
Abstract
Stunting continues to be a significant health issue, particularly

in developing nations, with Indonesia ranking third in prevalence
in Southeast Asia. This research examined the risk of stunting and
influencing factors in Indonesia by implementing various
Bayesian spatial conditional autoregressive (CAR) models that
include covariates. A total of 750 models were run, including five
different Bayesian spatial CAR models (Besag-York-Mollie

(BYM), CAR Leroux and three forms of localised CAR), with 30
covariate combinations and five different hyperprior combinations
for each model. The Poisson distribution was employed to model
the counts of stunting cases. After a comprehensive evaluation of
all model selection criteria utilized, the Bayesian localised CAR
model with three covariates were preferred, either allowing up to
2 clusters with a variance hyperprior of inverse-gamma (1, 0.1) or
allowing 3 clusters with a variance hyperprior of inverse-gamma
(1, 0.01). Poverty and recent low birth weight (LBW) births are
significantly associated with an increased risk of stunting, whereas
child diet diversity is inversely related to the risk of stunting.
Model results indicated that Sulawesi Barat Province has the high-
est risk of stunting, with DKI Jakarta Province the lowest. These
areas with high stunting require interventions to reduce poverty,
LBW births and increase child diet diversity. 

Introduction
Stunting is a condition in children characterized by failure to

grow, thus marked by a height lower than the age standard.
Stunting remains a serious public health issue, especially in poor
and developing countries. According to the World Health
Organization (WHO), approximately 149.2 million children under
five (<5 years) in the world suffered from stunting in 2020
(Gabain et al., 2023), half of them in Asia (World Health
Organization, 2020). Indonesia ranks third in Southeast Asia in
this respect, with an average prevalence of 36.4% (Ministry of
Health, 2018). In 2022, this high figure prompted the President of
the Republic of Indonesia to designate stunting as a priority pro-
gram, with the  aim to reduce the prevalence of stunting to around
14% by 2024 (Ministry of Human Resources, 2022). Stunting has
significant impacts on physical and mental health, brain develop-
ment and general achievement. Despite ongoing efforts over the
past 20 years, addressing the stunting problem has proven a per-
sistent challenge (Hijrawati et al., 2021).

Research exploring stunting cases and their causal factors
indicate that malnutrition in children (Vatsa et al., 2023) and
parental education (Vaivada et al., 2020) are contributing factors.
Additionally, factors such as non-exclusive breastfeeding during
the first 6 months, low household socio-economic status, prema-
ture birth and low maternal education level have been identified as
causes of stunting in Indonesian children (Beal et al., 2018).
However, these studies often neglect spatial effects, even though
stunting cases in one area may be influenced by values in spatially
close areas. Adjacent regions often share similarities in socio-eco-
nomic characteristics, environment, and access to health
resources, all of which can impact the incidence of stunting.
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Therefore, it is crucial to conduct analyses that account for spatial
dependencies between regions. 

The Bayesian spatial Conditional Autoregressive (CAR)
model is a robust tool that can handle spatial dependence (Duncan
et al., 2019). This model produces smoothed estimates across adja-
cent regions (termed ‘neighbours’), but variants may also allow for
random variation between areas (Besag et al., 1991; Leroux et al.,
2000). Versions of CAR models also exist which allow for discon-
tinuities between areas (Lee & Sarran, 2015; Lee & Lawson, 2016)
and for situations where adjacent regions differ greatly. 

Bayesian spatial CAR models have previously been applied to
examine stunting in Indonesia. These examined spatial patterns
without considering covariates for either a specific province or the
nation (Azis & Aswi, 2023), or they considered covariates for a
specific province only (Aswi & Sukarna, 2022). Both studies
demonstrated variation in stunting but had important limitations
when considering national identification of important factors and
areas. We therefore aimed to examine the factors influencing stunt-
ing incidence in Indonesia by implementing various Bayesian spa-
tial CAR models that include covariate factors in the model as well
as estimate the Relative Risk (RR) of stunting across Indonesia.
Our primary objective was explanatory, focusing on identifying
significant covariates influencing stunting incidence in Indonesia.
By incorporating various covariates into Bayesian CAR models,
we wished to understand these factors better and facilitate targeted
interventions. 

Materials and Methods

Study area and data
Indonesia is situated with a northern border adjacent to coun-

tries such as Malaysia, Vietnam, the Philippines, Singapore, Palau,
Thailand and the South China Sea. Its boundaries in the south
extend to Australia, Timor-Leste and the Indian Ocean, while the
western frontier is marked by the Indian Ocean and the Indies. The
eastern boundary is formed by the Pacific Ocean and Papua New
Guinea. Indonesia comprises 34 provinces, including five major
islands: Sumatra, Java, Kalimantan, Sulawesi, Papua and four
groups of smaller islands, namely Riau Islands, Bangka Belitung
Islands, Nusa Tenggara Islands and Maluku Islands.

Data on the number of toddlers and the number of stunted tod-
dlers by province in 2022 were obtained from the official website
of the Directorate General of Regional Development, Ministry of
Home Affairs (Ministry of Home Affairs, 2022). The covariates
used in this study carried out for 2022 were the following: the per-
centage of poverty (x1), the percentage of babies aged less than 6
months who receive exclusive breastfeeding (x2), the percentage of
mothers giving birth to live-born children in the last two years,
with the last live-born child who born with low birth weight
(LBW) (x3), percentage of children aged 12-23 months who
received complete basic immunization (x4), percentage of children
aged 0-23 months who have ever been given breast milk (x5), per-
centage of children aged 0-23 months who have been, and are still
being given, breast milk (x6) and the percentage of children aged 6-
23 months who regularly consume at least five of the eight food
and drink groups throughout the day (x7). Poverty percentage data
in 2022 were obtained from the government website Central
Bureau of Statistics, 2023a). Child and maternal covariates (x2 to
x7) were obtained from the 2022 Maternal and Child Health Profile

(Sari et al., 2022). Each of these seven covariates were considered
a priori to be likely associated with stunting. For efficient writing,
variable x3 is abbreviated as Recent LBW Births and variable x7 as
Child Diet Diversity (CDD).

Correlation between covariates was assessed using Spearman’s
correlation coefficient, prior to running models. Given the impor-
tance of assessing the effect of variables, a Poisson model was run
before any spatial CAR models to obtain estimates for each fixed
effect to ensure no spatial confounding (Hodges & Reich, 2010)
was influencing findings. 

Statistical analysis
Five Bayesian spatial CAR models, including the Besag-York-

Mollie (BYM), CAR Leroux and localised CAR with G=2, G=3
and G=5 were employed to estimate the risk of stunting and quan-
tify the associated risk between stunting and covariates in
Indonesia. The Poisson distribution was utilized to model the
stunting counts, as follows.

Eq. 1

Where yi is the observed number of stunting cases for the ith area.
The expected value and variance of yi is provided by the product of
qi, which is the RR and Ei the expected number of stunting cases
for the ith area, which can be calculated as follows.

Eq. 2

Where ni is the number of toddlers aged 0-59 months whose
height was measured in 2022 in each district/city and i = 1, 2, 3, …
, 34. This modelling involves an overall constant rate α and a cor-
responding to residual yi, which incorporates the spatial structure.
xi is the vector of covariates for the ith area. The vector of regres-
sion parameters is represented by β = (β0, . . . , βk). The covariate
regression parameters β are given a multivariate Gaussian prior
with weakly informative hyper-parameters. The spatial representa-
tion differs for each model and is detailed below. All models were
computed using Markov chain Monte Carlo (MCMC) via the CAR
Bayes package version 6.1.1 (Lee, 2013) within R software version
4.3.2 (R Core Team, 2019).

BYM model
One of the most widely recognized Bayesian hierarchical mod-

els utilized in disease mapping is the BYM model, the formulation
of which is presented as follows:

Eq. 3

Where ui represents the spatially structured random effect,
while vi denotes the spatially unstructured random effect, which is
typically assumed to follow a normal distribution, specifically
vi~N(0,τv

2) and for the spatially structured random effect ui, an
intrinsic CAR prior distribution is employed. This prior distribu-
tion is expressed as
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Eq. 4

Where wij =1 if i and j are adjacent, otherwise  =0. While var-
ious formulations have been explored, existing research indicates
that opting for binary first-order adjacency weights is often a suit-
able and well-supported choice (Duncan & Mengersen, 2020).
There are three distinct types of spatial adjacency matrix: queen
contiguity, rook contiguity and bishop contiguity (Oyana &
Margai, 2015). Queen contiguity was implemented in this study as
it can improve the model fit (Getis & Aldstadt, 2004). The hyper-
priors employed for variance terms, tu

2, tv
2 consisted of inverse-

gamma (IG) distributions (Lee, 2013), specifically IG (1, 0.01) as
the default hyperprior in Bayesian CAR, along with IG (1, 0.1), IG
(0.5, 0.05), IG (0.1, 0.1) and IG (0.5, 0.0005).

Leroux model 
While the BYM model incorporates two distinct sets of ran-

dom effects, specifically a spatially structured random effect (ui)
and a spatially unstructured random effect (vi) (, the Leroux model
differs by incorporating only one single effect (ui). This single ran-
dom effect adjusts the intensity of the local neighbourhood spatial
autocorrelation uniformly by a constant (r) representing the model
as follows:

Eq. 5

with hyperpriors employed for variance terms tu
2~ IG (1, 0.01) as

the default hyperprior in CAR Bayes, along with IG (1, 0.1), IG
(0.5, 0.05), IG (0.1, 0.1), IG (0.5, 0.0005) and r~ uniform (0, 1).
When r = 1, this prior simplifies to the intrinsic CAR model, and
when r = 0, it simplifies to the independent model (Lee, 2013).

Localised CAR model 
The localised CAR model, as proposed by Lee and Saran (Lee

& Sarran, 2015), enables neighbourhood random effects to vary
across the geographical space, so discontinuities can occur
between adjacent areas. This is realised through the partitioning of
areas into a maximum of G clusters, with the incorporation of a
cluster-specific mean within the model framework. The model is
given by the formula:

ψi = ui+ λZi

Eq. 6

where wij = 1 if i and j are adjacent, otherwise = 0, with the hyper-
prior given by tu

2~ IG (1, 0.01) as the default hyperprior in CAR
Bayes, along with IG (1, 0.1), IG (0.5, 0.05), IG (0.1, 0.1) and IG
(0.5, 0.0005). The areas are divided into a maximum of G clusters,
each with its own intercept structure arranged as l1<l2<…<lG. The
prior distribution for lj is specified as uniform (lj-1, lj+1) for j = 1,
2, …, G where l0 = - ∞ and lG+1 = + ∞. Each area’s allocation to a
group is determined by a variable Z1 represented by the formula:

                                 
Eq. 7

where the penalty parameter is defined as d ~ uniform (1, 10) and
G* = (G+1)/2 when G is odd and G* = G/2 when G is even. It is
recommended that G be a small and odd number (Lee & Sarran,
2015). In accordance with this recommendation, we employed var-
ious Bayesian localised CAR models, each featuring a different
maximum number of clusters: two clusters (G=2), three clusters
(G=3) and five clusters (G=5) for each hyperprior.

Comparing models
The five distinct model formulations, each subjected to five

varied prior specifications, and evaluated across 30 diverse combi-
nations of covariates, culminated in the execution of a total of 750
models. The models were compared using goodness-of-fit mea-
sures, namely the deviance information criterion (DIC)
(Spiegelhalter et al., 2002), the Watanabe-Akaike information cri-
terion (WAIC) (Watanabe, 2010) and the modified Moran’s index
(MMI) for residuals (Carrijo & Da Silva, 2017). Models with the
lowest DIC and WAIC values and those with MMI residuals
approaching zero indicate a better fit. DIC evaluates Bayesian
model fit by balancing goodness of fit and model complexity,
while WAIC provides a fully Bayesian alternative that considers
the entire posterior distribution. A MMI value near zero indicates
minimal spatial correlation in residuals, suggesting a well-fitted
spatial model. If MMI deviates significantly from zero, it may
imply unaccounted spatial dependence. Comparisons between
model formulations and combinations of covariates were also con-
ducted by evaluating the 95% posterior Credible Interval (CI),
deemed significant when it excludes zero. Additionally, conver-
gence checking is required for the accurate representation of the
posterior distribution after the use of MCMC and this was exam-
ined using trace plots.

Results
In 2022, Indonesia reported a total of 1,321,295 cases of stunt-

ing, with a mean of 38,862, a median of 17,888, and a standard
deviation of 54,718. The provinces with the lowest stunting cases
were North Sulawesi (3,080), Bangka Belitung Islands (4,077),
and North Kalimantan (4,767). Conversely, the highest incidence
of stunting was observed in West Java (221,065), East Java
(190,128), and Central Java (184,364). The toddler population in
Indonesia for the same year was 15,798,238, with a mean of
464,654, a median of 217,775, and a standard deviation of
668,104. Figure 1 illustrates the distribution of stunting cases
across Indonesia. 

The statistical values of Moran’s I, expectation and standard
deviation (SD) for the observational data were 0.361, -0.030 and
0.157, respectively, with p-value = 0.013. With the Moran’s I value
for the observed data of 0.361 and p-value = 0.013, the null
hypothesis of no spatial autocorrelation was rejected indicating
that there is a positive spatial autocorrelation in the stunting case
data. The MMI value was 0.579. The Spearman correlations
between stunting cases and covariates are detailed in Table 1. A
substantial correlation (rs= 0.849) between variable x5 and x6 was
found, with a high correlation between variable x2 and x6 (rs=
0.607) and x2 and x5 (rs= 0.566). Given these considerable correla-

                                                                                                                                Article

                                                                               [Geospatial Health 2024; 19:1321]                                                              [page 63]

Non
-co

mmerc
ial

 us
e o

nly



tions, variables x2 and x6 were omitted from further analysis. As a
result, only five covariates were included in the spatial models.

Out of the 750 model combinations based on the five distinct
Bayesian spatial CAR models, only 127 converged. Surprisingly,
none of the BYM or Leroux models converged. From the 150 com-
binations used for each of the localised CAR models, 29 models
converged for G=2, 44 for G=3 and 54 for G=5. From the 127 con-
vergent models, the preferred model was selected based on the
smallest DIC and WAIC outcomes and a residual MMI value close
to zero. An overview of the results for the best performing models
is given in Table 2. 

Two models were chosen for estimating the RR of toddler
stunting in Indonesia: the localised CAR model with G=2 and a
hyperprior IG (1, 0.1) (M387), which had the residual MMI value

closest to zero, and the localised CAR model with a hyperprior IG
(1, 0.01) (M535) when G=3, which had the lowest DIC and WAIC
values, as well as a residual MMI value closest to zero. The sum-
mary results for parameters of the preferred localised CAR models
are presented in Table 3.

The key covariates found were consistently the percentage of
poverty (x1), Recent LBWs (x3) and Child Diet Diversity (CDD)
(x7). As poverty and LBWs increased, so did stunting risk (signifi-
cant positive association). As CDD increased, stunting risk dimin-
ished (significant negative association). Values were similar
between the two preferred models, with an increase in stunting by
5% (i.e. exp (0.049) gives 1.05) as poverty increased by one unit,
4% as LBW proportions increased, and a decrease by 3% (factor of
0.97) in stunting as CDD increased (Table 3). These associations
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Table 1. Correlation between stunting and covariates.

                      Stunting                   x1                     x2                          x3                        x4                       x5                  x6                               x7

x1                       0.022                                                                                                                                                                      
                         (0.902)                                                                                                                                                                            
x2                       0.392                           0.121                                                                                                                                           
                         (0.022)                       (0.497)                                                                                                                                          
x3                       -0.073                         0.179                 -0.033                                                                                                               
                         (0.682)                       (0.310)               (0.852)                                                                                                               
x4                       0.107                          -0.117                 0.155                       -0.208                                                                               
                         (0.546)                       (0.509)               (0.382)                     (0.239)                                                                              
x5                       0.226                          -0.134                 0.566                       -0.095                     0.054                                                 
                         (0.199)                       (0.452)               (0.000)                     (0.594)                   (0.763)                                               
x6                       0.394                          -0.037                 0.607                       -0.231                    -0.103                    0.849                   
                         (0.021)                       (0.834)               (0.000)                     (0.188)                   (0.562)                  (0.000)                  
x7                       0.326                          -0.231                 0.402                       -0.545                     0.164                    0.306               0.483
                         (0.060)                       (0.189)               (0.018)                     (0.001)                   (0.355)                  (0.078)            (0.004)

Cell contents: Spearman rho (p-value).

Table 2. Overview of results obtained by the Bayesian spatial conditional autoregressive (CAR) models.

Hyper-prior      Model   Cova-riate        DIC      WAIC    MMI residual       Covariate coefficient                     Number of areas per cluster
                                                                                                                        percentile   
                                                                                                                                     2.5%          97.5%                      G1             G2          G3        G4         G5
G = 2

IG (1, 0.01)           M386             x1 +               492.4        510.9                -0.44                        0.0484            0.0489                           19                15               -              -               -
                                                     x3 +                                                                                          0.0416            0.0431                                                                                                 
                                                       x7                                                                                       -0.0259          -0.0258                                                                                          
IG (1, 0.1)             M387             x1 +               496.1        525.9                -0.05                        0.0489            0.0491                           19                15               -              -               -
                                                     x3 +                                                                                          0.0416            0.0428                                                                                                 
                                                       x7                                                                                       -0.0259          -0.0257                                                                                          
G = 3

IG (1, 0.01)           M535             x1 +               512.1        593.7                -0.13                        0.0489            0.0491                            9                 16              9             -               -
                                                     x3 +                                                                                          0.0416            0.0419                                                                                                 
                                                       x7                                                                                       -0.0259          -0.0257                                                                                          
G = 5

IG (0.5, 0.05)        M689             x1 +               549.2        849.6                -0.23                        0.0489            0.0492                            4                 11              10            6              3
                                                     x3 +                                                                                          0.0411            0.0416                                                                                                 
                                                       x7                                                                                       -0.0259          -0.0259                                                                                          
IG (0.5, 0.0005)    M690             x1 +               547.7        842.2                -0.60                        0.0487            0.0491                            4                 11              10            6              3
                                                     x3 +                                                                                          0.0410            0.0419                                                                                                 
                                                       x7                                                                                       -0.0260          -0.0259                                                                                          
DIC, deviance information criterion; WAIC, Watanabe-Akaike information criterion; MMI, modified Moran’s index; IG, inverse-gamma
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were consistent with findings from the non-spatial Poisson model,
confirming that spatial confounding was not impacting results.

The clustering of regions, referred to as the Localised structure
(LS), and RR values were presented in Table 4 and Figure 2. Even
when areas were placed in different clusters, the RR values
obtained using the localised CAR model with G=2 and G=3 were
almost identical (Table 4). Mapping the RR of the stunting cases
using the localised CAR model (under G = 2) with hyperprior IG
(1, 0.1) and the localised CAR model (under G = 3) with hyperpri-
or IG (1, 0.01) is given in Figure 3.

The highest RR values based on the localised CAR model with
G=2 and G=3 were found in Sulawesi Barat Province (RR=2.77), fol-

lowed by Nusa Tenggara Timur Province (RR=2.67) and Nusa
Tenggara Barat Province (RR=2.22). Conversely, the lowest RR values
based on the localised CAR model with G=2 and G=3 are observed in
DKI Jakarta Province (RR=0.15), followed by North Sulawesi
Province (RR=0.28) and South Sumatra Province (RR=0.37). 

Discussion
This paper presents an application of the Bayesian spatial CAR

model to assess its effectiveness in modelling stunting cases and
the impact of various covariates associated with stunting cases in
Indonesia. The creation of 750 models was designed to thoroughly
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Figure 1. Thematic map of the distribution of stunting cases in Indonesia in 2022.

Figure 2. Thematic map of provincial Stunting case groupings in Indonesia. A) the localised G = 2 model with hyperprior IG (1, 0.1); 
B) the localised G = 3 model with hyperprior IG (1, 0.01).
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explore the spatial patterns and ensure robustness in identifying
significant risk factors and spatial patterns. The range of models
allowed greater understanding of potential spatial dependencies,
data variability and the complex and multifaceted nature of stunt-
ing. Convergence checking is however essential for ensuring the
validity of Bayesian spatial model analyses using MCMC tech-
niques as it ensures that the Markov chains have reached the sta-
tionary distribution, indicating that the generated samples accu-
rately represent the posterior distribution. Without convergence,
the inferences drawn from the model may be biased or inaccurate. 

The selection of specific spatial CAR priors was guided by the
need to comprehensively address different dimensions of spatial
dependence and variability in stunting rates across Indonesia. Each
model offers unique strengths that contribute to a more nuanced
understanding of the spatial patterns. The BYM model provides a
robust baseline by accounting for both structured and unstructured
spatial effects, the Leroux model offers flexibility in adjusting the
intensity of spatial autocorrelation, while the localised CAR model
captures localised variations and discontinuities, which are crucial
for identifying clusters with distinct stunting rates. 

While BYM and Leroux models are commonly used in spatial
analyses, localised forms allowing for discontinuities are less com-
mon, partly due to their greater complexity. Yet as demonstrated
here, there are instances when they will perform better. The find-
ings of this study align partially with previous research, which sug-
gests that localised CAR models are preferable when count data
and the variation in counts between areas are high (Aswi et al.,
2020).
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Figure 3. Mapping the RR of stunting cases in Indonesia in 2022. A) the localised G = 2 model with hyperprior IG (1, 0.1), B) the localised
G = 3 model with hyperprior IG (1, 0.01).

Table 3. Summary results for parameters of the preferred localised
Bayesian spatial conditional autoregressive (CAR) models.

Spatial localised CAR model with G=2 and hyperprior IG (1, 0.1)
                                    Mean                                        95% CI

                                        0.0491                                         0.0489; 0.0491
LBW                                0.0424                                         0.0416; 0.0428
CDD                                -0.0258                                       -0.0259; -0.0257
lambda1                           -0.5119                                       -0.5185; -0.5054
lambda2                           0.4867                                         0.4823; 0.4912
tau2                                  0.1465                                         0.0913; 0.2333
delta                                 1.1325                                         1.0036; 1.4467
Spatial localised CAR model with G=3 and hyperprior IG (1, 0.01)

Poverty                             0.0490                                         0.0489; 0.0491
LBW                                0.0417                                         0.0416; 0.0419
CDD                                -0.0258                                       -0.0259; -0.0257
Lambda 1                        -0.8394                                       -0.8506; -0.8282
Lambda 2                         -0.079                                        -0.0844; -0.0733
Lambda 3                         0.7106                                         0.7049; 0.7160
Tau 2                                0.1239                                         0.0772; 0.1979
Delta                              1.1662                                      1.0047; 1.5353
LBW, low birthweight; CDD, child diet diversity; lambda: the intercept for the appro-
priate cluster, where Lamba 1<Lambda 2 <Lambda 3; Tau 2, the variance parameter
associated with the spatial random effects ui; Delta, the penalty parameter. 
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The covariates we consistently identified as associated with
stunting in Indonesia are in agreement with those reported else-
where. For example, previous research in Ghana suggests that
high rates of childhood stunting in various districts are predomi-
nantly linked to socioeconomic disparities, particularly poverty
and the limited availability and use of healthcare services (Jonah
et al., 2018; Aheto, 2020; Yaya et al., 2020; Johnson, 2022).
While our data considered the regional proportion of LBWs, pre-
vious research has found associations between stunting and chil-
dren’s birth weights along with other factors, such as maternal
education and the body mass index (BMI) that can also influence
the child’s birth weight (Uwiringiyimana et al., 2022). Our find-
ings also demonstrate a negative association between the percent-

age of children aged 6-23 months, who regularly consume at least
five of the eight different food groups and the incidence of child-
hood stunting. These results are in line with previous studies sug-
gesting that access to diverse foods is a significant predictor of
malnutrition (Kinyoki et al., 2015; Akseer et al., 2018) and that
maternal education and household food security offer protection
against stunting of different degrees (Hagos et al., 2017).

The province of Sulawesi Barat had the highest relative risk for
stunting (RR=2.77, 95% CI 2.73, 2.81). This area exhibits a high
level of poverty and elevated rates of early and child marriage. In
March 2022, 11.75% of residents lived in poverty, representing
165,720 people Central Bureau of Statistics, 2023b). Most of the
population (50.24% of those aged 15+ years during 2022) in this
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Table 4. Outcomes by province based on the preferred models.

ID
Province                                                                  M387 (G=2)                                                                       M535 (G=3)
                                                                    LS                RR                  95% CI                                LS                  RR                    CI

1                        Aceh                                            1                    0.96                  (0.94;0.97)                                    2                      0.96                (0.94;0.98)
2                        Bali                                              1                    0.53                  (0.52;0.54)                                    2                      0.53                (0.52;0.54)
3                        Bangka Belitung                         1                    0.47                  (0.45;0.48)                                    1                      0.47                (0.45;0.48)
4                        Banten                                         2                    0.82                  (0.81;0.82)                                    2                      0.82                (0.81;0.83)
5                        Bengkulu                                     1                    0.58                  (0.56;0.59)                                    2                      0.58                (0.56;0.59)
6                        Gorontalo                                    1                    0.90                  (0.87;0.92)                                    2                      0.89                (0.87;0.92)
7                        DKI Jakarta                                 1                    0.15                  (0.14;0.15)                                    1                      0.15                (0.14;0.15)
8                        Jambi                                           1                    0.49                  (0.48;0.50)                                    1                      0.49                (0.47;0.50)
9                        Jawa Barat                                   2                    0.82                  (0.82;0.83)                                    2                      0.82                (0.81;0.83)
10                      Jawa Tengah                                2                    1.12                   (1.11;1.13)                                    3                      1.12                (1.11;1.13)
11                      Jawa Timur                                  2                    1.13                  (1.12;1.14)                                    3                      1.13                (1.12;1.14)
12                      Kalimantan Barat                        2                    1.94                  (1.92;1.96)                                    3                      1.94                (1.92;1.97)
13                      Kalimantan Selatan                     2                    1.12                  (1.10;1.13)                                    2                      1.12                (1.10;1.13)
14                      Kalimantan Tengah                     2                    1.21                  (1.19;1.23)                                    2                      1.21                (1.19;1.23)
15                      Kalimantan Timur                       2                    1.62                  (1.59;1.64)                                    3                      1.62                (1.59;1.64)
16                      Kalimantan Utara                        2                    1.96                  (1.91;2.02)                                    3                      1.96                (1.91;2.01)
17                      Kepulauan Riau                          2                    0.59                  (0.57;0.60)                                    2                      0.59                (0.57;0.60)
18                      Lampung                                     1                    0.54                  (0.53;0.55)                                    1                      0.54                (0.53;0.55)
19                      Maluku                                        1                    1.18                  (1.16;1.21)                                    1                      1.18                (1.15;1.21)
20                      Maluku Utara                              1                    1.47                  (1.43;1.50)                                    2                      1.47                (1.43;1.50)
21                      Nusa Tenggara Barat                  2                    2.22                  (2.20;2.24)                                    3                      2.22                (2.19;2.24)
22                      Nusa Tenggara Timur                 2                    2.67                  (2.65;2.70)                                    2                      2.67                (2.64;2.71)
23                      Papua                                           1                    1.01                  (0.99;1.03)                                    1                      1.01                (0.99;1.03)
24                      Papua Barat                                 1                    1.52                  (1.48;1.55)                                    1                      1.51                (1.48;1.55)
25                      Riau                                             1                    0.50                  (0.49;0.51)                                    2                      0.50                (0.49;0.51)
26                      Sulawesi Barat                            2                    2.77                  (2.73;2.81)                                    3                      2.77                (2.73;2.81)
27                      Sulawesi Selatan                         1                    1.08                  (1.07;1.10)                                    2                      1.08                (1.07;1.09)
28                      Sulawesi Tengah                         1                    1.57                  (1.55;1.59)                                    2                      1.57                (1.55;1.59)
29                      Sulawesi Tenggara                      1                    1.32                  (1.30;1.34)                                    2                      1.32                (1.30;1.34)
30                      Sulawesi Utara                            1                    0.28                  (0.27;0.29)                                    1                      0.28                (0.27;0.29)
31                      Sumatera Barat                            2                    1.23                  (1.22;1.25)                                    3                      1.23                (1.22;1.25)
32                      Sumatera Selatan                        1                    0.37                  (0.37;0.38)                                    1                      0.37                (0.36;0.38)
33                      Sumatera Utara                           1                    0.66                  (0.65;0.67)                                    2                      0.66                (0.65;0.67)
34                      DI Yogyakarta                             2                    1.10                   (1.08;1.11)                                    3                      1.10                (1.08;1.11)
LS, localised structure; RR, relative risk; CI, credible interval.  
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province work in the agriculture, forestry and fisheries sectors
(Central Bureau of Statistics, 2023b). The incidence of marriage
among girls under the age of 18 is particularly prevalent in
Sulawesi Barat Province, where the rate of child marriage (57.09%
of females and 54.11% of males aged 10+ years were married) is
higher than the national average and slightly higher among girls
from the poorest households (Central Bureau of Statistics, 2023b).
In 2022 the province of Sulawesi Barat had 99,033 toddlers,
22,903 of which were affected by stunting, resulting in a stunting
rate of 23.13%, the highest in Indonesia (data from the official
website of the Directorate General of Regional Development,
Ministry of Home Affairs (Ministry of Home Affairs, 2022). 

Limitations of this study included ecological rather than indi-
vidual-level data (the most recent data being just for 2022) since
the new stunting data announced in 2022 were not provided at a
higher resolution than the province level. Therefore, we could only
explore spatial patterns without being able to consider how things
were changing across years. Another limitation of the current study
is its focus on a single time period. Stunting is a dynamic phe-
nomenon influenced by various factors that change over time.
Incorporating a temporal dimension into the spatial analysis would
provide a more comprehensive understanding of stunting trends
and the effectiveness of intervention programs. Future research
should explore spatiotemporal models to capture the dynamic
nature of stunting and enable robust spatiotemporal analyses. In
addition, variables for modelling can be selected in many ways.
Popular approaches include stepwise selection, which has several
disadvantages (Smith, 2018), so the least absolute shrinkage and
selection operator (LASSO) is increasingly used. No approach is
guaranteed to produce a model with the most important variables
(Heinze et al., 2018). Computational/time constraints may necessi-
tate conducting variable selection in a simple, non-spatial model
initially, but our models ran quickly (<20 seconds per model on a
standard computer) enabling our best subset approach. 

The strengths of this study include examining variation across
the entire nation via spatial models, the comprehensive comparison
of models and using models that allow for discontinuities between
areas. Another strength lies in its use of a Bayesian approach, cho-
sen for its ability to handle spatial dependencies and incorporate
prior information, which are crucial for accurately modelling the
incidence of stunting in Indonesia. Traditional methods, such as
Poisson regression, fail to address spatial autocorrelation, which
leads to biased estimates and underestimated standard errors
(Waller & Gotway, 2004; Hodges & Reich, 2010). Stunting cases
in one region are likely influenced by neighbouring regions due to
shared socio-economic and environmental factors. Bayesian CAR
models explicitly account for these spatial dependencies, provid-
ing more accurate and reliable estimates. These models offer a
flexible framework to incorporate various sources of uncertainty
and to model complex hierarchical structures, essential for under-
standing the multifaceted nature of stunting. This approach not
only addresses inherent spatial dependencies but includes also
prior information and controls for potential confounding factors.

Conclusions
There is great variation in childhood stunting between

Indonesian provinces, as demonstrated using Bayesian spatial
models. Higher percentages of poverty and/or recent LBWs and
reduced child diet diversity all increase the risk of stunting. The

area with the highest risk was found to be Sulawesi Barat Province,
while DKI Jakarta Province had the lowest risk. It is hoped these
findings will help to inform interventions to reduce stunting and
poverty.
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