 25%, a strong spatial
correlation exists; if it is between 25% and 75%,
the spatial correlation is medium; and when it
exceeds 75%, the spatial correlation is very weak. If
the pairs of points in the semivariogram produce a
horizontal straight line, there may be no spatial cor-
relation in the data, thus it would be meaningless to
create a surface (Elliott et al., 2000). In this study,
the ratio of nugget value to sill value was 0.433,
illuminating the spatial correlation of the infection
rate is medium. Other variations may result from
random variation or other reasons such as social
factors which need to be further studied.

The directional trend analysis was performed as a
second step. Principally, if a trend exists in the
prevalence data, it should be identified first and fol-
lowed up in a further analysis. According to Paul
and Michael (1996), the removal of the directional
trend allows the analysis to be followed-up without
being influenced by that trend and, once it is added
back, a more accurate surface can be produced. In
this study, the directional trend analysis revealed
that our prevalence data presented a U-type trend,

thus a second-order curve was the best method for
removing the influence of the predictive trend.

Thirdly, we created a prediction map to illustrate
the spatial pattern of infection rate. The relation-
ship between schistosomiasis or the intermediate
host snail and environmental factors, such as veg-
etation and temperature, as well as socio-econom-
ic factors, such as income and water contact, has
been widely explored (Raso et al., 2005; Yang et
al., 2005; Zhang et al., 2005, Clements et al.,
2006). In consideration of the environmental fac-
tors and social background in the Dangtu county,
the directional trend and moderate spatial correla-
tion resulting from the study is partially due to the
spatially correlated distribution of vegetation and
temperature as well as the water-contact behaviour
related to the Yangtze River and its branches. Even
when some of the aforementioned factors were
taken into account, spatial correlation still
occurred in schistosomiasis transmission or the
distribution of the intermediate host snail (Raso et
al., 2005; Zhang et al., 2005; Clements et al.,
2006). It is necessary to pay attention to, and make
use of, spatial correlation when making predic-
tions since it is unlikely that all the factors explain-
ing the spatial correlation in infection can be
included in one study.

Finally, in our analysis the prediction errors were
estimated spatially. The analysis revealed that the
prediction errors were larger at margin areas and
areas with few observed points. A likely explanation
of this observation is that kriging is a spatial inter-
polation method and that the prediction ability out-
side the distribution of sampled points is less reli-
able. Furthermore, the sampled endemic villages
were asymmetrically distributed and the prediction
ability is less good for areas with a low number of
observed points. This reminded us to pay attention
to the randomicity of the spatial distribution of the
samples when carrying out spatial correlation analy-
sis and interpreting the results.

The second purpose of the study was to formulate
the schistosomiasis control strategy for each stratum
based on the results of the spatial analysis. From the
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prediction map, we found that the majority of the
endemic villages in Dangtu county belong to one of
four strata (2nd to 5th), while no village of the 1st

stratum was found. Villages sorted into the 2nd stra-
tum were mainly found in the lake and marshland
region in the north-west near the Yangtze River, and
along the west bank of Sejiu Lake in the south-east.
Those belonging to the 3rd stratum were distrib-
uted in the marshlands along the three main rivers
of the Dangtu county, i.e. Guxi River, Qinghe River
and Yunliang Rivers, all of which are directly
linked to the Yangtze River and therefore show
similar water levels. Villages belonging to the 4th

stratum were in general not in the vicinity of rivers
or lakes, while 5th stratum villages were located in
the central part of Dangtu county far away from
water bodies. Since different control strategies can
be defined according to the principle of the nation-
al schistosomiasis control strategy, we recommend
that the control strategy be defined based on the
local environmental settings as well as epidemic
strata at base level or village level, at least in the
Dangtu county. Consequently, for villages in the
2nd stratum, the strategy should be to reduce the
human infection rate and lighten the morbidity by
chemotherapy. In addition, snails should be pre-
vented from spreading into the embankments made
to keep the water out of the villages and their
immediate vicinity.

Detection and elimination of the snail should be
strengthened in parallel with diagnosis and treat-
ment of patients. If necessary, mass chemotherapy
should be performed. In 3rd stratum villages, the
priority should be to prevent snails from spreading,
reducing sources of infection for the livestock. In 4th

stratum villages, an integrated strategy should be
instituted with a focus on environmental manage-
ment with the aim of changing snail habitats and
thus reduce the infection sources. In villages of the
5th stratum, the priority should be to prevent schis-
tosomiasis from re-emerging by improved surveil-
lance systems monitoring not only the human pop-
ulation but also snails and livestock.
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