
Abstract
Argentina has a heterogeneous prevalence of infections by

intestinal parasites (IPs), with the north in the endemic area, espe-
cially for soil-transmitted helminths (STHs). We analyzed the spa-
tial patterns of these infections in the city of Tartagal, Salta
province, by an observational, correlational, and cross-sectional
study in children and adolescents aged 1 to 15 years from native
communities. One fecal sample per individual was collected to
detect IPs using various diagnostic techniques: Telemann sedi-
mentation, Baermann culture, and Kato-Katz. Moran’s global and
local indices were applied together with SaTScan to assess the
spatial distribution, with a focus on cluster detection. The extreme
gradient boosting (XGBoost) machine-learning model was used to
predict the presence of IPs and their transmission pathways. Based
on the analysis of 572 fecal samples, a prevalence of 78.3% was
found. The most frequent parasite was Giardia lamblia (30.9%).
High- and low-risk clusters were observed for most species, dis-
tributed in an east-west direction and polarized in two large foci,
one near the city of Tartagal and the other in the km 6 community.
Spatial XGBoost models were obtained based on distances with a
minimum median accuracy of 0.69. Different spatial patterns
reflecting the mechanisms of transmission were noted. The distri-
bution of the majority of the parasites studied was aligned in a
westerly direction close to the city, but the STH presence was
higher in the km 6 community, toward the east. The purely spatial
analysis provides a different and complementary overview for the
detection of vulnerable hotspots and strategic intervention.
Machine-learning models based on spatial variables explain a
large percentage of the variability of the IPs.

Introduction
Neglected tropical diseases (NTDs), induced by bacteria,

viruses, parasites, or fungi, are transmitted either directly from
person to person or indirectly through intermediate vectors/hosts.
These are a group of 20 health conditions that predominantly
affect populations residing in socioeconomically disadvantaged
environments, particularly in remote rural areas and marginalized
urban neighborhoods. These populations often have scarce access
to healthcare, education, clean water, basic sanitation, and hygiene
(Ault et al., 2014; Brindha et al., 2021; Dueñas et al., 2021; Iomini
et al., 2021). The prevention, elimination, and eradication of
NTDs need a holistic approach that addresses environmental and
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social determinants of health. The control of these diseases has
been incorporated into global health agendas, including the
Millennium Development Goals, the Sustainable Development
Goals 2030, the Sustainable Health Agenda for the Americas 2018-
2030, and the UN’s roadmap on NTDs 2021-2030 (WHO, 2010,
2021, 2023). Within these 20 conditions, soil-transmitted
helminths (STHs) are the only intestinal parasites (IPs) included.
These parasites require a passage through the soil to become infec-
tive and for transmission to occur, thereby linking their life cycle
to environmental conditions (Juárez & Rajala, 2013). The parasites
included within this group comprise five species that are exclusive
to humans, such as Ascaris lumbricoides, Trichuris trichiura,
Strongyloides stercoralis, and the hookworms Necator americanus
and Ancylostoma duodenale (Engels & Zhou, 2020; Cuenca-León
et al., 2021; Romero-Ramírez, 2022).

Adverse socioeconomic conditions, including overcrowding,
limited access to clean water, and inadequate environmental sani-
tation, contribute to the heightened vulnerability of disadvantaged
populations to IP infection (Bouzid et al., 2018; Anegagrie et al.,
2021; Candela et al., 2023; Rivero et al., 2022; Tapia-Veloz et al.,
2023). These disparities, closely linked to poverty, disproportion-
ately impact women and children in indigenous communities, lead-
ing to increased malnutrition and higher rates of infant and mater-
nal mortality (Del Popolo et al., 2014; Müller et al., 2017; De
Bourmont et al., 2020). Poverty maps in Argentina corroborate
this, revealing a correlation between high poverty levels and
regions inhabited by indigenous people (Echagüe et al., 2015).

Effective NTDs control strategies demand accurate and com-
prehensive data to target interventions and maximize resources.
Knowing which population is most affected, where they live, and
having information on the range of causal factors, or those most
closely associated with the presence of a disease, including envi-
ronmental aspects, is key for the development of useful tools.
Geospatial technologies offer innovative tools for monitoring
NTDs and parasitic infections, facilitating the mapping of parasite
distribution, identifying high-prevalence zones, and establishing
links between geographic distribution, environmental conditions,
and associated risk factors (Anegagrie et al., 2021; Álvarez Di
Fino et al., 2022; Scavuzzo et al., 2022; Candela et al., 2023).

In developing countries, where health needs are escalating and
resources to address them are limited, spatial analyses and data
visualization in geographic information systems (GIS) can aid effi-
cient decision-making, particularly in challenging-to-access areas
(Assaré et al., 2015). In Argentina, the application of GIS has been
recognized as a powerful tool for studying IP infection, though
studies identifying spatial patterns of IP infection in endemic areas
remain scarce (Gamboa et al., 2014; Cociancic, 2019; Cociancic et
al., 2019; Álvarez Di Fino et al., 2020; Candela et al., 2023). 

Additionally, traditional statistical models used to study the
association between the presence of an infection and other factors
are generally based on linear or generalized linear statistical
approaches.

Given the complexity of some relationships between variables
and the need to consider the problem as a whole interrelated
process, these classical models are recently being complemented
by machine learning (ML) techniques. ML is an emerging, prom-
ising field and offers a wide set of empirical tools to address both
linear and non-linear aspects, fitting the complexities of big
datasets with multiple variables and dependent dimensions
(Weatherhead et al., 1998). It is precious in scenarios where theo-
retical knowledge is limited but observational data are available

for model training. ML has found applications in various fields,
such as earth sciences and the development of biogeophysical
information extraction algorithms (Brown et al., 2008;
Azamathulla et al., 2012), and its use in practical applications
shows great promise and prospects (Lundberg & Lee, 2017).
Among the most widely used ML algorithms are artificial neural
networks, support vector machines, decision trees, random forests,
and extreme gradient boosting (XGBoost) (Lary et al., 2016).

Given the aforementioned, this study aims to analyze the spa-
tial patterns of IPs prevalence in children and adolescents from
indigenous populations along National Route 86 in Tartagal
(Salta), Argentina.

Materials and Methods

Study design
An observational, explanatory, and cross-sectional study was

conducted. The population comprised boys, girls, and adolescents
(BGA) aged 1 to 15 years from indigenous communities in the
peri-urban neighborhoods and rural areas of the General José de
San Martín Department in Salta Province, Argentina, from October
2021 to November 2022. The evaluated settlements are distributed
in the NE area of the city of Tartagal (22°30’58.9’’ S 63°48.079’
W) and along National Route 86. Through non-probabilistic con-
venience sampling, participants with willingness to participate in
the study and informed consent from their parents or guardians
were included. Approval was obtained from the Ethics Committee
of the Provincial Commission for Research in Health Sciences,
Teaching and Research Program, Human Resources Directorate of
the Ministry of Health of Salta Province, Resolution 1480/2011.

These indigenous communities are comprised of different eth-
nic groups, such as Wichí, Toba, Chorote, and Guaraní. Some com-
munities live in the forest and are more isolated, while others are
located on the outskirts of the city of Tartagal and have a higher
population density. Tartagal is characterized by cultural diversity
due to the presence of several native ethnicities and the population’s
continuous migration from the neighboring country of Bolivia. This
characteristic produces a significant impact on the cultural, social,
and economic profile of this community (Taranto et al., 2003).

Data collection 
For the detection of IPs, a single stool sample was collected

from each individual. Wide-lid, sterile, and airtight containers were
distributed. Instructions were provided on how to collect the stool
samples: defecating onto a clean surface (bag or paper) without
contact with water, urine, or dirt, and then using a wooden spatula
to deposit a sufficient amount of the sample into the container. The
samples were transported in a refrigerated box to the private labo-
ratory of the Mundo Sano Foundation, Tartagal branch, where they
were processed using the Telemann sedimentation technique,
Baermann culture, and for STHs, egg counts per gram of feces
using the Kato-Katz technique (Ministerio de Salud y Ambiente de
la Nación, 2004; Gabrie et al., 2012). Processed fecal samples
were then evaluated through optical microscopy for the identifica-
tion of parasitic forms. For georeferencing of the homes, coordi-
nate points were recorded in latitude and longitude form inside the
dwelling using a Garmin GPS device.
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Spatial analysis and modeling
In the first instance, to detect the presence of spatial patterns,

Moran’s global index was used (Wetchayont & Waiyasusri, 2021;
Esri, 2023a). The characteristics of the detected clusters were eval-
uated employing a Bernoulli distribution model with the SaTscan
program (Kulldorff, 1997). To corroborate and validate the pres-
ence of the clusters, Moran’s local index and Local Indicators of
Spatial Association (LISA) were applied, evaluating spatial coinci-
dences between both tools and the behavior at the neighborhood
level of the distribution (Esri, 2023b). 

Additionally, a spatial ML model from the random forest fam-
ily (XGBoost) was implemented to predict infection by IPs in gen-
eral and infection by transmission route, through water, person-to-
person contact, or the soil (STH) (Esri, 2023c). Only spatial char-
acteristics were considered as regressor variables: the closest dis-
tance of each individual to the nearest health center, dense native
vegetation, distance to Route 86, to the city, and extensive agricul-
tural fields. A proxy for the spatial density of houses was also
added. The average of the normalized difference buildings index
(NDBI), obtained from Sentinel 2 imagery, was used in a 50-m
buffer of the peri domicile. The procedure was carried out on the
Google Earth Engine platform. Multiple XGBoost models were
constructed to evaluate the role of space and different space-rela-
tive positions and distances on the pattern of infected individuals
by IPs using spatially derived regressor variables as a proxy for
stronger spatial and biological relationships. The objective was to
examine variability based on spatial patterns and proxy distances,
which can be potential explanations of underlying biological or
transmission cycle nature. To adjust the model, all default parame-
ters were used, namely: 100 trees with a leaf size of 1 and an aver-
age depth of 5. L2 regularization (λ) of 1.00, minimum loss reduc-
tion for splits (γ) of 0.00, and learning rate of 0.30 were tuned.
Additionally, in cross-validation, the test percentage was modified
to 30% of the total and to train with 70%. The validation split was
5. The mean squared error and the confusion matrix were consid-
ered for adjustment and validation. As a result of the analysis, the
sensitivity and precision of each model (in the test) and the order
of importance of the calculated spatial variables are reported. Also,
the model outputs are included in case distribution maps.
Descriptive statistics were performed with Stata 15 software
(https://www.stata.com/). Spatial analysis and thematic cartogra-
phy were conducted using Qgis 3.28 software (https://qgis.
org/en/site/). Finally, the XGBoost model was implemented
through ArcGIS 3.2 software (https://www.arcgis.com/).

Results
Table 1 presents the results from the analysis of the fecal sam-

ples. Of the total population, 572 fecal samples were obtained, with
78.3% testing positive for some species of IPs. The specific rich-
ness included 14 species of protozoans and helminths. The most
prevalent species was Giardia lamblia (30.9%), followed by
Entamoeba coli (29.3%) and Hymenolepis nana (25.9%).
Regarding STH, hookworms were the most prevalent (20.7%). The
study encompassed 717 BGA, residing in 202 households. Of these
participants, 49.4% were identified as female and 50.6% as male,
with an average age of 7.2±4.0 years. Regarding ethnicities, 70.1%
were of Wichí origin, 9.3% Chorote, 9.3% Guaraní, 5.0% Criollo,
and 5.7% were other ethnicities (Toba, Weenhayek, and mixed).

One non-pathogenic species for which the patient is clinically eval-
uated to determine if treatment is needed, depending on medical
judgment. Figure 1 illustrates the geospatial distribution of the
homes of the participating BGA with IPs infection. In Figure 1,
white dots indicate homes with at least one participant infected by
IPs, while black dots denote uninfected households. Figure 1, where
the circle’s color around each house represents ethnicity.
Furthermore, a concentration of Criollo and Guaraní children can
be observed in the northwest of the area, tending to settle closer to
the urban zone. It is also noted that the Chorote and Toba ethnicities
are predominantly found within the high-risk cluster for STHs.
Similarly, the Guaraní and Criollo ethnicities are primarily located
in the low-risk cluster for STHs. Conversely, the Wennayeck eth-
nicity is situated within the high-risk cluster for water-transmitted
species. In Table 2, the results of the spatial analysis are presented.
Statistically significant spatial clusters of IPs, as well as STHs and
waterborne species, are evident. Conversely, species transmitted
through direct contact exhibited a random spatial distribution.
Considering all parasites in general, the spatial prevalence across
the entire area was 77.9%. Considering the relative risk of each
cluster detected, STHs constituted the cluster with the highest risk
and also the highest level of protection. In Figure 2A, clusters for
all grouped species of IPs are presented. A high-risk cluster of larger
size and a smaller low-risk area were both observed in the km 6
community. Regarding STHs, Figure 2B reveals two statistically
significant groupings with an east-west pattern, being larger
towards the west and smaller towards the east. The low-risk cluster
(cluster 2 in blue) is adjacent to the urban area with a relatively low
risk. On the other hand, the high-risk cluster 1 (in red) is located
south of the km 6 community. A considerable number of cases were
found in the high-risk cluster for water-transmitted species, which

                                                                                                                                Article

Table 1. Prevalence of intestinal parasites in children from
Tartagal, Salta (Argentina), 2021-2022.

Parasitological description (n=572 fecal samples) n (%)

Positive                                                                              448 (78.3)
Negative                                                                             124 (21.7)
Prevalence by species

Giardia lamblia                                                                 170 (30.9)
Entamoeba coli                                                                  169 (29.3)
Hymenolepis nana                                                             149 (25.9)
Uncinarias                                                                          119 (20.7)
Blastocystis hominis                                                          114 (20.0)
Entamoeba hartmanni                                                        78 (13.7)
Endolimax nana                                                                  61 (10.6)
Cryptosporidium spp.                                                          40 (6.9)
Entamoeba histolytica/dispar                                              40 (6.9)
Strongyloides stercoralis                                                     34 (5.9)
Chilomastix mesnili                                                             26 (4.6)
Enterobius  vermicularis                                                     16 (2.8)
Ascaris lumbricoides                                                           15 (2.6)
Trichuris trichiura                                                               1 (0.17)
Prevalence by transmission routes

Waterborne transmission                                                   366 (64.0)
Direct contact transmission                                               169 (29.6)
Soil transmission                                                               140 (24.5)
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Table 2. Characteristics of the detected clusters for intestinal parasites, soil-transmitted helminths, and water-transmitted parasites in chil-
dren aged 1 to 15 years in Tartagal (Salta, Argentina), 2021-2022.

                                                    Radius (m)                p                 Relative risk                    Number of people      Positive observed cases
                                                                                                                                                      within the cluster             (expected cases)
Intestinal parasites infected individuals (prevalence for the area: 77.9%)

Cluster 1 (low risk in blue)                        88                      0.0003                         0.5                                                58                                      28 (45.16)
Cluster 2 (high risk in red)                       480                      0.005                          1.2                                                90                                      85 (70.07)
Soil-transmitted parasites infected individuals (prevalence for the area: 24.6%)

Cluster 1 (high risk in red)                       360                     <0.001                         3.7                                                64                                      45 (15.75)
Cluster 2 (low risk in blue)                       270                    <0.001                        0.03                                              110                                      1 (27.07)
Water-transmitted parasites infected individuals (prevalence for the area: 43.9%)

Cluster 1 (low risk in blue)                       210                     <0.001                         0.3                                               106                                      27 (67.5)
Cluster 2 (high risk in red)                       450                     <0.001                         1.5                                               121                                   105 (76.54)
Cluster 3 (high risk in red)                         1                        0.008                          1.3                                               279                                  202 (176.49)
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Figure 1. Geospatial distribution of households visited in the city of Tartagal and surroundings Salta (Argentina), 2021-2022. White dots,
households with at least one case; black dots, negative households. The colors of the circles correspond to the ethnic groups. Map data ©
2023 Google. Base map obtained through Quick Map Services QGIS plugin - QGIS Geographic Information System. Open source:
Geospatial Foundation Project. http://qgis.osgeo.org.
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also covers a significantly larger area than the other groupings
(Figure 2C). As for the water-transmitted IP species (Figure 2C), a
low-risk cluster (cluster 1 in blue) was observed northwest of the
km 6 community. In the area of the El Talar and Las Moras com-
munities, the high-risk cluster (cluster 2 in red) was noted. Another
high-risk cluster (cluster 3 in red), encompassing all communities

in the southwest quadrant of the study area (Sarmiento, Esperanza,
Cebilar, among others), was identified. In this instance, the pattern
is inverse, being east-west but larger towards the east and smaller
towards the west. Concerning the clusters by species (Table 3),
hookworms exhibited clusters with higher relative risks. The high-
est cases were observed in the high-risk cluster for G. lamblia. It
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Table 3. Characteristics of the detected clusters for Giardia lamblia, Hookworm, and Strongyloides stercoralis in children aged 1 to 15
years in Tartagal (Salta, Argentina), 2021-2022.

                                                    Radius (m)                p                 Relative risk                    Number of people      Positive observed cases
                                                                                                                                                      within the cluster             (expected cases)
Giardia lamblia infected individuals (prevalence for the area: 30.5%)

Cluster 1 (high risk in red)                       600                      <0.001                      2.03                                                168                                     80 (51.8)
Cluster 2 (low risk in blue)                      540                      <0.001                      0.42                                                180                                     28 (54.8)
Hookworm-infected individuals (prevalence for the area: 20.8%)

Cluster 1 (high risk in red)                      360                      <0.001                       4.5                                                  64                                      43 (13.3)
Cluster 2 (low risk in blue)                      290                      <0.001                      0.03                                                119                                      1 (24.7)
Blastocystis hominis infected individuals (prevalence for the area:19.8%)

Cluster 1 (zero risk in blue)                      240                      <0.001                         0                                                  115                                      0 (22.7)
Cluster 2 (high risk in red)                       960                       0.002                        2.22                                                230                                     68 (45.5)
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Figure 2. Spatial analysis of intestinal parasites, waterborne and soil-transmitted species, in children aged 1-15 years, Tartagal (Salta,
Argentina), 2021-2022. Blue circles are clusters identified as low-risk, and red circles are high-risk clusters. Non
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can be seen that Blastocystis hominis has the highest risk cluster 2
with the largest surface area with a diameter of 1.92 km.  The dis-
tribution of G. lamblia clusters (Figure 3A) exhibits a pattern with
a tendency corresponding to water-transmitted species, indicating
a higher risk towards the east and a lower risk towards the west.
For hookworms (Figure 3B), a high-risk cluster (cluster 1 in red) is
observed in the southwest of the km 6 community. Towards the
east and adjacent to the city, the low-risk cluster 2 (in blue) is

established, also displaying a dispersion pattern typical of soil-
transmitted species. Regarding B. hominis (Figure 3C), a high-risk
cluster (cluster 1 in red) is arranged in a south-western direction
and close to the urban area, encompassing communities such as El
Lucero, Las Moras, Sarmiento, Esperanza, Cebilar, Lapacho I and
II. In the area of the km 6 community, a cluster of zero risk was
observed (cluster 2 in blue). This also coincides with the dispersal
pattern of waterborne species. In Figure 4A, two partially overlap-
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Figure 3. Spatial analysis of Giardia lamblia, hookworm, and Blastocystis hominis in children aged 1-15 years, Tartagal (Salta, Argentina),
2021-2022. The area included in this study was the area corresponding to the city of Tartagal, Salta province. 

Table 4. Characteristics of clusters detected for Entamoeba coli, Entamoeba hartmanni, and Endolimax nana in children aged 1-15 years
in Tartagal (Salta, Argentina), 2021-2022.

                                                    Radius (m)                p                 Relative risk                     Number of people      Positive observed cases
                                                                                                                                                      within the cluster             (expected cases)
Entamoeba coli infected individuals (prevalence for the area: 28.9%)

Cluster 1 (low risk in blue)                       210                     <0.001                       0.19                                                80                                       5 (23.1)
Cluster 2 (low risk in blue)                       280                     <0.001                       0.11                                                58                                       2 (16.7)
Entamoeba hartmanni infected individuals (prevalence for the area: 13.2%)

Cluster 1 (zero risk in blue)                     230                     <0.001                          0                                                  114                                      0 (15.0)
Cluster 2 (high risk in red)                        190                      0.001                         3.8                                                 44                                      18 (5.81)
Endolimax nana infected individuals (prevalence for the area: 10.0%)

Cluster 1 (zero risk in blue)                      240                     <0.001                          0                                                  116                                      0 (11.5)
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ping high-risk red clusters can be visualized in the km 6 commu-
nity. The pattern is consistent with the spatial dispersion of higher-
risk STH towards the east. For C. mesnilli (Figure 4C), cluster 1 (in
red) of high risk includes the community of El Talar. Also, north of
km 6 there is a blue cluster of zero risk. Table 4 shows the charac-
teristics of the significant clusters for E. coli, Entamoeba hartman-
ni, and Endolimax nana. The cluster with the largest surface area
was low risk for E. coli.

Figure 4A shows two statistically significant low-risk clusters
for E. coli. They are located in the km community and are close
and partially overlapping. For E. hartmanni (Figure 4B) one null
risk cluster (in blue) is observed in the center of the km 6 commu-
nity. Adjacent to the previous one but towards the outskirts of the
community and in a southerly direction, a high-risk cluster is
observed. Concerning E. nana (Figure 4C), a single cluster of zero
risk is observed in community km 6. Likewise, for the species E.
vermicularis, H. nana, T. trichiura, and those transmitted by direct
contact, no statistically significant clusters were found, so it is
assumed that they are randomly distributed in space.

The result of the spatial autocorrelation analysis through the
global Moran index yielded a value of 0.099432 indicating a slight
positive spatial autocorrelation. This suggests that there is a ten-
dency towards clustering of areas with similar characteristics
(presence or absence of parasites) more than would be expected if
the pattern were completely random. The variance was 0.001084

and the Z-score was 3.072, suggesting that the observed Moran’s
index is approximately 3.07 standard deviations above that expect-
ed under the null hypothesis of random distribution. This is signif-
icant and strongly suggests that the observed pattern is not random.
In turn, a p-value of 0.002121 was observed, indicating that there
is less than a 0.21% chance of observing a Moran index as high or
higher by chance if the data were truly random. This confirms the
presence of significant spatial autocorrelation. Furthermore, the
results of the local Moran’s index analysis, or LISA, mirrored the
clusters observed in the SatScan analysis, thus validating the find-
ings through two different methodologies. The XGBoost spatial
model that achieved the highest test sensitivity (0.86) was the one
that predicted IPs; however, the one that achieved the highest test
accuracy was the one that predicted STH (0.79). The median accu-
racy for all models ranged between 0.69 and 0.73. In training, the
metrics were superior. 

As shown in Table 5, in the prediction models for IPs, STH,
and waterborne species, distance to extensive crops was the most
important predictor, contributing between 24-27% of the predic-
tion. However, in the direct contact-transmitted species model,
NDBI was observed as the most important predictor with a 19%
contribution to the model. 

From the second to the fifth place, different orderings are
observed among the rest of the variables, presenting different com-
binations but with similar contributions to the model prediction. In
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Figure 4. Purely spatial analysis of the presence of Entamoeba coli, Entamoeba. hartmanni, Entamoeba and Endolimax nana, in children
aged 1-15 years, Tartagal (Salta, Argentina), 2021-2022. The area included in this study was the city of Tartagal, Salta province. Map data
© 2024 Google. 
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Table 5. Characteristics of spatial extreme gradient boosting models for intestinal parasites and their transmission pathways from distances
in children aged 1-15 years in Tartagal (Salta, Argentina), 2021-2022.

Dependent variable          Sensitivity in test  Accuracy in test        Spatial feature importance and % contribution to the prediction

Intestinal parasites                                 0.86                            0.70                      1 - Distance to extensive agricultural crops (20%)
                                                                                                                              2 - NDBI (18%)
                                                                                                                              3 - Distance to route “86” (17%)
                                                                                                                              4 - Distance to city (17%)
                                                                                                                              5 - Distance to the dense native forest (16%)
                                                                                                                              6 - Distance to health centres (13%)
Species transmitted by direct               0.85                            0.63                      1 - NDBI (19%)
human -to -human contact                                                                                    2 - Distance to the dense native forest (18%)
                                                                                                                              3 - Distance to extensive agricultural crops (18%) 
                                                                                                                              4 - Distance to route 86 (16%)
                                                                                                                              5 - Distance to health centres (16%) 
                                                                                                                              6 - Distance to city (13%)
Water-transmitted species                     0.68                            0.60                      1 - Distance to extensive agricultural crops (20%)
                                                                                                                              2 - Distance to city (19%)
                                                                                                                              3 - Distance to the dense native forest (18%)
                                                                                                                              4 - NDBI (17%)
                                                                                                                              5 - Distance to health centres (13%)
                                                                                                                              6 - Distance to route 86 (13%)
Soil -transmitted species                       0.58                            0.79                      1 - Distance to extensive agricultural crops (22%)
                                                                                                                              2 - Distance to health centres  (17%)
                                                                                                                              3 - Distance to city (16%)
                                                                                                                              4 - NDBI (15%)
                                                                                                                              5 - Distance to the dense native forest (15%)
                                                                                                                              6 - Distance to route 86 (14%)

NDBI, normalized difference buildings index.
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Figure 5. Spatial output of the extreme gradient boosting model according to the accuracy of prediction. The area included in this study
corresponds to the City of Tartagal (Salta, Argentina) and its surroundings. Map data © 2024 Google. Base map obtained through the
ArcGIS Online map service - ArcGIS Geographic Information System. Owner: Esri, Inc. http://www.arcgis.com.
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any case, it is observed that the distance to Route 86 is placed as
the last predictor in the STH and water transmission models, but it
is observed that the distance to the city becomes more important.

In addition, Figure 5 shows the spatial output of the model
indicating the classified (predicted) observations. A predominance
of correctly classified values is observed, except for communities
such as km 6, Las Moras, and El Talar, which present a lower accu-
racy in predictions.

The model’s performance metrics, particularly the F1 scores
and Matthew’s Correlation Coefficient (MCC), display noteworthy
strengths. The F1 score for non-infection (category 0) in training
data is impressively high at 0.92, suggesting robustness in identi-
fying negative cases. The slightly lower score of 0.74 for infection
cases (category 1) in training still indicates reasonable effective-
ness. Comparatively, in the test data, the model maintains a good
level of accuracy, though with a slight drop, reflecting its general-
isability. The MCC values of 0.66 in training and 0.41 in validation
signify a decent overall predictive quality. These results collective-
ly demonstrate the model’s potential in accurately categorizing
data, an essential attribute for applications in health-related fields.

Discussion
In Argentina, the distribution of IP infections in vulnerable

children and adolescents differs according to the geographical
region analyzed, with a decreasing prevalence from north to south
and from east to west. This is due to wide environmental and socio-
economic variability (Zonta et al., 2007; Zonta et al., 2020;
Cociancic et al., 2021). In the present work, in Tartagal City and
its surroundings located in the north, the prevalence of IPs was
78.3%. In addition, another investigation carried out in the same
study area (Salta) reported a prevalence of 94.6% for helminths
and protozoa in similar populations (Menghi et al., 2007). It is
important to highlight that, influenced by a range of socioeconom-
ic factors, the health indicators of indigenous people tend to be less
favorable compared to those of non-indigenous populations
(Alfonso-Durruty & Valeggia, 2018). The most frequently identi-
fied species were G. lamblia, E. coli, H. nana, and hookworm.
Similarly, other research conducted in the Wichi community
reported a high prevalence of hookworm and H. nana (Taranto et
al., 2003; Menghi et al., 2007), considering the area endemic for
It is important to highlight here the relevance of the study of spatial
patterns in health where the spatial associations of the data collect-
ed are revealed, providing a better understanding of the problem,
in line with other works at different scales and with different
objects of study in health (Celemín et al., 2015; Diez Roux, 2015;
Celemín & Velázquez, 2017; Longhi et al., 2022). In this study, a
significant spatial autocorrelation in the distribution of the pres-
ence or absence of parasites was found, with a probability of less
than 1% that this clustered pattern is the result of random variation.
This indicates that it is very likely that underlying factors or
processes are influencing the distribution of the presence or
absence of parasites in the study area. In this work, only a few
approximations are based on features extracted from remote sens-
ing. Geographically, we observed a spatial distribution of IPs with
an east-west pattern, polarized in two large foci, one to the east
with a nucleus in the community of km 6 and far from the city, and
the other pole in the peri-urban area to the west of the city.
Regarding the eastern pole in the km 6 community, clusters of high
relative risk of the presence of all IP species, including STH, in

particular hookworm. This area is inhabited mainly by Wichi,
Chorote, and Toba individuals. At the same time, relatively low-
risk clusters of waterborne species are observed, particularly G.
lamblia, B. hominis, Chilomastix mesnilli, E. coli, and E. nana. 

When looking at the western pole adjacent to the city, there are
clusters of high relative risk of waterborne species, in particular G.
lamblia, B. hominis, and C. mesnilli. In the same area, clusters of
low relative risk of STH, but also hookworm and S. stercoralis can
be observed independently. However, in Argentina, this cluster
detection methodology has been used for microorganisms such as
Shigella spp., D. immitis, and Leishmania spp (Stelling et al.,
2010; Hoyos et al., 2011; Esteban Mendoza et al., 2020); it is still
an underexplored tool in the study of IPs in humans.

This study, by showing a good fit of the model (especially to
predict negative individuals), represents an innovative and highly
promising approach. As demonstrated in this study, ML tools have
proven to be valuable in addressing problems where limited data
are available for model training, a situation frequently encountered
in the field of epidemiology (Scavuzzo et al., 2022). In the global
landscape characterized by increasing needs and constrained
resources, the integration of open data science and ML techniques
assumes a pivotal role in contributing to the generation of research
outputs and facilitating decision-making tailored to local health
priorities. In the field of epidemiology, where optimizing resources
for field data collection is crucial, ML models in health prove to be
of paramount importance in developing efficient models capable
of learning from limited datasets. This fosters the widespread
adoption of these technologies in entire communities grappling
with analogous challenges (Bates et al., 2014; Gebreyes et al.,
2014; Roski et al., 2014; Han et al., 2015; Wiens & Shenoy, 2018).

The distance to crops was established as the most influential
variable across all analyzed models. This correlation arises from
considering such distance as a proxy indicator of a drastic transfor-
mation in land use, which represents a spatial pattern predictor and
is inherently linked to the transmission route of STH. These para-
sites require specific conditions for their development and sur-
vival, including adequate soil moisture, vegetative cover, sunlight
exposure, soil salinity, and soil pH, among other factors. Following
a similar line, the NDBI is established as a proxy indicator for the
spatial density of dwellings, exploring land use in relation to the
transmission pathway of STH and also for IPs transmitted through
water, since access to a safe water network, which is present in
more built-up areas, defines a spatial pattern that could be explain-
ing part of the variability observed in the model.

The observed modest predictive ability value in our spatial
model highlights inherent limitations when relying solely on geo-
graphical inputs for predictive accuracy. This outcome underscores
the complexities of using spatial data as a stand-alone predictor in
epidemiological models, particularly for diseases influenced by a
multitude of environmental and socio-economic factors. Despite
this limitation, the primary objective of our study was not to fore-
cast individual incidences of parasitic infections but rather to eval-
uate the critical role of spatial variables as epidemiological predic-
tors. Our findings demonstrate that even isolated spatial variables
can reveal significant, interpretable patterns essential for under-
standing disease transmission dynamics. Furthermore, while incor-
porating socio-economic dimensions could potentially refine these
predictions, our focus was to establish a foundational understand-
ing of the spatial determinants. This approach not only paves the
way for integrating more comprehensive models in future research
but also substantiates the utility of spatial proxy variables in epi-
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demiology. Thus, our study contributes to the broader discourse in
spatial epidemiology by highlighting the need for nuanced
approaches that appreciate the spatial context of health phenome-
na, thereby enhancing the field’s methodological arsenal (Collins
et al., 2015). The relative or future importance of variables in ML
models can be effectively evaluated using various techniques that
help determine the stability and generalizability of those variables.
This approach is particularly useful when one wishes to validate
individual predictors within a broader context, even though their
isolated predictive capacity may be limited. This underscores the
importance of presenting and evaluating unidimensional models to
understand their real contribution within the context of more com-
plex and multidimensional predictive models. Although a model
may perform poorly predictively when using a single dimension, it
can still be useful to highlight the importance of that specific
dimension as an epidemiological predictor, justifying its inclusion
and assessment in research studies (Collins et al., 2015).

This study applied these cutting-edge tools to address a public
health issue in a region of Argentina, where the prevalence of STH
infection is recognized as one of the NIDs listed by the World
Health Organization, highlighting the substantial potential of this
methodology (WHO, 2010). However, in terms of strengths and
from the perspective of panoramic epidemiology, the use of geo-
matics and ML in a geographical area of Argentina endemic to IP
infection is highlighted for the analysis of spatial patterns of distri-
bution. In this sense, space becomes another epidemiological vari-
able to be analyzed for the detection of high- and low-risk areas.

Conclusions
This study substantiates the use of spatial analysis as a crucial

methodological tool to detect clustering patterns of IP infections,
revealing areas of high and low risk that would benefit from target-
ed socio-health strategies. We observed waterborne species pre-
dominantly distributed towards the west and near urban areas,
while a higher prevalence of STH was noted in the km6 communi-
ty, located eastward. This spatially focused analysis not only
enhances our understanding of the geographical pattern of IP infec-
tions but also complements existing data, facilitating the identifi-
cation of vulnerable zones for strategic interventions. This pro-
vides an important informed-decision tool for government and
health authorities for optimizing resources and tailoring prevention
strategies to approach the health problems of their population.
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