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Abstract. Time-series of coarse-resolution greenness values derived through remote sensing have been used as a sur-
rogate environmental variable to help monitor and predict occurrences of a number of vector-borne and zoonotic
diseases, including malaria. Often, relationships between a remotely-sensed index of greenness, e.g. the normalized
difference vegetation index (NDVI), and disease occurrence are established using temporal correlation analysis.
However, the strength of these correlations can vary depending on type and change of land cover during the period
of record as well as inter-annual variations in the climate drivers (precipitation, temperature) that control the NDVI
values. In this paper, the correlation between a long (260 months) time-series of monthly disease case rates and
NDVI values derived from the Global Inventory Modeling and Mapping Studies (GIMMS) data set were analysed
for two departments (administrative units) located in the Atlantic Forest biome of eastern Paraguay. Each of these
departments has undergone extensive deforestation during the period of record and our analysis considers the effect
on correlation of active versus quiescent periods of case occurrence against a background of changing land cover.
Our results show that time-series data, smoothed using the Fourier Transform tool, showed the best correlation. A
moving window analysis suggests that four years is the optimum time frame for correlating these values, and the
strength of correlation depends on whether it is an active or a quiescent period. Finally, a spatial analysis of our data
shows that areas where land cover has changed, particularly from forest to non-forest, are well correlated with
malaria case rates. 
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Introduction

Remote sensing has emerged as an important tool
for detection, surveillance, forecasting and control

of a variety of arthropod vectors and zoonotic infec-
tious diseases. This approach has been used as a
monitoring or predictive tool for a variety of infec-
tious diseases, including malaria (Achee et al.,
2006). In disease-related applications, remotely-
sensed data have generally been used in two ways
(Kazmi and Usery, 2001), namely (i) for the identifi-
cation and mapping of land cover associated with
host and/or organism habitats, and (ii) as a surro-
gate for meteorological or climatic conditions (e.g.
precipitation and surface temperature) known to be
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associated with population dynamics of host and/or
vector (Hay and Lennon, 1999). The first of these
two applications typically rely on moderate or fine
resolution imagery (typically varying between 1 and
30 m) that is capable of classifying land use/land
cover using a variety of statistical or mathematical
pattern-finding techniques (Curran et al., 2000).
Often, the data used in these applications are avail-
able only at infrequent time intervals. 

The second application for remotely-sensed data
in infectious disease analysis makes use of image
data from sensors such as NOAA-AVHRR, SPOT-
VEGETATION or EOS-MODIS (Bergquist and
Rinaldi, 2010). The spatial resolution of these sen-
sors (~1-8 km) is frequently too coarse to reveal
details about vector habitats, but the data from
these sensors are useful in environmental analysis
because they are typically available at temporal fre-
quencies as short as one day, yielding a dense time-
series of information about the dynamics of the land
surface. A common strategy for utilizing these
coarse resolution data time-series is to use
reflectance data from the visible and near infrared
(VNIR) region of the spectrum to calculate the nor-
malized difference vegetation index (NDVI), a sim-
ple index formed by dividing the difference between
reflectance in the red and near infrared spectral
regions by the sum of the reflectance in the same
two bands (Tucker, 1979). NDVI correlates to a
number biophysical parameters, including leaf area
index (LAI), biomass and fraction of absorbed pho-
tosynthetically active radiation (FPAR). Since these
canopy parameters are closely linked to the mois-
ture status of the plant environment, which is in
turn linked to meteorological/climatic conditions,
NDVI is often used as an indirect measure or surro-
gate for precipitation (Schultz and Halpert, 1993).  

The capability of NDVI time-series to monitor
and predict vector-borne diseases (particularly those
transmitted by mosquitoes) depends on the correla-
tion of both disease incidence and vegetation green-
ness with precipitation. Although the relationship
between precipitation and the life-cycle of the vector
is complex and depends on the species of mosquito,

a number of studies have established a positive rela-
tionship between precipitation and the breeding
cycle of various mosquito vectors (Kazmi and Usery,
2001). NDVI has consistently been shown to be cor-
related to precipitation – although the exact form
and strength of that correlation depends on the
ecosystem and cover type in question (Fuller and
Prince, 1996). It therefore follows that NDVI
should also be correlated to the occurrence of dis-
eases, the vector habitats of which are linked to
rainfall. Much of previous work on correlation of
NDVI with vector-borne disease has been done to
monitor and predict malaria in sub-Saharan Africa.
For example, in Kenya, Hay et al. (1998) used
Fourier analysis of a 5-year AVHRR time-series to
predict malaria transmission seasons.
Mushinzimana et al. (2006) used moderate-resolu-
tion image data to map vector habitats. Elsewhere in
Africa, Dambach et al. (2009) and Ceccato et al.
(2007) used time-series of coarse resolution data as
climate surrogates and independent variables for
predicting malaria transmission.

Much of the research cited above was conducted
in sub-Saharan Africa where the land cover is dom-
inated by savanna and grassland. Both of these
cover types are associated with more xeric condi-
tions and tend to respond more rapidly to variation
in precipitation (Fabricante et al., 2009). Land cover
in these areas is also relatively stable. Less is known
about the correlation between NDVI and disease
rates in tropical or sub-tropical forested areas in
South America, where land cover is changing rapid-
ly due to human activities.  

In this paper, we report the results of correlating a
long (>25-year) malaria time-series with NDVI for a
forested, subtropical site in eastern Paraguay under-
going extensive deforestation. In the Regional
Office for the Americas of the World Health
Organization (EMRO), Paraguay currently ranks
16th with respect to the number of malaria cases,
while it was a highly endemic country in the past.
When normalized to population size, the malaria
case rate in Paraguay during the analysis period falls
within the top 10 in the region. Like many coun-
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tries, Paraguay is vulnerable to increased malaria
incidence due to climate change (Rojas de Arias,
2002). The majority of malaria cases in Paraguay
occur in a sparsely populated areas along the fron-
tier with Brazil, thus the malaria cases can be quite
a burden to the local health services. The impact of
malaria in Paraguay during the period of the study
was significant, signifying the need for a better
understanding of environmental factors which
affect disease rates.  

In this paper, we investigate the relationship
between malaria cases and NDVI time-series by
addressing two research questions:
(i) does NDVI significantly correlate with malaria

over longer time periods?; and 
(ii) does land cover change effect the correlation

between the two?

Materials and methods 

Study area

The study area for this research consists of two
departments (the principal administrative subunit in
Paraguay) within the Republic of Paraguay: Alto
Paraná and Canindeyú. Both these departments are
located in eastern Paraguay near the common fron-
tier with Brazil and Argentina. The region is within
the Atlantic Forest biome, one of two major biomes
of Paraguay (Fig. 1).

Historically, the Atlantic Forest was once the most
extensive subtropical rain forest in South America,
extending from the Brazilian coastal plain inland
into eastern Paraguay and Argentina. With over
20,000 plant species (8,000 endemic), 850 species of
birds (180 endemic), plus numerous endemic
amphibians, reptiles, small mammals and primates,
the forest supported one of the most extensive and
varied flora and fauna of South America. The
Atlantic Forest is recognized as an international
biodiversity “hotspot” (Galindo-Leal and Gusmao-
Camara, 2003), a designation based on its high
diversity and level of anthropogenic threat.
Extensive deforestation, driven by timbering, ranch-

ing and agriculture, has reduced the Atlantic Forest
from its estimated original area of about 1.2 million
km2 to a current area of approximately 100,000
km2. In Paraguay, the remaining Atlantic Forest is
highly fragmented, with forest remnants of various
sizes being interspersed with pasture and crop land
(typically sugar cane, coffee and soy). Human pop-
ulations in the Atlantic Forest have also increased,
resulting in further land clearance and development.
Land cover in both departments has been altered by
the presence of the Itapúa hydroelectric dam on the
Paraná River. Completed in 1984, the dam and
resulting lake flooded 1,400 km2 along the
Paraguay-Brazil border. 

The departments Canindeyú and Alto Paraná are
both located within the region of malaria-endemici-
ty in Paraguay. Malaria cases in the region are gen-
erally associated with Plasmodium vivax, transmit-
ted by the vectors Anopheles darlingi, An. strodei,
and An. albitarsis. Although land cover change
affects the number of malaria cases, this has not
been directly investigated in eastern Paraguay. The
results of similar analyses in the Amazon rain forest

Fig. 1. Map of Paraguay showing the two departments where
the current study was carried out.
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suggest that certain types of deforestation, particu-
larly those resulting in fragmented forest canopies
with substantial shade and proximity to water, may
increase the mosquito larval habitat area and possi-
bly the biting frequency of the vector species (Castro
et al., 2006; Vittor et al., 2006, 2009).

Remote sensing data

We used a 260-month time-series (July 1981 -
February 2003) of NDVI data subset from the
Global Inventory Modeling and Mapping (GIMMS)
data set (Tucker et al., 2005). GIMMS is a global
NDVI data set derived from 8 km AVHRR Global
Area Coverage (GAC) data. GIMMS data consist of
pixels from a number of AVHRR instruments, cor-
rected for orbital drift and sensor cross-calibration
error using empirical node decomposition (Pinzon et
al., 2005). Although the data are available as
bimonthly composites, we used only one scene per
month. Each department was collected as separate
subsets and then stacked into a 260-band image for
further analysis. All basic image manipulations were
done using version 4.1 of the ENVI image process-
ing environment (ITT Visual Information Solutions;
Boulder, CO, USA), and the IDRISI Andes software
(Clark Labs; Worcester, MA, USA).

For the land cover analysis, we used the NASA
GeoCover dataset (Tucker et al., 2004). The
GeoCover dataset provides Landsat imagery for
three time periods, circa 1970-1980, 1990 and
2000. Depending on the time period, the data are
from either the Landsat Multispectral Scanner
(MSS), the Thematic Mapper (TM), or the
Enhanced Thematic Mapper (ETM)+ sensors. All
GeoCover data are selected for low cloud content,
and are orthorectified for high geometric fidelity.
For our study area, the data used were acquired in
1975, 1990 and 2000.

Malaria data

The number of malaria cases for Alto Paraná and
Canindeyú was obtained for the same time period as

the NDVI data from the Servicio Nacional de
Erradicación y Control de Vectores (SENEPA),
Asuncion, Paraguay. To account for population
variation over time, the raw data were transformed
using a moving window approach, in which the
number of cases within each window were deter-
mined and then divided by the average number of
cases for that window. This procedure was carried
out for both departments with window sizes varying
from 3 to 7 years. 

Correlation analysis

To address our research questions, we used three
related analyses: (i) correlation of the rates of malar-
ia cases with an NDVI time-series consisting of
monthly values spatially averaged over each depart-
ment; (ii) correlation of NDVI averaged over each
department with case rates within the moving win-
dows as described below; and (iii) correlation of
individual pixel time-series with the case numbers to
determine spatial patterns of correlation relative to
land cover change during the study period. The
methods used for each analysis are explained in fur-
ther detail below. All image processing were done
using code developed with the MATLAB program-
ming language (The Mathworks, Natick, MA, USA,
2007).

As most types of experimentally-collected data,
remotely sensed NDVI time-series are unavoidably
affected by noise. A reliable, realistic assessment of
the correlation of NDVI time-series and any other
time-series must account for the presence of noise by
implementing some noise-reduction techniques. In
our present analysis, we have addressed this issue by
means of Fourier analysis, which is justified by the
underlying cyclic nature of NDVI data. Indeed, sea-
sonally changing NDVI encodes periodic features,
best captured by Fourier analysis, whose main tool,
the Fourier Transform, is precisely based on the rep-
resentation of time-series as a superposition of the
periodic sine and cosine functions at different fre-
quencies. To demonstrate the efficacy of the
smoothing process, we conducted a correlation
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analysis using both the unaltered data series (as
received from the original sources) and a Fourier-
smoothed NDVI time-series. 

To assess the overall correlation between NDVI
and case rates in each department, we spatially
averaged all NDVI pixel values, and then correlated
this averaged value to overall case rates in each
department using the Pearson’s product moment
correlation coefficient (r). Pearson’s r assumes a lin-
ear relationship between two variables, thus our
analysis is not sensitive to any non-linear relation-
ship that might exist. Vegetation activity generally
follows precipitation (a major environmental corre-
late of malaria); we therefore lagged the correlation
between NDVI and case rates by values ranging
from 0 to 6 months.  

As earlier noted, the departments of Alto Paraná
and Canindeyú have undergone significant land
cover change (especially deforestation) throughout
the study period. As these land cover changes would
tend to alter the temporal correlation between the
two time-series, correlations over shorter time peri-
ods might be higher than for the entire series. In
order to assess the correlation at shorter time peri-
ods, we applied a moving window analysis to each
of the smoothed, spatially averaged NDVI time-
series. Each moving window was defined by its
length, which varied from 3 to 7 years (36 to 84
months). Values of smoothed NDVI and malaria
case frequency were correlated within a moving
window, after which the window was shifted one
month further along the time-series and the correla-
tion was repeated. This analysis necessarily resulted
in a series of r-values across the time-series. Thus,
these r-values represent the temporal evolution of
the local (36 to 84 months) correlation between
smoothed NDVI and malaria cases.

Results

Moving window correlation

The correlation values from the moving window
analysis applied to area-averaged NDVI values

Fig. 2. Malaria case rates for Alto Paraná and Canindeyú,
1981-2003. 

Fig. 3. Land use/land cover change over the period 1975-
2000. Classified pixels for three separate years (1975, 1990
and 2000) were classified using a simple scheme (forest, non-
forest, water), then sorted into change classes based on tran-
sitions from one class to another.
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showed high temporal variability in both depart-
ments throughout the study period (Figs. 4 and 5).
Comparison of the results from the two depart-
ments shows some notable differences. In general,
the correlation was higher in Alto Paraná compared
to Canindeyú. This is consistent with the results
from the previous analysis, where the entire time-
series were correlated. Not surprisingly, the range
of r-values over both the Canindeyú and Alto
Paraná time-series varied with the length of the
moving window. Generally, the highest r-values
were found with the shortest windows; however,
the general pattern of temporal variability was sim-
ilar for all windows. Overall, the best correlations
were found with moving windows of 4 years (48
months). Maximum correlations at this window
length reached r = 0.73 during periods of high rates
of malaria cases. The temporal patterns were not
the same for both departments. In Alto Paraná, the
highest r-values were found for moving windows
encompassing the years 1987 through 1990. In
Canindeyú, the r-values were generally less (com-
pared to Alto Paraná) and the temporal pattern was
slightly more complex. The highest r-values
occurred from 1989 to 1992, and again at the end
of the time-series. In quiescent periods (few report-
ed malaria cases) the correlation values became
quite low or even negative. 

For both departments, the temporal pattern of
correlation values at all window sizes mirrors the
case rates. In Alto Paraná, the majority of cases
occurred during two peak time periods. The first
and largest of these (in terms of case rates)
occurred between 1985 to 1990-1991, with peak
rates occurring in 1989. The second period was
both shorter and less active, ranging from 1998-
2001 and peaking in 1999. These active periods
were surrounded by intervening quiescent periods,
where case rates were lower. In Canindeyú, there
were three periods of high activity, one ranging
from 1984-1986, a second (less pronounce) from
1989-1991, and a third in 1998-2001. Case rates
dropped to quiescent levels in intervening times.
The active periods in Canindeyú correspond

Fig. 4. Correlation values for Alto Paraná using moving win-
dow lengths (L) of 3, 4, 5, 6 and 7 years. 

Fig. 5. Correlation values for Canindeyú using moving win-
dow lengths (L) of 3, 4, 5, 6 and 7 years.
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roughly to those in Alto Paraná, except for the rel-
ative quiescent period in 1988. Note that although
the peak cases rates varied widely, there is a sug-
gestion of periodicity of case rates in both depart-
ments, which appears to be fairly regular and sea-
sonal. These active periods correspond to the times
of highest correlation between NDVI and the
occurrence of malaria. This is not surprising, since
in order for two time-series to correlate, there must
be some systematic variation in the magnitude of
both. During the quiescent periods, there is little or
no variation in malaria case rates in either depart-
ment. This observation reveals a general weakness
in the use of NDVI as a surrogate for correlating
environmental variation with malaria (and perhaps
diseases); temporal variability in NDVI occurs pri-
marily due to seasonal canopy variability, and will
always show an intra-annual pattern of variability.
The strength and intensity of this variability may
depend on climatic variation (especially precipita-
tion), which may in turn be linked to global or
regional circulation patterns (Tsonis et al., 2008)
but the seasonal variation will always be present.
In contrast, the rates of malaria cases, while some-
what seasonal (see Fig. 2), are characterised to a
much greater degree by the pattern of active peri-
ods with intervening quiescent periods as discussed
above. It is reasonable to expect that the r-values
should be higher when the case rates are higher
and show a regular pattern of variability, simply
because the dynamic range in case-rates is greater
during these times. Similarly, correlations should
be lower when case rates are low and variation
irregular.

The contrast in correlation values between times
of high and low case occurrence also helps to inter-
pret the effects of moving window length. As earli-
er noted, overall correlations tended to be higher at
shorter window lengths in both departments.
Selection of a “best” window length is a somewhat
subjective exercise, nevertheless based on the crite-
ria of highest mean and maximum correlation, the
4-year window seems to be the best for these data.
Systematic change in LULC in the study area might

also play a role in limiting the accuracy of correla-
tion over longer time periods, a factor considered in
more detail in the next section.

Spatial-temporal patterns of correlation

In both the area-averaged and moving window
analyses described in the previous two sections, we
averaged all smoothed NDVI pixel values for each
of the two departments. This was done because
malaria case rates data were only available at the
department level. However, spatially averaging the
NDVI values has the effect of “blurring” the influ-
ence of LULC, and potentially lowering the overall
correlation in each department. This would be espe-
cially true if the temporal NDVI trajectories associ-
ated with a particular LULC type correlated more
closely with the malaria case rates compared to oth-
ers. Also, one of the motivating questions behind
this analysis is the effect on temporal correlation of
NDVI when LULC changes over the course of the
analysis period. To address this question, we sub-
mitted the correlation values obtained from using a
4-year moving average window for each pixel vector
in each department to standardised temporal princi-
pal component analysis (PCA). The various compo-
nents resulting from PCA have the effect of reveal-
ing major patterns in temporal data. In particular,
the first principal component generally captures the
overall trend of a time-series (Eastman and Fulk,
1993) and is therefore well-suited for summarising
the overall pattern resulting from using a series of
moving window correlations across the entire data
set. Application of standardised PCA results in a
new image where each pixel value represents the
contribution (positive or negative) of that pixel vec-
tor to the overall component loading value, thus
summarising the major spatial-temporal trends and
patterns throughout the study period (see Fig. 6).

The heterogeneous spatial pattern of component
loadings in Figure 6 suggests that land cover (and
land cover change) plays some role in determining
the correlation between temporal NDVI trajectories
and malaria cases. To test this association, the
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∆LULC map and the PCA loading map were super-
imposed and the composition of the various LULC
categories present in each PCA loading map pixel
determined. The spatial resolution of the PCA load-
ing map was 8 x 8 km (reflecting the fact that it was
derived from GIMMS data), while the resolution of
the ∆LULC map (derived from Landsat MSS and
TM data) was 60 x 60 m. Thus, each pixel in the
PCA loading map contained about 17,800 ∆LULC
pixels. None of the PCA loading pixels were entire-
ly associated with the same ∆LULC class, and in fact
all of the 8 x 8 km pixels in the factor loading map
contained between 9 and 20 change classes. We
therefore determined the most frequently occurring
∆LULC class for each loading pixel (majority),
along with the total number of classes (diversity). 

After determining the majority and the diversity
for each loading pixel, a regression tree (Breiman et
al., 1984) was used to assess the relationship

between the ∆LULC properties of each pixel and its
loading value. Regression trees analysis is appropri-
ate in situations such as these where data explo-
ration is the goal and the distributional characteris-
tics of the input data are unknown (De’ath, 2002) as
its goal is to create an explanatory rather than a pre-
dictive model. Thus, we made no attempt to validate
the model other than to note its standard error. Alto
Paraná and Canindeyú were analysed separately,
yielding separate regression tree models for each
department (Fig. 7). Although the resulting tree
models appeared similar, there were noteworthy dif-
ferences between the two that not only showed that
land cover change is associated with the occurrence
of malaria, but also indirectly shed some light on
how ∆LULC might be related to the case rates. 

In Alto Paraná, both the majority and diversity
variables contributed to the categorization of the
PCA loading pixels. More homogenous (i.e. less
diverse) pixels were associated with high positive
loading values (with a mean of 687), whereas more
diverse pixels contributed negatively to the PCA
loading. This is perhaps not surprising, since a more
heterogeneous surface is likely to be more strongly
associated with a particular outcome. The second
split in the data, involving only the positively asso-
ciated class, resulted in two terminal nodes associat-
ed with differing ∆LULC trajectories. The highest
positive associations were with the FNN class,
implying that deforestation in these pixels occurred
sometime between 1975 and 1990. In fact, transi-
tion from forest to non-forest is not exclusively
associated with deforestation, but the land cover
history of this general area suggests that this is the
most likely cause for this transformation (Huang et
al., 2007). Loading pixels that were associated with
no change (NNN, FFF), along with pixels where
deforestation occurred later (FFN), were also asso-
ciated with high positive loading values (and thus
positively associated with malaria cases), but the
loading values were lower than those in the other
terminal node. Note that the majority of homoge-
nous pixels (83 vs. 48) fell into the FNN terminal
node. From this we conclude that less homogeneous

Fig. 6. Map of first principal component for each pixel vec-
tor in the study area, showing the contribution of each indi-
vidual pixel vector to the overall component loading value.
Note the pixel size relative to the LULC map (Fig. 3).
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pixels where deforestation had occurred were more
likely to be positively associated with the first prin-
cipal component of the correlation data, and this
with the malaria case rates.  

For Canindeyú, the best-fit regression tree did not
include diversity as a significant variable. The tree
had two splits, both determined by majority values.
Pixels where the ∆LULC pattern was FNN were
negatively associated with the first principal compo-
nents, while all other land cover change patterns
were positively associated with the first component.
The second split in the tree produced two terminal
nodes that were both positively associated with the
first component but with notable difference in the
strength of that association. Pixels that remained
forested throughout the study period (FFF) were
marginally associated with the first component,
whereas those pixels that were deforested between

1990 and 2000 were much more strongly associat-
ed with the first component. The NNN class landed
in the same terminal node as FFN, but there was
only one pixel from the component image in this
class.

Discussion

The results of this research both support and
extend the findings of previous work where tempo-
ral series of NDVI has been associated with vector-
borne infectious diseases. As in previous studies, we
found that area-averaged values of NDVI did signif-
icantly correlate with malaria occurrence, although
neither was especially strong for the NDVI values
averaged over the entire department (significant cor-
relations values below 0.30). In evaluating this
result, however, it must be remembered that direct
correlation of NDVI (a biophysical factor) with
malaria case-rates does not explicitly consider all
the factors that intervene between the climatic driv-
ers of vector-borne disease, which includes the ecol-
ogy of the vector and the pathogen, as well as the
transmission of the pathogen to humans. Vector
control, medical intervention and other factors
might act as “hidden” variables in this analysis,
affecting the relationship between the primary vari-
ables explicitly included in the correlation analysis. 

The best correlations were found when the NDVI
time-series lagged the disease series. This lagging
effect is informative from a biophysical perspective,
since it shows that disease responds to environmen-
tal drivers, but it is a problem for prediction since it
implies that disease may already be occurring (due
to increases in precipitation that facilitate the repro-
ductive ecology of the vector) before the NDVI
responds. This suggests that further research should
concentrate on leading indicators of climate condi-
tions or “trigger events” (Pinzon et al., 2004) with-
in the NDVI time-series, if any can be derived from
the data. 

The results of the moving window analysis show
that the best correlations between the smoothed
NDVI and malaria time-series occur with window

Fig. 7. Regression trees for Canindeyú and Alto Paraná. The
numerical value in each box is the mean value for pixel
loadings belonging to that class. N-values in parentheses are
the total number of pixels associated with each terminal
node. Annotation on the tree branches shows the variable
and values associated with each split. The standard error
(SE) for the Canindeyú model was 0.132, for the Alto
Paraná model, SE = 0.077.
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sizes of 4 years or 48 months. At this window size,
the correlation between the two time-series varies
from negative values to about 0.75 (Figs. 4 and 5).
Regardless of the moving window size, the correla-
tion values show wide variation across the whole
time-series. The reason for this variation is fairly
obvious – comparison of the r-values with the
malaria case time-series (Fig. 2) shows that better
correlations occur at times when case rates are high-
er and are showing a definite trend (i.e. rising or
falling). During quiescent periods, when case rates
are low, there is no discernible trend in the case data
for the smoothed NDVI to correlate with – hence
the irregular, low (sometimes negative) correlations.
This observation reveals one of the major draw-
backs with using NDVI as a precipitation surrogate
for surveillance or prediction of infectious diseases
linked to climate – NDVI continues to show a sea-
sonal trend (matching the phenology of the underly-
ing vegetation) regardless of the magnitude of pre-
cipitation amounts. Thus, the NDVI trend is unlike-
ly to correlate with case occurrence over longer time
periods. 

The type of land cover present and any trajectory
of change in that cover type can also influence the
temporal correlation between the series. Much of
the previous work relating temporal NDVI to vari-
ous vectored disease has been done in savanna or
grassland areas of sub-Saharan Africa (e.g. Eisele et
al., 2003; Ceccato et al., 2007). Grasslands and
savanna are more sensitive to climatic fluctuations
(especially precipitation), compared to forest, thus
NDVI reacts more quickly. Our study area also
underwent significant land cover change over the
24-year period of record. This land cover change
further complicated the temporal relationship
between NDVI and malaria cases, by replacing for-
est with crop or grassland having different temporal
NDVI trajectories.  

The results of our spatially-explicit analysis sug-
gest that the strongest associations between case fre-
quency and NDVI occurred when the land cover
changed during the period of record, and that the
periods of greatest malaria occurrence coincided

with times of active deforestation. In Alto Paraná,
pixels that were deforested between 1975 and 1990
were more likely to contribute to higher loadings on
the first principal component, indicating higher cor-
relation with malaria cases. Examination of the
rates of malaria cases (Fig. 2) show that the highest
rates occurred in the late 1980s, during the interval
when much of the deforestation in Alto Paraná took
place. This result implies that deforestation may be
related to malaria case rates, a finding consistent
with results in other tropical/subtropical rainforest
regions (Vittor et al., 2009). The pattern of change
was not entirely the same in Canindeyú, where pix-
els in which deforestation occurred in the second
interval (between 1990 and 2000) were most likely
to be more strongly associated with the first princi-
pal component. It is not surprising that later defor-
estation was significant in Canindeyú, since land
cover change occurred later there (Huang et al.,
2007). However, forest loss does not seem to have
been associated with high malaria occurrence in the
1980s. This is likely due to localization of malaria
transmission in the department.

Regarding our two original research questions, we
can draw the following conclusions. First, temporal
trajectories of NDVI are associated with malaria
case rates, but over the relatively long time-series
considered here, the strength and duration of this
association varies widely. The best time interval for
correlating malaria cases to NDVI time-series in
these data was found to be about 4 years. However,
the strength of the correlation varied over time
depending on the case rates. The NDVI correlated
well with case rates during times of increased case
occurrence, but not during quiescent periods. In
practical terms, this might limit the efficacy of the
NDVI as a predictor of the onset of a period of
increased malaria occurrence. The significance of
this for long-term monitoring is unclear, but sug-
gests that while coarse resolution NDVI values may
help predict the magnitude of case numbers once an
active period is underway. Other information (e.g.
climatic forecasts, see Pinzon et al., 2005) may be
needed in order to understand factors that initiate
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active periods. Further research is needed to derive
environmental signals that might indicate the onset
of increased malaria cases.

Second, land cover change does seem to be associ-
ated with malaria case rates, but higher resolution
land cover change data are needed in order to define
the nature of this relationship. Some of the results
shown here suggest that land cover change may be a
factor in initiating active disease periods. However,
as with most disease processes, it is unlikely that a
single variable can completely explain the case
dynamics. Our results might also be useful for pro-
viding information on what types of LULC might
correlate best with the occurrence of malaria. Such
analysis could help in understanding associations
between land cover change and malaria case rates in
eastern Paraguay, ultimately enabling an advance
from temporal to spatio-temporal prediction and
surveillance.

Abbreviations

LULC = Land Use / Land Cover
NNN = Not-Forest, Not-Forest, Not-Forest
FFF = Forest, Forest, Forest
FFN = Forest, Forest, Not-forest
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