
Abstract 
Equitable spatial accessibility to vaccination sites is essential 

for enhancing the effectiveness of infectious disease prevention 
and control. While traffic modes significantly influence the evalu-

ation of spatial accessibility to vaccination sites, most existing 
studies measure it separately using homogeneous or single travel 
modes making it challenging to comprehensively understand the 
overall accessibility and support spatial optimization for vaccina-
tion sites. This study proposes to optimize the spatial distribution 
of vaccination sites based on heterogeneous travel modes in mul-
tiple scenarios by a hybrid travel time approach. This was done by 
first considering heterogeneous travel modes to measure spatial 
accessibility to vaccination sites followed by spatial optimization 
using hybrid travel time to determine the optimal configuration of 
vaccination sites across multiple scenarios. In the study area of 
Xiangtan, a prefecture-level city in east-central Hunan Province, 
China, spatial inequality in accessibility to COVID-19 vaccination 
sites were identified. The public in the Yuhu and Yuetang districts 
benefit from easy access to vaccination sites, and spatial accessi-
bility within these areas is also equitable. By utilizing spatial opti-
mization under the condition that the addition of a new site would 
not result in a comprehensive hybrid travel time increase exceed-
ing 0.1%, up to 21 redundant sites were detected among the orig-
inal ones and when newly added sites were considered, the opti-
mal number of the optimized sites amounted to 124. These find-
ings provide crucial spatial information to support for enhancing 
the efficiency of infectious disease prevention and control. 

 
 
 

Introduction 
Recent decades have witnessed the frequent emerging, novel 

infectious diseases that pose new challenges to human health and 
sustainable social development. Vaccination has been established 
as a crucial and effective strategy in combating these emerging 
infectious diseases (Yang et al., 2020). Not only is the use of more 
effective vaccines needed to address virus evolution (Wei et al., 
2023), but the scientific allocation of vaccine resources is also a 
key factor (Qi et al., 2022). 

The allocation of vaccine resources presents a complex issue, 
primarily focused on selecting target population and identifying 
vaccination sites. During the initial period of vaccine develop-
ment, supply constraints amplify the critical nature of target pop-
ulation selection. Socio-demographic attributions, including occu-
pation, age and gender, are usually considered foundational com-
ponents in this selection process (Medlock & Galvani, 2009; Sah 
et al., 2018). Several studies highlight the necessity to prioritize 
vaccinations according to risk and age (Lee et al., 2010; Wallinga 
et al., 2010; Sah et al., 2018). Nevertheless, besides social-demo-
graphic attributes, it is crucial to consider spatial information in 
the allocation of vaccine resources. Based on the transmission 
dynamics of infectious diseases simulated by an agent-based 
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model, the significance of spatial distribution in the allocation of 
vaccine resources has been explored, demonstrating that optimiz-
ing vaccine resources in a virtual space derived from simulation 
should consider the spatio-temporal dimension (Tao et al., 2018; 
Grauer et al., 2020). However, discrepancies between simulated 
data and actual geographical data may result in invalid estimations. 
In a real-world context, Zhou et al. (2021) confirmed the necessity 
of a spatial priority strategy for selecting the target population; 
moreover, the combination of space and age has been proven to be 
the most effective approach. Furthermore, spatial optimization of 
vaccine resources has been shown to significantly reduce associat-
ed morbidity and mortality (Scroggins et al., 2023). 

The spatial distribution of vaccination sites is a critical element 
associated with the inequity in spatial accessibility, which has to do 
with access to these sites (Amritpal et al., 2019). Distance-based 
indicators and spatial interaction methods are commonly utilized 
to evaluate spatial accessibility (Soukhov et al., 2023; Chen & Jia, 
2019; Huang et al., 2023). The former methods apply space, time 
and/or cost between residential locations and the vaccination site 
to assess spatial accessibility. A further example is the analysis of 
the inequity in spatial accessibility to vaccination sites in the met-
ropolitan area of Chicago, United States based on the street-net-
work distance (Guhlincozzi & Lotfata, 2022). The focus on meas-
uring the relationship between supply and demand of vaccine 
resources within a spatial framework is commonly executed 
through the gravity-based method and the two-step floating catch-
ment area (2SFCA) method (Luo et al., 2009; McGrail, 2012; 
Liang et al., 2023). While the racial/ethnic unfairness in spatial 
accessibility to vaccination sites was identified using the gravity-
based method (Liu et al., 2022), the 2FSCA method was used for 
exploration of the inequity in the spatial distribution of vaccination 
sites in two counties in the United States (Qi et al., 2022). 

Both methods for measuring spatial accessibility have specific 
application scopes and are not entirely interchangeable. When vac-
cine resources are abundant, supply and demand imbalances do not 
need to be considered. In such cases, distance-based indicators can 
effectively fulfill this task; otherwise, spatial interaction methods 
are more appropriate. However, no matter which model is selected, 
the distances must first be clearly defined. Although network dis-
tance is widely utilized as a distance indicator (Liu & Yu, 2012; 
Polo et al., 2013; Wang et al., 2021), it is unable to depict the influ-
ence of various travel modes on spatial accessibility. To address 
this limitation, various travel modes have been incorporated into 
methods for measuring spatial accessibility, allowing for the detec-
tion of the potential inequity (Tao et al., 2020; Park & Goldberg, 
2021). Since the selection of travel modes typically depends on 
distance and varies among different age groups, spatial accessibil-
ity based solely on individual travel modes cannot fully capture the 
overall characteristic of travel distance or time. Hence, integrating 
diverse travel modes into travel time or distance is crucial for accu-
rately measuring spatial accessibility to vaccination sites (Lee & 
Miller, 2018; Amritpal et al., 2019; Xiao et al., 2022).  

The ultimate goal of measuring spatial accessibility is to facil-
itate the spatial optimization of vaccination sites, a process involv-
ing the identification of a set of vaccination sites from existing and 
potential ones to either maximize or minimize a given objective 
(Xiao & Murray, 2019; Fei et al., 2024). Depending on the specific 
objectives, various location-allocation issues can be categorized, 
including the Location Set Covering Problem (LSCP) (Church & 
Murray, 2009), the Maximal Covering Location Problem (MCLP) 
(Snyder & Haight, 2016), the p-center problem (Daskin, 1995) and 

the p-median problem (Hakimi, 1964). The LSCP is formulated to 
minimize the total cost of facility selection while ensuring the ful-
fillment of all demands. In contrast, the MCLP seeks to maximize 
the total demand with no more than p facilities, allowing for some 
demands to remain uncovered. However, a fixed distance should 
be established to address the demand coverage and it has been pro-
posed to optimize spatial coverage by selecting a fixed number of 
vaccination sites with a travel threshold set to delineate the service 
area (Chen et al., 2022).  

Given the critical role of vaccination in combating infectious 
diseases, vaccination sites may not adhere to a fixed service dis-
tance, necessitating coverage of demand even in areas distant from 
these sites. The p-center and p-median problems provide solutions 
to this limitation. The former aims to minimize the maximum dis-
tance between demands and their nearest vaccination sites, while 
the latter focuses on minimizing the total or average distance (Xiao 
& Murray, 2019). In contrast, the p-median problem can incorpo-
rate distance or cost information for all demands, making it partic-
ularly suitable for planning vaccination sites. Despite its potential 
to optimize the distribution of vaccination sites, the p-median 
problem’s application across various scenarios is seldom explored. 
For instance, without adding new sites, it is vital to assess whether 
existing vaccination sites are redundant. Furthermore, if new sites 
are required, identifying optimal locations for these sites becomes 
essential. In light of the aforementioned challenges, this study 
investigated the spatial optimization of vaccination sites for infec-
tious diseases based on heterogeneous travel modes in multiple 
scenarios. Our contributions were threefold: i) introduction of 
hybrid travel time with the integration of heterogenous travel 
modes to measure spatial accessibility to vaccination sites; ii) opti-
mization of the spatial distribution of vaccination sites based on 
the hybrid the travel time and the p-median problem in multiple 
scenarios; iii) proposal of a specific optimization scheme for 
COVID-19 vaccination sites in the study area. 

 
 
 

Materials and Methods 

Study area  
Xiangtan City, which is located in the east-central part of 

Hunan Province, China spans latitudes from 27°20′N to 28°05′N 
and longitudes from 111°58′W to 113°05′W. As a prefecture-level 
city, Xiangtan administers three county-level cities/counties 
(Xiangtan, Shaoshan and Xiangxiang) and two districts (Yuhu and 
Yuetang), covering a total area of 5,005.8 km2. According to the 
Seventh National Census of China, the city’s permanent population 
is approximately 2.73 million, with an urban population of 1.77 
million. The spatial information of the study area is shown in 
Figure 1. 

Datasets and preprocessing 
Five primary dataset categories were used: i) Vaccination site 

records from 2021 (n=92), including names and spatial coordi-
nates, sourced from the Xiangtan Public Health Center; ii) Road 
network data obtained from OpenStreetMap (https://www.open-
streetmap.org); iii) Demographic yearbook data in 2020 from 
Hunan Provincial Bureau of Statistics (https://tjj.hunan.gov.cn/), 
which includes three age groups: children under 16 years, those 
aged 16 to 60 years, and those older over 60 years; iv) Population 
distribution data in 2021 at 1-km resolution were downloaded from 
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Worldpop (https://www.worldpop.org), with the number of differ-
ent age groups estimated according to the proportion of each age 
group in the demographic yearbook; v) Questionnaire survey data 
regarding the acceptable walking time to a vaccination site and the 
walking speed across three age groups. The main content of the 
questionnaire is what the longest time that you are willing to walk 
to a vaccination site is, and approximately 100 samples were 
obtained for each age group. For all groups, the driving speed on 
the road network was consistently set at 40 km/h in the study area.  

Methodology 
The framework for optimizing vaccination sites comprised two 

key components: the assessment of spatial accessibility and the 
optimization of spatial distribution, as depicted in Figure 2. The 
population was segmented into distinct groups according to travel 
preferences or other pertinent criteria, while the travel modes were 
categorized into various types (two types of travel modes, namely 

walking and driving, were considered in this research). The hybrid 
travel time was calculated by integrating the selection probability 
of each travel mode for each group with the travel time from 
demand point i and vaccination site j. The comprehensive travel 
time used to evaluate spatial accessibility was derived from the 
hybrid travel time and the population distribution. The method for 
calculating travel time is introduced under Hybrid travel time 
based on heterogeneous travel modes below. The p-median prob-
lem was employed to optimize the spatial distribution of vaccina-
tion sites in multiple scenarios. This study defined two distinct sce-
narios to achieve different objectives in spatial optimization; the 
first aimed at identifying optimized and redundant vaccination 
sites among the original sites, and the second at determining opti-
mized sites from a combined set of original and newly added sites 
as well as detecting abandoned sites among the original sites. The 
detailed method for spatial optimization in multiple scenarios is 
provided under p-median problem in multiple scenarios below. 
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Figure 1. Map of the study area. 

Figure 2. Framework for optimizing vaccination sites in the study.



Hybrid travel time based on heterogeneous travel modes 
Travel time is a prevalent metric for quantifying transportation 

costs, significantly influenced by the chosen travel mode (Yu et al., 
2018; Huang et al., 2022). The research assumed that travel dis-
tance and different age groups exhibit varying tolerances for walk-
ing distances determine the choice of travel modes (only driving 
and walking were considered). Due to these differences in the 
acceptable walking time or distance, the choice of travel modes 
varied among age groups as done earlier (Yang et al., 2024), which 
means that the selection of travel modes for different age groups 
should be considered when calculating travel time. Assuming the 

population is divided into n groups, the travel time cij (k, m) for a 
single travel mode m and the kth age group can be expressed as fol-
lows: 

 

                                                                
 (Eq. 1)

 
 

where Lij  represents the network distance between demand point i 
and vaccination site j; and v (k, m) denotes the average velocity for 
the travel mode m and the kth age group. It is worth noting that, due 
to the difficulty in obtaining the proportional information on differ-
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Figure 3. Illustration of temporary vaccination site extraction. 

Figure 4. Statistical result giving the probability for selecting the driving mode with different walking time thresholds. 
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ent driving modes, including private vehicle taxi, and public trans-
portation, this study only used the average road speed to estimate 
driving time without further discussing specific driving modes. 
Furthermore, given the spatial differentiation of lifestyle and road 
network characteristics, the average walking and driving speeds 
may vary across regions. This study estimated the average velocity 
of travel modes using a questionnaire survey and road network 
data. Considering that either driving or walking can be selected for 
each age group, hybrid travel time for the kth age group can be 
defined based on the probabilities associated with the choice of 
travel modes, which is described as follows: 

 

                        
 (Eq. 2)

 
 

where ci,j (k, m) is the travel time or cost between demand point i 
and vaccination site j for the kth age group based on the travel mode 
m; and pk (m) denotes the probability of selecting travel mode m for 
the kth age group, which satisfies the following condition: 

 

                        
 (Eq. 3)

 
 
The problem of determining the probability of travel mode 

choice is complex. Generally, the choice depends on the distance 
(dij) between the starting location and the destination. That is, the 
longer the distance, the more likely it is to choose driving, while 
the shorter it is, the greater the chance of choosing walking. Thus, 
if there exists a distance threshold d’ to identify walking and driv-
ing modes for the kth age group, it can be assumed that walking is 
preferred if dij is less than d’, otherwise driving would be chosen. 
If dij equals d’, the probabilities of choosing walking and driving 
modes are equal, i.e. both at 0.5.  

We assumed that the distance threshold value only varies 
across different age groups (e.g., children, middle-aged people and 
the elderly), with each age group following a Gaussian distribu-
tion. If these distance thresholds were inconsistent among different 
age groups, the cumulative distribution function of a Gaussian dis-
tribution that can describe the above characteristics of driving 
mode choice can be used to calculate the probability, which is 
defined as: 

 

                        
 (Eq. 4)

 

                        
 (Eq. 5)

 
 

Where m (k) and s (k) are the mean and standard variation of the 
distance threshold for the kth age group, respectively, which can be 
estimated from the questionnaire survey or trajectory data. Further, 
if the population size of each age group in demand point i were 
known, the comprehensive hybrid travel time cij between demand 
point i and vaccination site j can be defined as follows: 

 

                        
 (Eq. 6)

 
 

Where pop(k, i) represents the number of individuals in kth age 
group at demand point i. The comprehensive travel time can be 
regarded as weighted hybrid travel time based on the proportion of 
each age group. 

The p-median problem in multiple scenarios 
The p-median problem was used to minimize the overall cost 

between all demand points and their nearest facilities. Let h repre-
sent the size of the vaccination site set {s1, … sh}, and define the 
mathematical expression for the p-median problem (p < h) as fol-
lows: 

 

                        
 (Eq. 7)
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(Eq. 8) 

 
                                                                                                 

                        
 
(Eq. 9) 

                                                                                                  
                                                                                                        

                      
 
(Eq. 10) 

                                                                                                 
                                                                                                        

                      
 
(Eq. 11) 

                                                                                                 
                                                                                                        

                      
 
(Eq. 12) 

 
where the objective (Eq. 7) is to select p sites from the total of h 
vaccination sites to minimize the total cost TC(p) that describes the 
total travel time; g the number of demand points; pop (i) the total 
number of individuals at demand point i; and cij the comprehensive 
travel time between demand point i and vaccination site j, as 
described in (Eq. 6); while xij represents whether demand point I is 
served by vaccination site j, whose value can be selected based on 
the constraint given by (Eq. 8). If xij is equal to 0, demand point i 
is served by vaccination site j, otherwise not. Similarly, yj repre-
sents whether vaccination site j is selected, governed by the con-
straint given by (Eq. 9). If yj is equal to 1, then vaccination site j is 
selected, otherwise, not. The constraint given by (Eq. 10) necessi-
tates the allocation of each demand point to a vaccination site, 
while the constraint given by (Eq. 11) requires that exactly p vac-
cination sites must be chosen from the vaccination site set. The 
constraint given by (Eq. 12) ensures that a vaccination site cannot 
be allocated to an unselected vaccination site. Solving the above 
optimization model yields the set of optimal vaccination sites, 
denoted as OptS(p)= {sj|yj=1}. The Gurobi optimization software 
(https://www.gurobi.com/) was used to solve the p-median prob-
lem in this study. Before describing different scenarios, several 
definitions should be first given as follows: 

Definition 1: (Redundant vaccination sites). These are some 
original vaccination sites, the removal of which would have no sig-
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nificant impact on the total cost. 
Definition 2: (Temporary vaccination sites). These are a series 

of candidate vaccination sites outside the existing sites, with the 
goal of selecting newly added vaccination sites among them. 

Definition 3: (Newly added vaccination sites). These are 
selected from temporary vaccination sites based on certain princi-
ples, which will be combined with original vaccination sites to 
undergo spatial optimization. 

Definition 4: (Optimized vaccination sites). These are the vac-
cination sites that were ultimately selected through spatial opti-
mization. 

Definition 5: (Abandoned vaccination sites). These are some 
original vaccination sites that were not finally selected through 
spatial optimization. Unlike redundant sites, abandoned sites can 
be replaced by some newly added sites to reduce the cost. 

Furthermore, various scenarios that describe distinct optimiza-
tion tasks in practical situations and two commonly-used tasks cor-
responding to two types of scenarios are delineated as follows: 

Scenario 1: This scenario aims to identify redundant vaccina-
tion sites within the set of original vaccination sites (denoted as 
OriS). By selecting different values of p, we independently opti-
mized the overall cost by solving the p-median problem and sub-
sequently compare these optimal total cost values to determine 
redundant sites. According to Definition 1, if redundancy exists 
among original vaccination sites, it will not significantly affect the 
total cost. To express this requirement, the condition can be formu-
lated as follows: 

 

                      
 (Eq. 13)

 
 

where represents the increment threshold, which was set at 0.1% in 
this study. Typically, there are numerous values of p that satisfy 
this condition. Among these values, the minimum value p’ is 
regarded as the optimal number and the corresponding set is 
referred to as the reasonable or optimized sites (denoted as 
OptS(p’)). The set of redundant vaccination sites can be deter-
mined by the difference between the set OriS and OptS(p’), 
defined as follows: 

 

                      
 (Eq. 14)

 
 
Scenario 2: This scenario aims to identify optimized vaccina-

tion sites by newly adding a series of temporary vaccination sites 
and abandoning some vaccination sites among original sites 
(denoted as AbaS). In this scenario, optimized vaccination sites are 
obtained from both original and newly added vaccination sites 
through solving the p-median problem. By comparing the differ-
ences between optimized and original sites, abandoned sites can be 
obtained. Specifically, through the consideration of population dis-
tribution and spatial accessibility of original vaccination sites, a 
series of temporary vaccination sites were extracted and added to 
the original vaccination sites. We defined temporary vaccination 
sites as centres within areas characterized by low accessibility and 
high population density (Low-High areas). It is worth noting that 
besides Low-High areas, Low-Low, High-Low and High-High 
areas can also be distinguished but obviously, more attention 
should be paid to the Low-High areas, as exemplified by the blue 
areas in Figure 3, which exhibited low accessibility and high pop-
ulation density. Then, the centres in these blue areas can be consid-
ered as the added sites in Figure 3(a). Considering that some added 
sites may be too close to the original sites, therefore, as shown in 
Figure 3(b), buffer areas were created using the original sites as 
centres with a radius R (R was set at 3 km in this study). Local cen-
tres within the buffers were not classified as newly added sites, 
while those outside the buffers were selected as such. 

The comprehensive vaccination site set consists of both origi-
nal sites and newly added sites. Based on the mathematical expres-
sion (Eq. 13), the optimal number   of vaccination sites can be 
determined and the optimized sites OptS(p’) among the total vac-
cination sites identified. The abandoned vaccination sites (denoted 
as AbaS) among the original sites can be calculated as follows: 

 

                      
 (Eq. 15)
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Figure 3. Illustration of temporary vaccination site extraction. 



Results  

Results of spatial accessibility based on hybrid 
travel time  

Statistical results for walking time thresholds across each age 
group are presented in Figure 4(a-c). The mean acceptable walking 
time were 14.4, 29.4 and 21.3 min for children, those at middle age 
and the elderly, respectively, with Standard Deviations (SD) of 6.5, 
14.7, and 8.7 min respectively. Compared to the children, both 
those at middle age and the elderly can endure longer walking 
time. Furthermore, the frequency histogram in Figure 3 suggests 
that the walking time thresholds for each age group approximate a 
near-Gaussian distribution. Consequently, according to Eq. 4 and 
Eq. 5, the probabilities for selecting different travel modes can be 
calculated, as depicted in Figure 4(d).  

Based on the questionnaire survey recording the walking speed 
for each individual and the road network characteristic (such as 
speed limit in the study area), the mean walking and driving speed 
for different age groups were calculated as detailed in Table 1. The 
walking speed for the children was found to be 2.74 km/h, which 
is lower than those for the middle age people (3.89 km/h) and the 
elderly (3.28 km/h).  

The spatial distribution of hybrid travel time exhibited a dis-
tinct clustering pattern (Figure 5(a)). High and low-value spatial 
clusters were detected in each county, with areas of high values 
primarily located around the vaccination sites. The statistical 
results, including the average travel time and standard deviation 
for each county, are shown in Figure 6. The overall average travel 
time across the whole study area was found to be 7.4 min. 

Shaoshan County exhibited the highest accessibility, with an aver-
age travel time of 10.31 min to vaccination sites, followed by 
Xiangxiang County at 9.5 min and Xiangtan County at 8.9 min. 
The Yuetang and Yuhu districts demonstrated notably shorter aver-
age travel times of 4.4 and 5.4 min, respectively, indicating easier 
access for residents. The SD serves as a measure of spatial acces-
sibility inequity within each county or subarea. The Yuetang and 
Yuhu districts have relatively small SDs of 4.0 and 7.1 min, respec-
tively, which are lower than the average for the study area of 12.3 
min, suggesting fairer spatial accessibility within these regions. 
Conversely, SDs for the other three districts exceed the average for 
the study area, highlighting greater inequity in accessibility. 

 

Results of spatial optimization for vaccination 
sites 

According to the definition of scenario 1, various numbers of 
vaccination sites were selected, and their corresponding optimal 
distribution among the original vaccination sites determined. 
Figure 7(a) illustrates the average travel time associated with dif-
ferent numbers of vaccination sites, where it can be observed that 
the average travel time progressively increases as the number of 
vaccination sites decreases. Based on the mathematical expression 
(Eq. 13), the optimal number of reasonable vaccination sites would 
be 71, as all increasing rates prior to this point were greater than 
0.1%, while those afterwards less than 0.1%. The corresponding 
distribution is shown in Figure 5(b). A total number of 21 vaccina-
tion sites were identified as redundant sites (marked as black sym-
bols in Figure 5(b)). 

As mentioned under the heading “the p-median problem in 
multiple scenario” utilizing travel time and population spatial dis-
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Figure 4. Statistical result giving the probability for selecting the driving mode with different walking time thresholds. 

Table 1. Average speed of travel modes for different age groups. 

Average speed of travel modes                                                                               Group 
                                                                          Children                                      Middle age                                          Elderly 

Walking speed  u(i) (km/h)                                             2.74                                                        3.89                                                          3.28 
Driving speed v(i) (km/h)                                                40                                                           40                                                             40 



tribution, four types of spatial patterns were identified: High-High, 
High-Low, Low-Low and Low-High areas, to determine newly 
added vaccination sites. To distinguish low spatial accessibility 
and high population density, the thresholds were set at 15 min and 
500 per km2 (Pinto & Akhavan, 2022), respectively. Newly added 
sites identified based on the center of Low-High areas with low 
accessibility (greater than 15 min) and high population density 
(exceeding 500 per km2). A total of 70 newly added sites were 
identified. The spatial distribution of these newly added sites is 
shown in Figure 8(a). 

Based on the overall number of sites including the original (92) 
and the newly added ones (70), the optimal results for different 
numbers of sites were calculated. As shown in Figure 7(b), the 
average travel time gradually decreases with an increasing number 
of sites. The optimal number of the optimized sites was found to be 
124, which satisfies the 0.1% threshold condition. The spatial dis-
tribution of the optimized and abandoned sites is shown in Figure 

8(b). To clearly understand the differences in spatial optimization 
across various scenarios, five key feature points were extracted 
from the change curve depicted in Figure 9. Point P1(92, 7.39) cor-
responds to the average travel time 7.4 min achieved with the orig-
inal 92 vaccination sites. Points P2(71, 7.47) and P5(124, 5.81) 
were obtained in the first and second scenarios, respectively. The 
average travel time (7.4 min) of point P3 is nearly identical to that 
of point P1, indicating that achieving the same average travel time 
with the original 92 sites requires only 53 sites after newly adding 
sites. Point P4(92, 6.14), which results from optimizing the distri-
bution after adding new sites, maintains the same number of vac-
cination sites as point P1(92, 7.39). However, the average travel 
time at point P4(6.1 min) is obviously lower than that at point 
P1(7.4 min). This further confirms that the original distribution of 
vaccination sites would be unreasonable and that spatial optimiza-
tion could reduce the overall comprehensive travel time for resi-
dents to access vaccination sites. 
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Figure 5. Spatial distribution of accessibility and optimization result. (a) Spatial distribution of accessibility for existing sites; (b) opti-
mization result of original sites in scenario 1.ds. 

Figure 6. Statistics of travel time for different areas.
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Figure 7. Change curve of optimal average travel time for each number. (a) Without newly added sites; (b) with newly added sites.

Figure 8. Spatial distribution and optimization results. (a) Spatial distribution of original sites and newly added sites; (b) optimization 
results for original sites and newly added sites in scenario 2.

Figure 9. Comprehensive results in multiple scenarios.



Discussion 
Spatial accessibility serves as a key metric for evaluating the 

equity of vaccination site distribution and is fundamental to opti-
mizing site locations, which is a critical strategy for controlling 
infectious diseases, encompassing essential elements such as spa-
tial supply, demand and their interdependencies. This study prima-
rily focused on optimizing the spatial locations of vaccination sites 
from the viewpoint of spatial accessibility. In contrast to existing 
research on the spatial optimization of vaccination sites, our con-
tribution was twofold: first, we employed a hybrid travel time met-
ric to assess spatial accessibility; second, we investigated opti-
mization solutions across various scenarios. 

On the basis of hybrid travel time, spatial accessibility to vac-
cination sites was obtained and spatial inequality identified. The 
statistical results show that the average travel time in the Yuetang 
and Yuhu districts is lower than that of the entire study. 
Additionally, the SD of the average comprehensive travel time in 
these districts is also lower than in other areas, indicating that spa-
tial accessibility within these districts is relatively equitable. 
Actually, the Yuetang and Yuhu districts, the primary population 
centers in Xiangtan, benefit from a high concentration of vaccina-
tion sites and a well-developed transportation infrastructure that 
contributes to their accessibility. Conversely, areas with lower 
urbanization rates and lower population densities, coupled with 
inadequate transportation facilities, hinder public access to vacci-
nation sites. 

This study obtained optimization solutions for the spatial dis-
tribution of vaccination sites across various scenarios. In scenario 
1, redundant sites are considered as elements of the original vacci-
nation sites, whose existence would not significantly impact aver-
age accessibility. The increasing threshold is used to identify 
whether or not a site is redundant. By setting the increasing thresh-
old at 0.1%, a total number of 21 redundant sites were identified in 
the study area and they were mainly located in the urban areas. 
Should the number of original vaccination sites be reduced, these 
21 sites should be prioritized based on spatial accessibility. 
Similarly, in scenario 2, in which the spatial optimization with the 
consideration of newly added sites was examined, the increasing 
threshold was used to determine the final results, a total of 124 
sites were identified among the original and newly added sites. It 
is important to note that scenario 1 aimed to divide original vacci-
nation sites into redundant and optimized/reasonable vaccination 
sites, whose input is the spatial distribution of these two types of 
vaccination sites, while scenario 2 tended to input the spatial dis-
tribution of optimized vaccination sites consisting of some original 
and some newly added ones. 

There are still a series of limitations that should be pointed out. 
Firstly, in this study, only two travel modes were considered when 
defining hybrid travel time and the selection of travel modes was 
assumed to be solely related to age. Actually, travel modes are 
more diverse and complex, with public or shared transportation 
being common options. Further, the selection of travel modes is 
influenced by multiple factors indicating that a more comprehen-
sive integration of human mobility patterns into spatial accessibil-
ity measurement is necessary. This research employed the cumula-
tive distribution function of the Gaussian distribution to character-
ize the probability of travel mode selection. However, more suit-
able methods for measuring choice probability require further 
exploration. Secondly, the objective of spatial optimization was to 
minimize total travel time. However, the medical or economic cost 

associated with adding new vaccination sites is also a critical ele-
ment for newly adding vaccination sites. Future research should 
explore multi-objective optimization that incorporates time, med-
ical and economic factors. Additionally, in scenario 1, the defini-
tion of redundant vaccination sites is qualitative and to measure no 
significant impact on total cost is uncertain based on the increment 
threshold, which can be found from the mathematical expression 
(Eq. 13). Obviously, the results may vary with different thresholds. 
In this study, to simplified calculations by using just one threshold 
(0.1%), something which necessitates further discussion on how to 
select thresholds. 

 
 
 

Conclusions   
This study investigated the spatial optimization for vaccination 

sites based on heterogeneous travel modes across two distinct sce-
narios (one without additional sites and another with newly added) 
by applying population-weighted hybrid travel time. Compared to 
other distance indicators, hybrid travel time can effectively capture 
the mixed distance situation with the consideration of different 
travel modes and their selected probabilities. Importantly, this 
study is not only applicable to spatial optimization of vaccination 
sites, but can also be used for to find the best spatial distribution of 
a wide variety of other geographical, infrastructural elements. In 
the case study of Xiangtan, China, the spatial optimization solution 
offers valuable insights for the government in preventing and con-
trolling infectious diseases. 
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