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Abstract. Campylobacteriosis is a leading cause of bacterial gastroenteritis in the United States and many other developed
countries. Understanding the spatial distribution of this disease and identifying high-risk areas is vital to focus resources for
prevention and control measures. In addition, determining the appropriate scale for geographical analysis of surveillance data
is an area of concern to epidemiologists and public health officials. The purpose of this study was to (i) compare standard-
ized risk estimates for campylobacteriosis in Tennessee over three distinct geographical scales (census tract, zip code and coun-
ty subdivision), and (ii) identify and investigate high-risk spatial clustering of campylobacteriosis at the three geographical
scales to determine if clustering is scale dependent. Significant high risk clusters (P <0.05) were detected at all three spatial
scales. There were overlaps in regions of high-risk and clusters at all three geographic levels. At the census tract level, spatial
analysis identified smaller clusters of finer resolution and detected more clusters than the other two levels. However, data
aggregation at zip code or county subdivision yielded similar findings. The importance of this line of research is to create a
framework whereby economically efficient disease control strategies become more attainable through improved geographical
precision and risk detection. Accurate identification of disease clusters for campylobacteriosis can enable public health per-
sonnel to focus scarce resources towards prevention and control programmes on the most at-risk populations. Consistent
results at multiple spatial levels highlight the robustness of the geospatial techniques utilized in this study. Furthermore, analy-
ses at the zip code and county subdivision levels can be useful when address level information (finer resolution data) are not
available. These procedures may also be used to help identify regionally specific risk factors for campylobacteriosis.
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Introduction

Campylobacter are motile, spiral shaped, gram neg-
ative bacteria found ubiquitously in the environment
(Snelling et al., 2005; Humphrey et al., 2007). The
organisms have been identified as a leading cause of
human gastroenteritis in developed nations (Allos and
Taylor, 1998; Altekruse and Swerdlow, 2002).
Campylobacter is estimated to cause illness in over 1.3
million people in the United States annually, resulting
in approximately 13,000 hospitalizations (Scallan et
al., 2011). Campylobacter species are found in a wide
variety of sources and can be isolated from foods,
sewage and water. As a result, causative associations
between sporadic human infections and environmen-
tal sources are difficult to ascertain (Frost, 2001). The

risk of disease has been linked to a complex set of
determinants, including geographical region, climate
patterns, human behaviour, and recreational water
and land use (Hearnden et al., 2003; Kovats et al.,
2005; Jepsen et al., 2009). While the incidence of
campylobacteriosis varies seasonally and geographi-
cally, the reasons behind this variation are not clearly
understood (Nylen et al., 2002; Weisent et al., 2010).
In the United States, Foodborne Diseases Active
Surveillance Network (FoodNet) identifies marked
geographical variations in the incidence of
Campylobacter infection. Incidence also differs con-
siderably between countries based on health care seek-
ing behaviour and laboratory culturing practices
(Vally et al., 2009). In 2009, the U.S. incidence of
Campylobacter infection was 13.0 per 100,000 popu-
lation, with a rate in Tennessee of 8.2 cases per
100,000 population. Despite the lower overall inci-
dence, Tennessee public health officials seek a better
understanding of why and where this disease is occur-
ring. Studies have been performed in Denmark,
Norway and Canada to characterize spatial patterns
of campylobacteriosis (Green et al., 2006; Jepsen et
al., 2009; Jonsson et al., 2010). For example, Green et
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al. (2006) detected the highest incidence in rural and
agricultural regions with high densities of farm ani-
mals. The use of geographical information systems
(GIS) and spatial statistics to identify high-risk regions
serves to support and expand current knowledge on
the mechanisms of transmission and geographical risk
factors for this disease. Furthermore, geospatial tools
provide epidemiologists and public health officials
with a starting point from which to assess potential
geographical associations and risk factors.

A major goal in the application of spatial statistics is
to make meaningful inferences from available geo-
graphical data (Pascutto et al., 2000; Beale et al.,
2008). For this reason, understanding the impact of
spatial scale on the assessment of health outcomes is a
topic of great importance. A number of studies exist
which utilize cluster detection and mapping techniques
to identify high-risk regions for infectious diseases (Lai
et al., 2004; Odoi et al., 2004; Que and Tsui, 2008).
Recent studies have also compared techniques for eco-
logical analyses and employed a variety of geographi-
cal scales for understanding health outcomes and dis-
parities (Krieger et al., 2002; Kitron et al., 2006;
Kramer et al., 2010). However, few studies compare
the differences in spatial patterns of disease at more
than one level. Tian et al. (2010) explored the impact
of geographical scale on breast cancer mortality
among ethnic groups in Texas and found that the loca-
tion of racial disparities changed depending on geo-
graphical level. This suggests that risk factors play dif-
ferent roles at different levels of aggregation. Odoi et
al. (2003) compared giardiasis rates in Ontario,
Canada, at two levels. Results showed spatial cluster-
ing of high rates at the smaller census sub-division
scale, but not at the census division. Results of similar
studies vary and there is no consensus on what geo-
graphical scale is most appropriate, precise or useful
for surveillance data (Krieger et al., 2002; Elliott and
Wartenberg, 2004; Oliver et al., 2005). 

Despite inconsistency encountered in the literature,
the choice of spatial scale may be crucial when inves-
tigating spatial patterns of disease. This choice is sub-
ject to the modifiable areal unit problem (MAUP) as
well as the potential for ecological fallacy as described
by Openshaw (1984). The MAUP applies to potential
problems in both spatial scaling and zoning whereby
conclusions and inferences may differ depending on
the spatial level of analysis and type of areal divisions.
From a public health standpoint, the utility of surveil-
lance data is oftentimes limited by the level to which it
can be aggregated and analyzed. Consistent analytical
results over multiple geographical scales serve to vali-

date spatial statistical techniques as well as the relia-
bility of the data used for a given study area. To our
knowledge, no studies to date have been conducted to
explore the direct impact of geographical scale on
results of spatial cluster investigation using aggregated
campylobacteriosis data.

Materials and methods

Study area and data sources

The study area encompassed the entire U.S. state of
Tennessee, which has a land area of 66,333 km2 and is
the 36th largest out of 50 states. The estimated popu-
lation in the year 2000 was 5,689,276 (approximate-
ly 63 people per km2) (U.S. Census Bureau, 2010).
Campylobacteriosis surveillance data covering the
period from 1 September 1991 to 31 December 2008
were provided by the Tennessee Department of
Health. A case of campylobacteriosis was defined as
culture-confirmed infection from a clinical specimen,
typically stool or blood. Species and strain informa-
tion were not reported. Participating laboratories are
part of both a national and state-wide active surveil-
lance system. This study received The University of
Tennessee Institution Review Board approval, and all
cases (n = 4,723) were de-identified to maintain
anonymity and confidentiality.

Cartographical boundary files were obtained at the
census tract (n = 1,261), zip code (n = 612) and coun-
ty subdivision spatial levels (n = 462) from the U.S.
Census Bureau Tiger Files (2000). These three spatial
units are delineated as “statistical geographic enti-
ties” by the U.S. Census Bureau. Census tracts are the
smallest units used in this study. They typically con-
tain between 2,500 and 8,000 people and are rela-
tively homogeneous with respect to population char-
acteristics and socioeconomic conditions. The 5 digit
zip code areas are categories used by the U.S. Postal
Service to group mailing addresses. Cartographical
boundaries, specifically zip codes boundaries and
numbers are subject to change over time. Unlike cen-
sus tracts and county subdivisions, which are both
subunits of counties, zip codes may cross county
boundaries and occasionally cross state lines. For
instance, Tennessee contains one small zip code
(42223, area 142.4 km2), located on the northern,
central border which crosses the state boundary with
Kentucky. All population denominator data, includ-
ing the U.S. standard population used for risk stan-
dardization were obtained from the year 2000 U.S.
Census.
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Geocoding and data aggregation

The complete Tennessee dataset consisted of 4,723
campylobacteriosis cases. Initial data exploration for
errors, repeat specimens, normality and outliers, as
well as preparation and formatting for geocoding, was
performed in SAS version 9.2 (2008). A total of 130
(2.7%) of the cases were identified as travel-related,
40 (0.8%) which lacked address information, and 24
(0.5%) repeat specimens were excluded during the
cleaning and geocoding process. To allow for age and
sex standardization, an additional four cases with
missing sex information and 135 with missing age
information were excluded from future analysis. A
total of 967 (20.5%) cases were excluded from the
dataset. From a geographical standpoint, these includ-
ed 128 (2.7%) cases that contained information only
at county level, 164 (3.5%) cases with only zip code
level information, 228 cases (4.8%) containing only
Post Office Box numbers and  244 cases (5.2%) with
addresses that were not geocodable. 

Geocoding was performed using both Googlemaps
(2010) and Yahoo Maps Geocoder through BatchGeo
(2010). An iterative process was undertaken to accu-
rately match location data to the lowest level, or finest
possible scale. This included manually matching
address data to its exact latitude and longitude. The
dataset utilized in the final analysis included 3,756
cases with 2,638 cases at rooftop accuracy and 1,118
cases at street level accuracy. An observation coded to
the “rooftop” is precisely matched to its address on
the ground. The “street level”, also referred to as
“range interpolated” accuracy, matched the case to an
interpolated point on the road where the address
would be located if the exact street number were
unavailable. Each point was represented as a latitude
and longitude coordinate and mapped in ArcGIS
(ESRI, 2009). A point-in-polygon join was then used
to merge the campylobacteriosis data to the census
tract, zip code and county subdivision cartographical
boundary files.

To assess for systematic differences in spatial distri-
bution of cases retained in the dataset and those
excluded, the observations in the unused portion of the
dataset, with the exception of the 40 cases lacking loca-
tion information, were mapped separately to the high-
est available accuracy level and visualized. No visual
difference in spatial distribution was detected between
the dataset used for analysis and the observations that
were eliminated. By maintaining only the cases at the
lowest, most accurate level of geocoding (rooftop and
street), we sought to maximize the strength of the rela-

tionship between the three aggregate geographical lev-
els and disease risk (Mazumdar et al., 2008). 

Standardization

Campylobacteriosis typically demonstrates a
bimodal age distribution (peaks occurring in children
under 5 years of age and young adults), and it occurs
more frequently in males (Allos and Taylor, 1998;
Tauxe, 2001). In addition, gender-specific incidence
has been shown to vary considerably among a wide
variety of age groups (Gillespie et al., 2008). To
account for these differences in risk, the population
was grouped by sex and subdivided into six age cate-
gories: 0-4, 5-19, 20-39, 40-59, 60-74 ≥75 years. Age
and sex standardization was then performed at all
three geographical levels using STATA version 9.0
(2009) with adjusted risk estimates presented as num-
ber of cases per 100,000 population. The estimates
were classified into five categories using Jenk’s opti-
mization method, a common statistical technique
available within ArcMap (ESRI, 2009) which creates
cut points based on inherent patterns in the data. 

Spatial analysis

(a) Smoothing 

Visualization of disease patterns can be distorted by
spatial autocorrelation and excessively high variances
often encountered in geographical areas with low dis-
ease counts and/or low background populations. To
allow for better visualization, spatial empirical
Bayesian (SEB) smoothing technique was implemented
in GeoDa version 095i (Anselin, 2010) using counts
obtained by the standardization procedure. The SEB
smoothing was used to adjust for spatial autocorrela-
tion and mitigate the small numbers problem (Odoi et
al., 2003). The raw risk data were smoothed at each of
the spatial levels, using first order Queen spatial
weights. In keeping with Tobler’s first law of geogra-
phy (Tobler, 1970), Queen weighting gives greater
influence to regions directly surrounding each areal
unit of analysis. The SEB smoothing technique thereby
maintains the integrity of the risk distribution without
over-smoothing or creating a homogenous surface
(Pascutto et al., 2000; Beale et al., 2008).

(b) Cluster detection

Cluster detection was performed using Kulldorff’s
spatial scan statistic, implemented in SaTScan version
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Fig. 1. Spatial empirical Bayesian smoothed risk of campylobacteriosis in Tennessee during the study period 1 September 1991 to
31 December 2008 at the county subdivision spatial level. The risks are standardized by age and sex.

8.2.1 (Kuldorff, 2010). The Poisson probability model
was fit and estimates adjusted for sex and age in the
analysis. Statistical significance was assessed at
p-value <0.05 and performed using 999 Monte Carlo
iterations. Scanning parameters included circular clus-
ters of high-risk only, with no geographical overlap.
There is a lack of comprehensive knowledge as to
effect of the scanning window size on disease cluster
results. For this study, the maximum scanning window
size incorporated 3% of the total population at-risk
and was chosen a priori with consideration to the low
infectivity of the bacteria, geographical area and units
of study. Window sizes of 5% and 10% were run post
hoc to explore how cluster results vary by window size
at the three geographical levels. 

Results

Risk estimates and smoothing

County subdivision campylobacteriosis raw risk
estimates ranged from 0 (n = 89) to 498 per 100,000
population (median = 55.0). Zip code area estimates
ranged from 0 (n = 168) to 4,254 per 100,000 popu-
lation (median = 49.8). Census tract risk estimates
were highly variable, ranging from 0 (n = 241, median
= 53.8) to 13,122 per 100,000 persons (raw risk maps
not presented). Spatial empirical Bayesian smoothed
maps (Figs. 1-3) demonstrate similar regions of elevat-
ed risk for the three spatial levels with the finest detail
captured at the census tract level. From a broad per-
spective, these areas include the east Tennessee valley
surrounding Knoxville, Cookeville and the region
south of metropolitan Nashville-Davidson, in the cen-
tral portion of the state. These regions are most clear-
ly visualized at the county subdivision level (Fig. 1),
due to a combination of large size polygons and
tighter range in risk estimates. The highest risk class

category for both zip code and census tract spatial lev-
els (Figs. 2 and 3) contained outliers after smoothing
(as detected by box plots, not shown). These included
one small urban zip code area (37902) located beside
the Tennessee River within Knoxville city limits (Fig.
2c) and the two highest census tract level risks located
in the regions of Center Point (smoothed risk 12,808.5
per 100,000) and Philadelphia (smoothed risk 6196.7
per 100,000) as indicated in dark purple (Fig. 3a-d).

Cluster detection

According to cluster detection results, the high risk
areas (P <0.05) surround Knoxville, Maynardville and
Jefferson City, south of metropolitan Nashville-
Davidson, Cookeville, Murfreesboro, Shelbyville,
Franklin and Oak Ridge (Fig. 4 a-c and Table 1).
Regions east and west of the city of Knoxville were
detected as clusters at all three spatial scales.
Shelbyville, Kingsport and Lawrenceburg were identi-
fied as unique, singular, census tract clusters (Table 1)
with very high relative risks (12.1, 5.8 and 9.0, respec-
tively). The Kingsport and Lawrenceburg areas were
only identified as high-risk clusters at the census tract
level, with Kingsport being too small for visual identi-
fication on the state map. In comparison, Kingsport
ranked 29th and Lawrenceburg ranked 19th highest out
of the 1,261 tracts from the census tract unsmoothed,
standardized risk results. The other single tract cluster
is represented by the city of Shelbyville (ranked 12th

highest in risk). The Shelbyville area is included as part
of a larger cluster identified in zip code and county
subdivision analyses.

An overlay map of the clusters (Fig. 5 a-c) shows
that the high-risk clusters occur at consistently similar
locations around Cookeville, east Knoxville and south
Murfreesboro at all three spatial levels (labels exclud-
ed to aid visualization). The Franklin area, seen at the
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Fig. 2. (a) Spatial empirical Bayesian smoothed risk of campylobacteriosis in Tennessee at the zip code spatial level. (b) Primary insert
incorporates the area surrounding Knoxville. (c) Secondary insert highlights the highest risk region of central Knoxville (dark pur-
ple). The risks are standardized by age and gender.

Fig. 3. (a) Spatial empirical Bayesian smoothed risk of campylobacteriosis in Tennessee at the census tract spatial level. The three
regional inserts (b-d) highlight important high risk areas at this scale. The risks are standardized by age and gender.
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Fig. 4. Significant high-risk clusters using 3% scanning window at three levels: (a) county subdivision, (b) zip code, (c) census tract. 

top most, western cluster contains a comparable over-
lay at the zip code and census tract levels, but not
county subdivision. Other differences can be visual-
ized in the easternmost cluster (cluster 3, Table 1). At
the zip code level this cluster encompasses a larger
region of high risk, north and west of Oak Ridge (Fig.
5). Furthermore, county subdivision analysis uniquely
detected the Philadelphia area (cluster 5, Table 1).

Alternate scanning window analysis

The larger scanning window sizes of 5% and 10%
resulted in clusters covering similar regions, with some
variation, at all three levels. As an example, consecu-

tively larger cluster sizes (incorporation of greater
number of areal units) were found at the county sub-
division level as the window size was increased (Fig. 6
a-c). Similar overall expansion of cluster size was
found at the census tract and zip code levels (maps not
shown). Regardless of the scan window size, the
Lawrenceburg and Kingsport regions were not identi-
fied as clusters in the county subdivision analysis. 

Discussion

The results of both the smoothing and spatial scan
analyses show the general regions surrounding
Knoxville and Cookeville, and south of metropolitan
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Table 1. High risk campylobacteriosis cluster profiles at census tract, zip code and county subdivision spatial levels.

Cluster (P-value) General Region Observed1 Expected2 RR3 Count4 Population

Census tract

1*(P = 0.001)
2  (P = 0.001)
3  (P = 0.001)
4  (P = 0.001)
5  (P = 0.001)
6  (P = 0.001)
7  (P = 0.001)
8  (P = 0.003)

Knoxville
Cookeville
Maynardville, Jefferson City
Murfreesboro
Shelbyville
Nashville-Davidson, Franklin
KingsPort
Lawrenceburg

289
97

185
122
16

176
16
10

106.5
28.3
80.6
46.0
1.3

106.2
2.8
1.1

2.86
3.43
2.36
2.71

12.06
1.69
5.82
9.00

32
14
37
18
1

33
1
1

161,266
42,008

121,862
67,564
2,010

167,671
4,181
1,775

Zip code

1*(P = 0.001)
2  (P = 0.001)
3  (P = 0.001)
4  (P = 0.001)
5  (P = 0.001)
6  (P = 0.001)

Knoxville
East Knoxville, Jefferson City
Oak Ridge
Cookeville
Nashville-Davidson, Franklin
Shelbyville, Murfreesboro

267
157
179
97

182
98

110.8
74.6
96.6
45.6

110.0
56.3

2.52
2.15
1.90
2.16
1.69
1.76

8
12
16
7
6

11

12,627
114,482
149,081
70,054

168,288
83,231

County
sub-division

1* (P = 0.001)
2   (P = 0.001)
3   (P = 0.001)
4   (P = 0.002)
5   (P = 0.009)

West Knoxville
Maynardville
Cookeville
Shelbyville, Murfreesboro
Philadelphia, Barnard

207
104
89
61
19

98.2
43.5
38.9
30.3
5.5

2.17
2.43
2.32
2.03
3.47

11
10
4
7
2

151,917
66,116
59,547
11,215
8,433

1 The observed number of cases within the cluster; 2 the expected number of cases as calculated by the spatial scan algorithm; 3 the
relative risk of campylobacteriosis for the cluster; 4 denotes the number of areal units included in the cluster; *denotes the primary
cluster detected in the analysis.

Nashville-Davidson to be at high risk for campylobac-
teriosis in Tennessee, at all three spatial levels.
Previous research suggests that the risk of acquiring
campylobacteriosis may be higher in different areas
due to the presence of different risk factors (Green et
al., 2006; Jepsen et al., 2009; Jonsson et al., 2010).
For example, in metropolitan areas such as Knoxville,
one might investigate centralized sources of contami-
nated poultry products. In rural areas exposure to
domestic farm animals and local environmental
sources might be of greater importance (Odoi et al.,
2004; Green et al., 2006). Addressing the impact of
socioeconomic factors and quantifying potential
health inequalities between advantaged and disadvan-
taged groups could be applied to high risk areas across
the state. The specific reasons for the geographic dif-
ferences found in this study are unknown and should
be investigated further. 

The fact that all three levels share comparable geo-
graphic clustering is a unique strength of this study.
Other studies performing spatial analyses at more than
one spatial scale demonstrate differences in patterns of
health outcomes and associations across spatial scales
(Openshaw, 1984; Krieger et al., 2002; Tian et al.,
2010).  This may be a result of the MAUP, data errors

and missing data, as well as variation in either the dis-
ease data or the population and ecological level data
(Krieger et al., 2002; Elliott and Wartenberg, 2004;
Beale et al., 2008). While spatial variation in risk
exists in some regions, these results highlight the over-
all similarity in spatial patterns detected between geo-
graphic levels using clustering and smoothing tech-
niques simultaneously. Our study demonstrates that
consistent results across spatial scales occur despite the
inherent limitations encountered in ecological analy-
ses. While the results are specific to campylobacterio-
sis in Tennessee, these findings may lend credence to
studies that utilize disease surveillance data at only one
level (Green et al., 2006; Jepsen et al., 2009;
Sugumaran et al., 2009).

The lower level (census tract) analysis produces the
finest detail and is able to capture small, yet potential-
ly important areas of high risk. This conclusion is sup-
ported by previous studies which found small area
studies to be the most useful for measuring health dis-
parities and reducing ecological bias (Reading and
Openshaw, 1993; Beale et al., 2008; Tian et al., 2010).
Where possible, analyses should be conducted at more
than one level to assess the full spatial picture. This is
particularly important for validating results from finer
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Fig. 5. Magnified view of Tennessee demonstrates simultaneous overlay of clusters using 3% scanning window: (a) includes only the
zip code (green), (b) contains the zip code and census tract (blue) and (c) shows all three (from bottom to top): zip code, census tract
and county subdivision (brown). Note: order of overlay was chosen for improved visualization.

scale levels where positional inaccuracy can be more
pronounced and lead to decreased precision (Oliver et
al., 2005). Furthermore, socioeconomic, demographic
and environmental data are often unavailable at finer
scales, and the process of geocoding can be costly and
time consuming. When census tract analyses are either
undesirable or not feasible, the zip code or county sub-
division aggregations may provide sufficient informa-
tion for cluster detection and prevention and control
of campylobacteriosis in Tennessee.

In a recent comparison of cluster detection software
methods, SaTScan was found to be a fast, user-friend-

ly and well-developed for cluster detection (Robertson
and Nelson, 2010). The spatial scan statistic allows
the window to vary during the scan process. This
methodology decreases the chance of pre-selection
bias as clusters may be detected without prior knowl-
edge of geographical extent (Kulldorff, 1997). The
fact that size, shape and number of clusters changed in
our study when the scan window size was enlarged is
a complication seen with use of this method.
Understanding the implications of scanning window
size on clustering is beyond the scope of this paper.
However, recent studies focus on result variability
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Fig. 6. Significant (P <0.05) high-risk cluster results for county subdivision spatial  level using (a) 3% scanning window, (b) 5% scan-
ning window, (c) 10% scanning window. 

dependent on scan window size (Chen et al., 2008;
Sugumaran et al., 2009). Further exploration into
both the theoretical and practical implications of scan
window choice would add to the growing body of
knowledge on the spatial scan statistic. Consecutive
analyses can lead to improved understanding of
Campylobacter distribution over time and space
(Jonsson et al., 2010). In our study, we interpret the
SEB smoothed risk distribution in conjunction with
cluster analysis at three levels to offer a more compre-
hensive visual and statistical approach to understand-
ing campylobacteriosis disease patterns. 

Cluster detection results suggest that environmental
and/or socioeconomic factors contribute to disease
transmission. A model-based approach may be applied
to campylobacteriosis surveillance data as a means of
assessing potential associations between disease risk
and epidemiological factors (Pascutto et al., 2000;
Green et al., 2006). Furthermore, mapping risk and
cluster analysis results on all three levels with similar
findings serves to statistically validate the location of
high-risk regions in Tennessee. Previous ecological
studies have shown that associations between risk fac-
tors and disease may be dependent on the level of
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aggregation (Odoi et al., 2004; Tian et al., 2010).
Modeling at more than one spatial level, therefore,
serves to enhance current knowledge of disease pat-
terns and provide a more accurate link between
important disease predictors and a constantly chang-
ing environment. Temporal variations in campy-
lobacteriosis risk may also be important in under-
standing transmission routes and changing distribu-
tion patterns (Jepsen et al., 2009; Jonsson et al.,
2010). In this study, time components were not
examined, as partitioning the surveillance data into
temporal units would result in insufficient data for
meaningful analysis. 

A number of factors may play a role in the accuracy
and usefulness of this study. Many ill persons do not
seek care, have a stool culture performed, or have the
etiology identified. In addition, data reporting may
vary and the impact of using census year 2000 as
denominator data for cases spanning 17 years is not
known. Underreporting is expected for campylobacte-
riosis as the disease is typically self limiting and very
rarely fatal. These data include cases ascertained by
active surveillance, and are thought to accurately rep-
resent the burden of culture-confirmed campylobacte-
riosis (Scallan et al., 2011). Approximately 20% of the
case data for this study were eliminated due to missing
information or data address inaccuracy and the effect
of this loss is difficult to quantify. The spatial distri-
bution of cases with missing data was similar to those
whose data were complete, implying that the missing
data were randomly distributed.  Misclassification of
cases may also occur and may be a result of data inac-
curacies, human migration and changes in geographi-
cal boundaries (Oliver et al., 2005; Beale et al., 2008).
Furthermore, a large number of cases arising from a
common source may result in a regional elevation in
disease risk that distorts the location of clustering.
Improved identification and documentation of cases
due to an outbreak would help to eliminate this poten-
tial source of bias as well as add to our knowledge of
the characteristics of the population at risk. Recently,
FoodNet began collecting data on cases being out-
break-associated. This information was not available
for all years analyzed. These inherent limitations add
uncertainty and potential bias to spatial analysis
research.

Patterns of campylobacteriosis may change over
time in response to changing human and animal
demographics as well as shifts in climatic factors and
land use. Sequential analyses are warranted to
improve our understanding of the disease. Our
research is intended to enhance current knowledge of

the human campylobacteriosis distribution and risk,
and to create a foundation upon which ecological
associations, including socioeconomic and environ-
mental factors, can be superimposed on clusters to
identify risk factors. Technological advances in statis-
tical and mapping software and the growing availabil-
ity of surveillance data justify continual review of spa-
tial methods, the levels at which these methods are
applied, and their applicability to public health.

In conclusion, the findings of this study demonstrate
an overlap in spatial clustering of campylobacteriosis
across three geographic scales in Tennessee. Some vari-
ation in the size and shape of clusters was present.
However, the overall disease patterns were similar,
leading to improved confidence in comparisons
between levels. This finding is especially important in
situations where address data are unavailable, making
finer scale analyses impossible. Identification and
superimposition of regional-specific risk factors would
help generate hypotheses for the spatial differences in
campylobacteriosis risk identified in these analyses.
Visual comparison of smoothed risk estimates and
cluster detection at multiple spatial levels has the
potential to help public health officials effectively
identify geographical, socioeconomic and environ-
mental factors which may play an important role in
the occurrence of campylobacteriosis. Subsequently,
this knowledge could be used to create a framework
whereby future disease control strategies become more
geographically precise and economically efficient.
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