
Abstract
As found in the literature on health studies, the levels of eco-

logical association between epidemiological diseases have been
found to vary across regions. Due to limited research, little is
known about how spatial environmental factors influence the vari-
ability of malaria incidence at smaller scales. We implemented the
geographically weighted random forest (GWRF) machine-learn-
ing algorithm to analyze ecological disease patterns caused by
spatially non-stationary processes using a malaria incidence
dataset as well as a suite of diverse resolution environmental
covariates for Rwanda. We first compared the geographically
weighted regression (GWR), the global random forest (GRF), and
the geographically weighted random forest (GWRF) to examine
the spatial non-stationarity in the non-linear relationships between
malaria incidence and risk factors. We used the Gaussian areal
Kriging model to disaggregate the malaria incidence at the local
administrative cell level to understand the relationships at a fine
scale since the model goodness-of-fit was not satisfactory to
explain malaria incidence due to the limited number of sample
values at the health centre catchment level. Our results show that
in terms of the coefficients of determination and prediction accu-
racy, the GWRF model outperforms the GWR and GRF models.
The coefficients of determination of the GWR (R2), the GRF (R2),
and the GWRF (R2) were 0.47, 0.76, and 0.79, respectively. The
local R2 showed that the GWRF algorithm had higher perfor-
mance in explaining the spatial variations of the non-linear rela-
tionships between malaria and the underlying factors, which could
have implications for supporting local initiatives formalaria elim-
ination in Rwanda. 

Introduction
Malaria, a protozoan disease of the red blood cell transmitted

by the bite of an infected female Anopheles mosquito, is a major
public health risk in Rwanda, where children and pregnant women
are the most vulnerable groups. It remains the main cause of mor-
bidity and mortality among children in Rwanda (Habyarimana and
Ramroop, 2020). Previous studies have denoted an association of
environmental variables, e. g., elevation (Hasyim et al., 2018),
precipitation (Midekisa et al., 2015), relative humidity (Chirebvu
et al., 2016) and the normalized difference vegetation index
(NDVI) (Kibret et al., 2019). In all the reviewed research on this
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topic, using linear parametric models, various environmental  pre-
dictors have been found to be correlated with malaria incidence in
Rwanda. For instance, testing temperature and rainfall as malaria
predictors using an autoregressive lag effects equation Loevinsohn
(1994) revealed that temperature predicted incidence best at higher
altitudes. Gasana et al. (1996) found that the populations located
near Nyabarongo River and other water bodies have an increased
incidence of malaria based on the Spearman rank correlation coef-
ficient, while rainfall was identified as inversely correlated to
malaria. In addition, Bizimana et al. (2015) developed a composite
index of social vulnerability to malaria in a spatial multicriteria
analysis environment. They discovered a strong influence of pop-
ulation density on malaria incidence. Using the same predictors,
Bizimana et al. (2016) applied a spatially explicit approach to
delineate homogeneous regions of social vulnerability to malaria,
which revealed high levels of social vulnerability to malaria in the
highland areas as well as in remote areas of Rwanda. The impact
assessment of socioeconomic and environmental factors on malar-
ia persistence in Rwanda by using a logistic regression model
revealed that the increased malaria prevalence is due to lower alti-
tudes and proximity to irrigated farmland (Habyarimana &
Ramroop, 2020; Kateera et al., 2015; Rudasingwa & Cho, 2020).
Murindahabi et al., (2021) used a multiple regression model com-
bining the digital elevation model (DEM), the NDVI and the nor-
malized difference water index NDWI, population density and dis-
tance to marshland, to determine the main predictors of malaria
vector abundance. Their findings showed that the distance to river
network and elevation played a key role in explaining malaria
mosquito abundance.

All previous studies in Rwanda have denoted an association of
environmental variables with malaria using linear parametric mod-
els. Examples include a linear regression model (Hakizimana et
al., 2018), Bayesian geostatistical models (Semakula et al., 2020),
a multinomial logit model (Rudasingwa & Cho, 2020;
Murindahabi et al., 2021), a logistic model (Kateera et al., 2015)
and a spatial multicriteria analysis (Bizimana et al., 2015, 2016).
These models have their own assumptions and require pre-defined
underlying relationships between the response and explanatory
variables. The multinomial logistic model, for example, assumes
that the choice probabilities of each pair of alternatives are inde-
pendent of the presence of all other alternatives (Rudasingwa &
Cho, 2020). Violation of these assumptions leads to inconsistent
parameter estimates and biased predictions. Another serious weak-
ness in the statistical regression model is that the relative spatial
effects of explanatory variables on the response variable are not
assessed (Cheng et al., 2019).

Geographically weighting regression (GWR) is a robust algo-
rithm that has been successfully used in regression analysis. The
GWR model was used to examine the local relationship between
the response and predictor variables. Its usefulness, however, is
debatable (Peng et al., 2019). The unbalanced distribution of the
phenomenon under investigation can be analyzed using spatial
regression models capable of predicting the correlations between
causative variables and response variables in defined geographic
regions (Georganos et al., 2020). However, in some cases, these
predictor and response variables do not necessarily have linear
relationships (Quiñones et al., 2021). Simple linear or traditional
regression models such as the GWR, on the other hand, fail to cap-
ture these nonlinear relationships accurately due to their suscepti-
bility to local collinearity that can yield unreliable results (Maiti et
al., 2021).  The linear model is susceptible to outliers; therefore,

strong assumptions about the relationships between response vari-
ables (linearity) and the predictors (collinearity) are required.
Random forest (RF) and other nonlinear non-parametric models do
not need to account for multicollinearity and can examine all
explanatory variables without screening (Breiman, 2001). They
can therefore be used for regression research to identify nonlinear
relationships between variables even in high-dimensional settings
with complex interactions (Cheng et al., 2019). RF has some
advantages that make it the proper choice for our studies, such as
being easy to compute, tolerant of missing multicollinear data and
not particularly prone to overfitting. It calculates error estimates
without requiring validation data, the variables are ranked, and the
influence of each variable on the outcome is calculated (Breiman,
2001). The RF is also more tolerant of data noise and outliers, has
a higher fitting accuracy than support vector machine (SVM) and
has fewer adjustment parameters (Breiman, 1996b; Genuer et al.,
2010). To our knowledge, there are a few studies on the use of RF
in the study of malaria incidence causal factors. Rather than direct-
ly examining the variable importance of malaria incidence, most
have attempted to compare the performance of the RF prediction
method with that of other machine-learning methods (Cianci et al.,
2015; Harvey et al., 2021; McCann et al., 2014; Rhodes et al.,
2022; Wang et al., 2019). Exceptions include the studies of Cohen
et al. (2013), Kapwata and Gebreslasie, (2016), and Georganos et
al., (2020), who used global RF (GRF) to determine the main
causative factor of malaria incidence. The RF algorithm, however,
has the major disadvantage of interpreting the relationships
between the response and explanatory variables (Georganos et al.,
2019) and it is one of the most accurate classification models
except for regression (Sullivan, 2017). A recently developed non-
linear, non-parametric geographically weighted RF (GWRF) has
been developed and used to solve the GWR and RF limitations
(Georganos et al., 2019; Maiti et al., 2021; Quiñones et al., 2021).

In this study, the GWRF was applied to examine the relation-
ships between malaria incidence and the underlying factors to shed
light on the spatial variations in nonlinear relationships between
variables. The GWRF is promising with regard to data-mining due
to its capacity to analyze various types of variables and assess their
importance without prior model specification (Georganos et al.,
2020; Maiti et al., 2021). To date, its applicability to this topic has
been largely unexplored. To our knowledge, few researchers have
adopted the GWRF method to determine, e.g., the causative factors
of population modelling (Georganos et al., 2019), diabetes
(Quiñones et al., 2021) and COVID-19 (Maiti et al., 2021). The
goal of this study was not to predict malaria incidence, but rather
to test the GWRF in order to model and map the contribution of
individual factors to malaria incidence using remotely sensed envi-
ronmental data. To exhibit the GWRF’s robustness, it was com-
pared with the GWR and GRF models. 

This study is expected to contribute to the existing literature by
providing a recent application of the GWRF method to examine
the main factors causing malaria incidence. Second, it will show-
case the use of GWRF in a ‘scary’ context where tough feature
engineering is applied to get valuable inputs for better predictive
performance. On top of that, the spatial downscaling approach
applied can potentially address the problem of low model good-
ness-of-fit where there is a limited number of sample values used.
Understanding the relative importance of explanatory variables
could significantly assist prediction of malaria incidence and there-
fore contribute to the improvement of clinical and intervention
strategies for malaria elimination. This is fundamental for better
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understanding the malaria pattern in Rwanda and the need to find
the best possible decisions.

Materials and Methods

Study area
A population density of 394 persons per km2 makes Rwanda

one of the most populated countries in Africa. The large majority
of Rwandans live in rural areas (NISR, 2018). The climate is con-
ditioned by the topography: the further west, the lower the altitude
resulting in warmer temperatures and lower levels of precipitation
in that part of the country (Gasana et al., 1996), which is therefore
favoured by mosquitoes. Rwanda significantly lowered the inci-
dence of malaria between 2005 and 2011 through the scaling up of
interventions, however from 2012 to 2017, there was an increase
in the number of cases. Malaria incidence in Rwanda is character-
ized by spatial variability, manifested by clustered patterns of
malaria cases. As a result, effective malaria elimination necessi-
tates a spatial perspective with a geographical component.

Mapping of malaria prevalence 
In Rwanda, most malaria cases are reported and treated at the

health centre level. Patients tend to attend the nearest health facil-
ity, which is not only the strongest factor in malaria treatment and
health seeking behaviour, but also the only factor that can be
affected by the patient. This choice implies that travel distance (or
travel time) has the highest influence on the outcome. The health
catchment (HC), also known as a service area, is the polygon sur-
rounding a health facility that includes the majority of people who
use its services (Macharia et al., 2022). A HC serves as the core
building block for estimating a reliable population denominator for
disease mapping, appropriate healthcare planning and resource
allocation within a population. Consequently, the methods
employed to define the HC significantly impact the model’s accu-
racy and interpretability. From the literature, straight-line dis-
tances, also called Euclidean (Pattnaik et al., 2021; Stresman et al.,
2014), the Thiessen polygon (Kundrick et al., 2018) and its deriva-
tives were used to delineate the HC. The Euclidean approach, how-
ever, constrains this definition because it does not consider poten-
tial, physical barriers that may impede malaria patients from reach-
ing the nearest health facility (Macharia et al., 2022). On the other
hand, the creation of catchment areas overcomes such barriers by
being more effective in displaying the incidence data. The use of
catchment areas also accounts for physical barriers and depicts
how a patient might move across a landscape (Bizimana &
Nduwayezu, 2021). Under the assumption that walking is the most
common transport mode in rural areas in Rwanda, a cost-allocation
model was created by taking into consideration physical barriers
such as rivers, lakes, flooded areas, water bodies and topography. 

We used both the annual average malaria incidence and a point
layer of health centres acquired from the Rwandan Ministry of
Health to delineate the HCs. A cost allocation analysis was then
performed based on geographic coordinates as input source. To
estimate malaria incidence in each polygon, we joined the data
from delineated HCs with the health facility points. We then
mapped and visualized the malaria incidence as a response vari-
able for each HC (Figures 1 and 2).

Preparation of predictor variables 
The predictors were selected based on their probable associa-

tion with malaria incidence based on literature review and data
availability. We used malaria incidence, vector polygons, eleva-
tion, population density, rainfall, normalized difference vegetation
index (NDVI), land surface temperature (LST), air temperature,
relative humidity and evapotranspiration raster data. Details on the
data used are explained in Table 1, Figure 3, and the Discussion
section. 

All variables were raster images with the same spatial refer-
ence. First, using the Raster to Point geoprocessing tool in ArcGIS
Pro 3.0 (ESRI, Redlands, CA, USA), we created point values by
converting the initial input raster image to point features. In this
case, a point was created for each cell of the input raster image.
Second, we used the Extract Multi Values to Points geoprocessing
tool to extract cell values from these points for other input rasters.
A new field containing the cell values for each input raster was
appended to the initial input raster image converted to a point fea-
ture class. The input rasters were not resampled; instead, the cell
values were extracted from all input rasters in their original reso-
lution and spatial reference. Third, to generate a single value rep-
resenting each HC, we then joined the HC polygons with all the
generated input raster variable points from another layer using the
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Figure 1. Location of the study area with catchment boundaries
of the malaria health centres.

Figure 2. Malaria incidence between 2010 and 2020 in Rwanda.
Source: U.S. President’s Malaria Initiative [Rwanda] Malaria
Operational Plan FY 2022 (https://www.pmi.gov).
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Join Data tool based on the spatial location option. We summarized
our attribute values by taking the average value. Later, to ensure that
each covariate would contribute equally to the analysis, all variables
were scaled using the z-score standardization method in the R envi-
ronment. To confirm that our model would fit the data well, we com-
puted the global Moran’s I test to detect spatial residual autocorrela-
tion and the local Moran’s I to track potential spatial residual clus-
tering (Anselin, 1995). 

Modelling the spatial relationships 

Gaussian areal Kriging-based model
Kriging interpolation is defined as the reaggregation of data

from one set of polygons (the source polygons) to another set of
polygons (the target polygons) (Comber & Zeng, 2019; Lam,
1983; Zeng & Comber, 2020). This interpolation fits for Gaussian
data (Krivoruchko et al., 2011), binomials (Flowerdew et al.,
1991) and Poisson data (Goovaerts 2006). All these three models
differ only in their interpretations of the prediction surfaces and the
reaggregated predictions. The Gaussian area Kriging model, which

was used in this research, is applied when actual measurement
locations are not provided (Krivoruchko et al., 2011). This method
is preferred when measurements are collected in relatively large
polygons (Rosenshein, 2010). This process involves visiting each
polygon centroid and identifying all centroids within a predeter-
mined radius of that centroid. The mean inter-centroid distance is
then computed and used to determine where the kernel levels out,
i.e. cells at distances from the centroid greater than the mean inter-
centroid distance; they are given zero weights in the calculations
(Krivoruchko et al., 2011). As a result, the size of the kernel is
determined by the mean inter-centroid for each centroid. To select
the best model, we tried different models in Table 2. Further details
on each of the methods can be found in the work of (Krivoruchko
et al., 2011; Rosenshein, 2010). We computed twice for each cross
validation: first with default parameters and again with hyperpa-
rameters turned. For measuring how well the data fits a model, we
used evaluation statistics or error measures, including the mean,
the root mean square (RMS), the mean square and the root mean
square standardized (RMSS). We focused on root mean square
standardized because it is the most widely used metric for choos-
ing the optimal model (Ohmer et al., 2017). We used the best
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Table 1. Variables used.

Variable               Format       Year    Expression/ resolution                    Source                                                    Reference

Country boundary        Vector            2021                          Vector                               National Land Authority                                                         Rwanda
Positive cases/HC       Vector            2016        Geographical coordinates                   Ministry of Health                                                             Rwanda
DEM                               Raster            2013                  Metres (90 m)                        National Land Authority                                        Rudasingwa and Cho 2020;
                                                                                                                                                                                                                                        Hasyim et al., 2018
Population density      Raster            2016                    Number/km2                       https://www.worldpop.org                                        Murindahabi et al. 2021;
                                                                                                                                               /geodata/listing?id=76                                              Bizimana et al., 2016,
                                                                                                                                                                                                                                       Bizimana et al. 2015
Rainfall                           Raster            2016       Millimetres (0.05°×0.05°)           https://data.chc.ucsb.edu/                                               Loevinsohn 1994;
                                                                                                                              products/CHIRPS-2.0/EAC_monthly/tifs/.                              Midekisa et al., 2015
NDVI                               Raster            2016             -1.0 to +1.0 (0.01 m)                https://scihub.copernicus.                                        Murindahabi et al. 2021;
                                                                                                                                                    eu/dhus/#/home                                  McMahon et al., 2021; Kibret et al., 2019
LST                                 Raster            2016         Degrees Celsius (90 m)             https://scihub.copernicus.                                        Murindahabi et al., 2021;
                                                                                                                                                    eu/dhus/#/home                             Rudasingwa and Cho, 2020; Loevinsohn, 1994
Air temperature          Raster           2016         Degrees Celsius (90 m)           Rwanda Meteorology Agency                           Rulisa et al., 2013; Loevinsohn, 1994
Relative humidity        Vector            2016            Percentages   (90 m)             Rwanda Meteorology Agency                         Chirebvu et al., 2016; Sewe et al., 2016
Evapotranspiration     Vector            2016              Millimetres (90 m)               Rwanda Meteorology Agency                        Chirebvu et al., 2016; Loevinsohn, 1994
DEM, digital elevation model; NDVI, the normalized difference vegetation index; LST, land surface temperature.

[page 4]                                                               [Geospatial Health 2023; 18:1184]                                                                            

Table 2. Cross-validation statistics of default and adjusted model results.

Indices          Mean                     RMS                       MS                        RMSS
Model                    Default          Adjusted               Default           Adjusted             Default         Adjusted              Default          Adjusted

Spherical                         -60.993                 -140.759                     7,151.348               7,010.523                     0.001                   -0.036                          3.610                     3.566
Exponential                    -46.961                 -117.259                     7,060.010               6,908.593                     0.000                   -0.016                          1.798                     1.767
Circular                           -58.510                 -140.478                     7,146.924               7,009.579                     0.002                   -0.038                          3.831                     3.791
Tetraspherical               -62.594                 -140.887                     7,153.816               7,010.759                     0.000                   -0.035                          3.464                     3.425
Gaussian                       -3,123.799             -6,493.449                   27,804.628             38,631.592                   -37.735                 -36.120                      411.012                 275.017
K-Bessel                         -246.037                -378.039                    20,051.147             18,985.190                   -13.405                 -13.037                      188.520                 202.043
Rational quadratic       -303.260                -338.545                     8,492.594               8,254.878                     -0.104                   -0.090                          5.053                     5.072
Stable                            -3,123.799             -6,493.449                   27,804.628             38,631.592                   -37.735                 -36.120                      411.012                 275.017
RMS, root mean square; RMSS, root mean square standardized: MS, mean square.
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Figure 3. Model predictor input variables.
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model to disaggregate malaria incidence from the malaria catch-
ment to the administrative cell level to compute new values for
predictor variables. 
Geographically weighted regression (GWR)

Various global models, such as ordinary least squares (OLS),
are in existence for understanding the relationships between dis-
ease incidence and its risk factors. The OLS model is always
applied to analyze the relationships between a set of predictor vari-
ables and a response variable. It estimates the global statistic that
assumes a stationary and constant relationship over space, so the
estimated parameters are the same for the entire study area
(Brunsdon et al., 1996):

                                                    (Eq. 1)

where yi is the value of the dependent variable at location i, β0 the
intercept; βi the coefficient that shows the magnitude of change in
the response variable y with 1 the unit change in the predictor vari-
able xi ; and ei the error term. 

Regrettably, Eq 1 does not take into consideration the spatial
heterogeneity in the variables under investigation (Anselin &
Sergio, 2014). The fundamental premise underlying all non-spatial
models is that the spatial relationships between variables are the
same across space. Hence, the spatial dynamics of the explanatory
variables used cannot be explained by these models. Real-world
phenomena such as disease prevalence, human interaction and
physical environmental indicators, on the other hand, vary in space
even at the micro-level. To uncover local dynamics and enrich real-
ity, such strict spatial stationarity must be relaxed. To address this
problem, a GWR model was developed to examine a non-station-
ary relationship between predictor variables and response variables
(Fotheringham et al., 2002; Kalogirou 2003). This technique takes
non-stationary variables into consideration and models the local
relationships between predictors and the outcome of interest based
on the following formula:

                            (Eq. 2)

where yi is the dependent variable at location i; β0 (ui, vi) the inter-
cept; xij the jth predictor variable; βj (ui, vi) xij the jth coefficient; and
ei the error term.

Due to spatially varying parameters in weighted analysis
regression, each explanatory variable in the GWR model has dif-
ferent regression parameters (Kalogirou, 2003). The weights were
calculated from a weighting scheme known as the kernel
(Fotheringham et al., 2002; Kalogirou, 2003). The local model,
based on the combination of a geographically weighted estimator
matrix, kernel, and bandwidth (Fotheringham et al., 2002;
Kalogirou, 2003; Peng et al., 2019), was established and calibrated
to distinguish the spatial association among nearby HCs. We
applied a fixed Gaussian kernel function for the weighting scheme
and determined the optimal bandwidth size using the golden search
method (Fotheringham et al., 2002), considering the score with the
lowest Akaike’s Information Criterion (AIC) value.
Global random forest (GRF)

The RF algorithm is a non-parametric method of statistical
learning that took root through the so called bagging paradigm
(Breiman, 2001; Grömping, 2009). Bagging predictors are part of

a method constructing multiple versions of a predictor and com-
bining them into a single aggregated component (Breiman, 1996).
RF is a group of unpruned regression trees generated from a ran-
dom sample of training data emanating from the bagging method
(Grekousis et al., 2022).

The general definition of the RF approach given by (Breiman,
2001) is the following:  be a collection of 
tree predictors, with Θ1,…,Θq i.i.d. random variables independent
of  ℒn; the random forest predictor  is obtained by aggregating
this collection of random trees, which is done as follows:

                                                  (Eq. 3)

which gives the average of individual tree predictions in regression                         

                                        
(Eq. 4)

which signifies the majority vote among individual tree predictions
in classification      

The output of the RF gives a direct estimate of the prediction
error (Breiman, 1996), also known as the “out of bag (OOB)”
error. The main idea behind this error estimator is to use samples
that were not selected as test data (Maiti et al., 2021), which is
expressed as “variable importance” signifies average impurity
reduction of regression forests (Breiman, 2001; Grömping, 2009).
OOB error estimations and variable importance rankings are two
key features of the RF method (Breiman, 1996; Genuer et al.,
2010). The remaining one-third of samples (known as OOB sam-
ples) are used for error monitoring in an internal cross-validation
technique that calculates the number of correct predictions
(Breiman 2001). The average error of all OOB forecasts is then
used to calculate the overall OOB score. The set of observations
not used for building the current tree, the OOB sample, is first used
to estimate the prediction error and then to evaluate the variable
importance (Genuer et al., 2010).

Using RF, the predictive power of variables can be measured
using a variety of methods (e.g., the permutation feature, the Gini
index, the accuracy decrease), but we employed an increase in
mean square error (IncMSE%) to calculate the relevance of each
variable (Genuer et al., 2010). We utilized the partial dependence
plots to characterize the nonlinear relationships between the malar-
ia incidence and its predictors. A partial dependence (PD) plot
shows the functional relationship between a number of input pre-
dictors and the expected target responses and reveals how the pre-
dictions partially depend on the values of the input variables of
interest. The PD plot can show whether the relationship between
the response and a predictor variable is linear, monotonic or more
complex (Molnar, 2022).
Geographically weighted random forest (GWRF)

Georganos et al. (2019) proposed GWRF as a disaggregation
of the RF in the geographical space in the form of local sub-mod-
els. It is a predictive method based on the concept of spatially vary-
ing coefficient models, in which a global process is decomposed
into many local sub-models. GWRF is in fact a local GRF version
that enables the investigation of spatial non-stationarity in the rela-
tionship between the response variable and a set of predictors.
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While the vast majority of RF problems can be solved using a
unique (or global) model, this method generates multiple spatially
weighted (or local) RF models (Maiti et al. 2021). The equation for
a typical GWRF model is:

                                                             
(Eq. 5)

where a (ui, vi)xij is the prediction of the RF model calibrated for
location i, and ui, vi are the coordinates of the centroid of the spatial
unit i. 

In essence, either the number of nearest neighbours (adoptive
kernel) or a distance threshold value (bandwidth-fixed kernel) is
used to build the neighbourhood or kernel. We adopted the adaptive
kernel bandwidth search approach to implement this model. The
optimal bandwidth (BW) was determined using the minimized OOB
(Fotheringham et al., 2015, Georganos & Kalogirou, 2022) and we
used a random grid search to determine the GWRF’s optimal hyper-
parameters, i.e. the number of trees (ntree), number of predictor vari-
ables at each tree (mtry) and minimum size at each terminal node
(node size). We used 10-fold cross-validation to select the most suit-
able hyperparameter combinations setting the number of trees to
500, the number of variables randomly sampled as candidates at
each split to 2 and the bandwidth to 162 observations. We used the
permutation feature importance approach to evaluate the contribu-
tion of the predictor variables in the models. Similar to the GRF we
employed an increase in the mean square error (IncMSE%) and the
RSS (residual sum of squares) to determine the importance of each
variable. The model coefficient of determination (R2) and the vari-
able importance of each predictor variable were mapped to investi-
gate the spatial variation and its effect on malaria incidence adopting
“SpatialML”, a developed R package, to implement this model
according to Georganos et al., (2019).

Results 

Disaggregated malaria incidence
Table 2 shows the cross-validation values for the default and

adjusted models. It can be observed from Figure 4 that the latter
perform better than the default models. There is, nevertheless, a
slight difference between the values of the two models. In particu-
lar, the stable, K-Bessel, and Gaussian models do not fit the data as
well as the default scatterplot curves. Although the exponential
default curve looks better, the model can still be improved as it
tends to predict negative values. Specifically, the adjusted expo-
nential model gives the best fit, which was confirmed by the cross-
validation where the adjusted exponential model had the lowest
RMSS value (1.767). This is good because, values close to 1 indi-
cate that the model fits the data and can be trusted. Once a proper
prediction surface has been obtained, the surface can be used to
predict malaria incidence. To understand the relationships at a fine

scale, this model was chosen to disaggregate the malaria incidence
at the cell administrative level. The map in Figure 5 illustrates the
spatial distribution of the predicted malaria incidence using the
adjusted exponential model. It shows the prediction surface for the
malaria incidence (a), which was used to disaggregate malaria at
the HC (b) and the cell administrative level (c). A cell is an admin-
istrative entity in Rwanda. 

GWR, GRF and GWRF 
As seen in Table 3, the goodness-of-fit varied between 0.47

and 0.79 for the different regression models (based on eight vari-
ables) investigated. Although the R2 does not measure the level of
model complexity, it tells us which model has the best goodness-
of-fit, i.e. the higher the R2, the better the fit with the observed
data, e.g., GWRF model explains approximately 79% of the varia-
tion in the response variable. In other words, the model predicts
roughly 79% of the predicted malaria incidence. This shows how
accurate the GWRF is at analyzing the correlation between the risk
factors investigated and the malaria endemicity in most of the
study areas, especially in the eastern and southern parts of the
country.

From the GWRF model, we computed the average local effect
and the proportion of the local variable importance of each
explanatory variable on malaria incidence as per Figure 6 and
Table 4. The statistics of the local coefficient of determination (R2)
of the GWRF, with the environmental variables, such as rainfall,
LST, evapotranspiration and NDVI showing a strong relationship
with the spatial distribution of malaria incidence. Contrary to
expectation, DEM, air temperature, relative humidity and popula-
tion density revealed only a moderate correlation with the malaria
endemicity. The variable importance in Figure 6 represents the cor-
relation between the predictor variables and the response variable
for GRF and GWRF. As can be seen, rainfall and LST come out as
the two most important variables for malaria incidence. 

Figure 7 depicts the spatial distribution of the local R2 of the
GWRF model. It can be noted that the majority of cells, particular-
ly those in the south-western, north-western, north-eastern, west-
ern and the central areas all have high local R2 values. This indi-
cates the proposed GWRF model yields an accurate result in the
majority of the cells. However, R2 values were lower in a few cells
in the Southeast. 

The Figure 7 indicates that the mean square error (IncMSE)
would increase by the percentage displayed if a variable were
excluded from the model. With this imbalanced and heterogeneous
pattern, the GWRF model provides a detailed spatial distribution
of the local importance of the all eight variables. The results show
that elevation, evapotranspiration and LST predominantly affect
the eastern part of the country, whereas population density and rel-
ative humidity define the malaria endemicity in the city of Kigali.
However, rainfall, NDVI and temperature influenced the malaria
endemicity to the greatest extent in the southern part of the coun-
try, the same area that was affected by several risk factors (Figure
8). Referring to Figure 9, applying the GWRF model would elim-
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Table 3. Performance of three methods employed for the study of malaria incidence.

Level/method                                            GWR                                                    RF                                                            GWRF

Health catchment level (R2)                                     0.32                                                                      0.60                                                                               0.64
Administrative cell level (R2)                                   0.47                                                                      0.76                                                                               0.79
GWR, geographical weighted regression; RF, random forest; GWRF, geographically weighted random forest; R2, coefficient of determination.
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inate relative humidity, air temperature, and DEM since they were
subjected to multi-collinearity, according to its Pearson’s correla-
tion coefficient. Interestingly, due to their capability to perform
even in high-dimensional settings with complex interactions, these
variables were kept in the model and exhibited the strongest rela-
tionship with malaria incidence.

Figure 10 reports the PD plots of the total effect of every input
variable on the predicted number of malaria cases. The plots com-
bine the main effects of each of the features and their interaction
effects to increase malaria incidence. The figure illustrates the
inverse association between malaria incidence and rainfall, DEM,
relative humidity, and population density. This indicates that the
lower the values, the higher the rates of malaria incidence. The
higher the air temperature, NDVI, ET, and LST, however, the more
malaria cases are recorded.

Discussion 
Malaria endemicity in Rwanda is not explained by a single fac-

tor but by the combination of different causative factors (Bizimana
et al., 2016; Murindahabi et al., 2022). Our findings indicate how
the GWRF methodology may be used to model malaria incidence
and highlight how the importance of different predictor variables
varies over space, with outcomes broadly consistent with previous
GWRF models, such as Georganos et al. (2020); Quiñones et al.

(2021) and Maiti et al. (2021). However, our findings also reveal a
sometimes  unbalanced and heterogeneous contribution of the vari-
ables considered.  

We found rainfall having a negative relationship with malaria
incidence, exhibiting a high value of relative contribution in all
regions, which is supported by previous work (Colón-González et
al., 2016). Rainfall has an ambiguous association with malaria
incidence, since moderate amounts provides suitable humid condi-
tions for survival the mosquito vector and also supports egg depo-
sition (Ayanlade et al., 2020), while stagnant pools and open con-
tainers with water create ideal vector breeding even during drought
(Patz et al., 2003). Heavy rainfall can also have a dual effect, on
the one hand forcing mosquitoes to seek refuge in houses increas-
ing the likelihood of vector-human contact, while  on the other
flushing them out of their aquatic habitat and killing them. Thus,
leading to immature vector populations suffering high losses
(Cohen et al., 2013). 

The land surface temperature has a positive relationship that
contributes significantly to the malaria incidence. The positive
relationship between land surface temperature and air temperature
in this study is logical, as areas with higher LST and air tempera-
ture have higher malaria endemicity. This contradicts the lower
pattern found in the south-eastern regions of the study area.
However, there might be other factors that could be the cause of
the malaria incidence in these areas, as proved by Murindahabi et
al., (2021). These findings are consistent with previous research.
Temperature affects the development rates of mosquitoes and

                   Article
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Table 4. Results of GWRF model with regard to mean decrease accuracy and mean decrease Gini.

%IncMSE
Variable                                 %IncMSE                      %                          Min                   Max                     Mean                     SD

DEM                                                      29933103                        35.59427                          2.6595540                      34.73443                             15.53268                           4.359357
Population density                             9846901                         27.25940                          0.8798735                      21.83710                             10.65293                           3.517268
Rainfall                                                 43073223                        65.10787                          1.6966413                      40.94450                             20.73048                           6.858403
NDVI                                                      16803411                        39.36799                          1.1588439                      22.92965                             12.20980                           4.031928
LST                                                        44345236                        53.36050                          2.5162553                      27.97506                             15.05863                           4.243806
Temperature                                       26491704                        31.96840                          3.3089317                      26.63110                             15.64650                           3.683335
Relative humidity                               29565100                        37.14612                          3.4132375                      32.21923                             16.23759                           4.216917
Evapotranspiration                            15744360                        40.33078                          1.5956731                      24.20495                            12.891850                          4.604404
IncNodePurity
Variable                             IncNodePurity                  %                          Min                     Max                        Mean                     SD

DEM                                                   33730041487                     33.97913                          1383165.6                    5979688415                        1356612493                     1245518377
Population density                         14528763648                     15.17221                           873506.8                     4115033016                         795624247                       755483114
Rainfall                                              46585952795                     46.22394                          1713292.8                    7301245129                        1826299438                     1652785813
NDVI                                                   20142208536                     19.88212                           933883.2                     3995473248                         996649402                       985164646
LST                                                     36212430303                     15.17221                          1143877.6                    8077355224                        1512263984                     1671286619
Temperature                                    28206655736                     26.55502                          1492961.6                    8100629407                        1429253678                     1443953227
Relative humidity                            26184522035                     26.88809                          1482848.9                    6864203394                        1289797397                     1264673007
Evapotranspiration                         19022222429                     18.77565                          1440003.3                    7189294829                        1111886205                    13098345150
OOB (RSS): 46407530807
OOB (R2): 0.7990488
Predicted  RSS: 9072806255
Predicted R2: 0.9607135
%IncMSE, mean decrease accuracy; IncNodePurity, mean decrease Gini; DEM, digital elevation model; NDVI, the normalized difference vegetation index; LST, land surface temperature; SD, standard deviation; R2=coef-
ficient of determination; RSS, residual sum of squares; OOB, out-of-bag.
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Figure 4. Model scatterplots. a) default values; b) adjusted values.

                                                                             [Geospatial Health 2023; 18:1184]                                                              [page 9]

malaria parasites (Githeko, 2007). However, the influence of tem-
perature on malaria transmission is not always linear. The non-lin-
ear response of the malaria parasite to temperature means that even
a slight warming may drive large increases in malaria transmission
if other conditions are suitable (Alonso et al., 2011). 

Mordecai et al. (2013) showed that optimal malaria transmis-

sion is at temperature of 250C, and the transmission substantially
decreases when the temperature exceeds 280C. An increased tem-
perature near the minimum threshold temperature for transmission
may result in increased mosquito, duration of the incubation peri-
od, and replication of the malaria parasites (Lindsay & Birley,
1996). Temperature may also modify malaria carrying mosquitoes
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by changing biting rates and vector’s dynamics. A shift in temper-
ature regime can alter the length of the malaria transmission season
and change the geographical distribution of the disease (Gubler et
al., 2001). Given that current public efforts are targeted at malaria
control, the direct effects of warming temperatures are likely to

reduce the suitability for malaria transmission (Mordecai et al.,
2020). Malaria emergence in the East African highlands was fre-
quently associated with mosquito vectors shifting habitats to adapt
to warming temperatures (Chaves & Koenraadt, 2010). Similar
studies in Rwanda revealed an epidemiological effect of climate
warming near the altitude limits of malaria transmission
(Loevinsohn, 1994). As temperature increases, the children
become more prone to the two malaria illness (Karekezi et al.,
2021). An increase in temperature reduces the time it takes for new
generations of mosquitoes to emerge, as well as the parasite’s incu-
bation period in mosquitoes (Zhao et al., 2014).

Elevation also has an inverse relationship with malaria inci-
dence. This was consistent with previous studies. For instance, a
spatial modeling study revealed that altitude significantly influ-
ences the number of malaria cases (Hasyim et al., 2018). Many
studies agree that malaria transmission does not occur at altitudes
above 2,000 to 2,500 m (latitude dependent) (Bishop & Litch,
2000). The current upper height limit for malaria transmission in
the African highlands is difficult to define precisely, and is likely
to rise. In many countries, this boundary was thought to occur
around 2000 m in Rwanda and Burundi (Meyus et al., 1962), in
Ethiopia (Melville et al., 1945), and in Kenya (Garnham, 1945).
Malaria epidemics have occasionally been reported at higher alti-
tudes up to 2550 m (Garnham, 1945), but they are rare. In other
parts of Africa, the upper limit is slightly lower: around 1700-1800
m in the Democratic Republic of Congo (Schwetz, 1942) and 1200
m in Zimbabwe (Taylor & Mutambu, 1986). Generally, areas high-
er than 1500 m have little or no malaria (Lindsay & Martens,
1988). The transmission of Plasmodium falciparum generally
decreases with increasing elevation, in part because lower temper-
ature slows the development of both parasites and mosquitoes.
However, other aspects of the terrain, such as the shape of the land,
may affect habitat suitability for Anopheles breeding and thus the

                   Article

Figure 5. Malaria incidence per year in Rwanda. a) at the health
catchment level; b) Gaussian exponential Kriging model; c) dis-
aggregated incidence at the administrative cell level. 
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Figure 6. Outcome with regard to the association between malar-
ia incidence and the variables investigated by two regression
models as expressed by the mean decrease accuracy. Variable out-
comes sorted in decreasing order from top to bottom (the higher
the value of the variable importance, the stronger the correla-
tion); (a) GRF (global random forest); (b) GWRF (geographically
weighted random forest); %IncMS=mean decrease accuracy.  
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risk of malaria transmission. Understanding these local topograph-
ic effects may permit prediction of regions at high risk of malaria
within the highlands at small spatial scales (Cohen et al., 2008).

Humidity is also the most important climatic parameter that
determines the number of malaria cases (Nyasa et al., 2022).
Relative humidity is the amount of water vapor in the air and is
inversely proportional to temperature. It influences malaria trans-
mission by impacting the activity and survival of mosquitoes
(Kotepui & Kotepui, 2018). A study by Santos-Vega et al., (2022)
on the neglected role of relative humidity in the interannual vari-
ability of urban malaria indicated that relative humidity is a critical
factor in the spread of urban malaria and potentially other vector-
borne epidemics. This study concluded that climate change and a
lack of hydrological planning in urban areas might jeopardize
malaria elimination efforts. The ambient relative humidity posi-
tively influences the life cycle of malaria mosquitoes and results in
very frequent biting, leading to a higher risk of malaria (Chirebvu
et al., 2016). A mean monthly relative humidity under 60% causes
a shortened lifespan in malaria vector mosquitoes, which results in
low malaria transmission rates (Pampana, 1969), and a relative
humidity of less than 10% is fatal (Yamana & Eltahir, 2013).

Vegetation characteristics provide different opportunities for
malaria vectors to thrive. For instance, the crop type determines
the breeding and resting place for mosquitoes; the greening of veg-
etation determines the timing of habitat creation; and deforestation
results in sunlit pools suitable for breeding (Beck et al., 2000). The
Normalized Difference Vegetation Index (NDVI) determines how
much near-infrared light is reflected compared to visible red and
helps to evaluate vegetation conditions or to differentiate bare soil
from grass or forest (Drisya et al., 2018). An investigation of local
environmental variables linked to malaria transmission in Ethiopia
revealed that the monthly NDVI (lagged by 1 and 2 months) is sig-
nificantly correlated with malaria incidence (Kibret et al., 2019).
Several studies have shown a positive and significant correlation
between NDVI and malaria in West, Central, and East Africa
(Gaudart et al., 2009). A study of the relationship between NDVI
and malaria mortality in endemic regions of Western Kenya found

that the effect of vegetation cover is very consistent in areas with
higher risk of malaria mortality with NDVI less than 0.4 and neg-
atively associated with malaria with NDVI greater than 0.4 (Sewe
et al., 2016).

The population density variable exhibits a relationship with
malaria endemicity, as expected. The probability of malaria
endemicity increases with the proportion of population density.
Human population density impacts mosquito biting rates, which
decrease as the population increases (Hay et al., 2005). The sensi-
tivity of the entomological infection rate (EIR) to population den-
sity reveals that as population density increases, the force of infec-
tion decreases (Tompkins & Ermert, 2013). Clear and significant
differences in EIR exist between urban and rural populations.
Thus, low population densities in rural areas and high population
densities in urban areas can substantially influence malaria trans-
mission (Tatem et al., 2008). Given the challenges in classifying
urban areas across the country, population density provides a reli-
able metric to adjust for the patterns of malaria risk in densely pop-
ulated urban areas. Despite a reduction in malaria risk associated
with increasing population density, the high-density settlement
areas do not have zero risks of infection (Kabaria et al., 2017).
Conversely, high density and population pressure in the highlands
result in limited land resources and increase human susceptibility
to diseases (Bizimana et al., 2015). This is relevant for the Rwanda
highlands, where demographic pressure has significantly modified
the local environment during the past decades (Bizimana et al.,
2016). Additionally, high population density and pressure have sig-
nificantly influenced environmental degradation and declining
land holdings (Clay & Johnson, 1992), which have pushed people
to settle near unsuitable sites with more exposure to mosquito bites
(Cotter et al., 2013).

The models used provided substantial information that
explains the relationship between the drivers and the malaria inci-
dence in Rwanda. But it is also important to emphasize our contri-
butions considering the applied GWRF, which can examine the
spatial variations of the non-linear relationships between malaria
and the underlying factors. This research is the first local-level
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Figure 7. The distribution of the local coefficient of determination when applying the  geographically weighted random forest model.
a) at the health catchment level; b) at the administrative cell level.
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Figure 8. The spatial variation of the local feature importance. Spatial variation in %; local feature importance according to the mean
decrease accuracy; DEM, digital elevation model; PopDens, population density: NDVI, normalized difference vegetation index; 
LST, land surface temperature; Temp, air temperature; RH, relative humidity; ET, evotranspiration.
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malaria study implementing the GWRF model in entire Rwanda,
which added to our understanding of how the relative importance
of variables on the malaria incidence varied with spatial local scale
and geographical location. In previous studies conducted in
Rwanda, most researchers assumed a heterogeneous effect of pre-
dictor variables on malaria incidence (Hammerich et al., 2002;
Karekezi et al., 2021; Loevinsohn, 1994). In addition, the evidence
from this GWRF model supports the hypothesis that the influence
of environmental predictors on malaria transmission is not always
linear (Gasana et al., 1996; Harvey et al., 2021). The literature on
malaria in Kenya (Cohen et al., 2008), Uganda (Colón-González et
al., 2016),  Swaziland (Cohen et al., 2013), and Botswana
(Chirebvu et al., 2016), the environmental risk factors have a sig-
nificant correlation with malaria cases that vary at the local level.
From a machine learning perspective, the local R2 depicted shows
that the GWRF model still had higher performance in explaining
the spatial variations of the non-linear relationships between
malaria and the underlying factors when compared with earlier
similar studies from eastern Africa (Georganos et al., 2020), the
USA (Quiñones et al., 2021; Maiti et al., 2021; Grekousis et al.,
2022), and European Union regions (Georganos & Kalogirou,
2022). The capability of the models to analyze spatial datasets at a

local scale improves previous results in the study of drivers of
malaria incidence in Rwanda by showing the spatial variability of
the influence of the drivers. Other factors, however, such as socioe-
conomic, policy, and political intervention variables that are not
used may increase the predictability of the model for further stud-
ies. This study employed some coarse resolution remote sensing-
based products, such as rainfall variable. Although the machine
learning used was capable of handling complex dimensional data,
future research could test different downscaling techniques to
rescale the coarse resolution input variables at a fine scale to com-
pare the model’s predictability.

Conclusions
This study used the GWR, the global random forest, and the

GWRF to understand the spatial non-stationarity in the relation-
ships between malaria incidence and ecological risk factors in
Rwanda. The predictive ability of the GWRF model in spatial epi-
demiology has not been investigated for this type of case study
characterized by a scarcity of data. The geographical random forest
outperforms the GWR and the global random forest model in terms
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Figure 9. Pair-wise scatterplots of ecological variables for malaria incidence in Rwanda. The boxes along the diagonals display the den-
sity plot for each variable. The boxes in the lower left corner display the scatterplot between each variable. The boxes in the upper right
corner display the Pearson correlation coefficient between each variable; DEM, digital elevation model; PopD, population density:
Rain=rainfall; NDVI, normalized difference vegetation index; LST, land surface temperature; Temp, temperature; RH, relative humid-
ity; ET, evotranspiration.
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Figure 10. Partial dependence plots of the determinants of the global random forest. The y-axis represents the probability of malaria
incidence, and the x-axis gives the probability of the Z-score range values of the predictor variable. Marks on the x-axis indicate the
data distribution. The two-variable partial dependence plots for rainfall versus other predictors are shown in the last part of each row.
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of the coefficients of determination and prediction accuracy. The
key variables importance to the malaria incidence were rainfall,
land surface temperature, evapotranspiration, and NDVI. This
study adds to our understanding of how the relative importance of
variables on the malaria incidence in Rwanda varied with spatial
scale and geographical location. Future research should include
more time series malaria incidence data as well as more socioeco-
nomic factors to predict future malaria endemicity scenarios in
Rwanda.
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