
Abstract 
Google Maps Directions Application Programming Interface

(the API) and AccessMod tools are increasingly being used to
estimate travel time to healthcare. However, no formal compari-
son of estimates from the tools has been conducted. We modelled
and compared median travel time (MTT) to comprehensive emer-
gency obstetric care (CEmOC) using both tools in three Nigerian
conurbations (Kano, Port-Harcourt, and Lagos). We compiled
spatial layers of CEmOC healthcare facilities, road network, ele-
vation, and land cover and used a least-cost path algorithm within
AccessMod to estimate MTT to the nearest CEmOC facility.
Comparable MTT estimates were extracted using the API for peak
and non-peak travel scenarios. We investigated the relationship
between MTT estimates generated by both tools at raster cell-
level (0.6 km resolution). We also aggregated the raster cell esti-
mates to generate administratively relevant ward-level MTT. We
compared ward-level estimates and identified wards within the
same conurbation falling into different 15-minute incremental cat-
egories (<15/15-30/30-45/45-60/+60). Of the 189, 101 and 375
wards, 72.0%, 72.3% and 90.1% were categorised in the same 15-
minute category in Kano, Port-Harcourt, and Lagos, respectively.
Concordance decreased in wards with longer MTT. AccessMod
MTT were longer than the API’s in areas with ≥45min. At the
raster cell-level, MTT had a strong positive correlation (≥0.8) in
all conurbations. Adjusted R2 from a linear model (0.624-0.723)
was high, increasing marginally in a piecewise linear model
(0.677-0.807). In conclusion, at <45-minutes, ward-level esti-
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mates from the API and AccessMod are marginally different, how-
ever, at longer travel times substantial differences exist, which are
amenable to conversion factors.

Introduction
Access to healthcare is essential to achieve Universal Health

Coverage as enshrined in the Sustainable Development Goal target
3.8 (United Nations, 2015). Healthcare access is multi-dimension-
al and includes availability, acceptability, accommodation, afford-
ability, and accessibility (Aday & Andersen, 1981; Guagliardo,
2004; Penchansky & Thomas, 1981). Availability evaluates the
degree to which the provider has the necessary resources to meet
the needs of the patient. Acceptability refers to the patient’s inter-
action with the health care system in terms of choice and the per-
ception of the provider towards acceptable personal characteristics
of the patient. Accommodation refers to the extent in which health
services are organised to meet client demands. Affordability is the
population’s ability and willingness to meet financial obligations
while accessibility refers to how easily a patient can physically
reach the healthcare location. Availability and accessibility
(referred to as geographic or spatial accessibility) are critical due
to the fixed nature of health facilities and dynamic populations,
especially in low-and middle-income countries (LMICs). In such
settings, unique solutions are needed to adapt the location and
availability of health facilities including their capacity to provide
services to meet the demands of the population that has complex
mobility patterns, for example in urban areas (Diaz Olvera et al.,
2013). Consequently, travel from where a need arises to a health-
care facility is routinely researched in LMICs to improve popula-
tion accessibility to life-saving interventions found at health facil-
ities (Juran et al., 2018; Ouma et al., 2018). Estimates of spatial
accessibility are essential and powerful in informing health service
planning and decision-making (Banke-Thomas et al., 2024; Wong
et al., 2024).

Geographic accessibility to healthcare is mainly characterised
in terms of travel time or distance between two locations
(Macharia, Banke-Thomas, et al., 2023; Ouma et al., 2021). It is
often captured using indicators of self-reported travel time
(Bouanchaud et al., 2022), modelled travel time (Moturi et al.,
2022), distance (Bouanchaud et al., 2022), or the percentage of
population living within a specified threshold of travel time/dis-
tance to a healthcare service (Curtis et al., 2021; Juran et al., 2018;
Ouma et al., 2018). Various methods have been used to estimate
travel distance and time, for example, Euclidean distance, least-
cost path algorithm, self-reported travel time and routing
Application Programming Interface (APIs) (Banke-Thomas,
Wong, Ayomoh, et al., 2021; Cuervo et al., 2022; Mutono et al.,
2022; Ouma et al., 2021). These approaches require four data ele-
ments: location of health services, their capacity, underlying popu-
lation with need for healthcare, and the infrastructure which facil-
itates modality of travel (Banke-Thomas, Macharia, et al., 2022;
Macharia, Ray, et al., 2021). Such datasets may include road net-
work, land cover, topography, travel barriers, user preferences,
spatial distribution of the target population, availability of facility,
facility location, opening times, mode of transport, road speeds,
traffic conditions, and seasonality (Banke-Thomas, Macharia, et
al., 2022; Macharia, Ray, et al., 2021; Makanga et al., 2017;
Molenaar et al., 2023). How accurately available data captures
how the population travels to care is strongly reflected in the out-
puts and policy recommendations. 

Various tools bring these datasets together to estimate the trav-

el time to the nearest facility. Such tools include AccessMod (Ray
& Ebener, 2008; University of Geneva/GeoHealth group et al.,
2023), Geographic Information System (GIS) software such as
ArcGIS Pro (ESRI Inc., Redlands, CA, USA), and QGIS (QGIS
Development Team, 2023), packages in R software environment
(R Core Team, 2021) such as gdistance (van Etten, 2017), and
Open-Source Routing Machine (OSRM) (OSRM, 2023). Among
these tools, AccessMod is one of the most used to estimate travel
time in LMICs, particularly in African countries (Juran et al.,
2018; Ouma et al., 2018). It is a free, open-source, user-friendly
tool supported by the World Health Organization (WHO) to anal-
yse geographic accessibility via a least-cost path algorithm.
AccessMod imports user-provided geospatial datasets (vector such
as road network, raster such as land cover, and tabular such as trav-
el speeds). This information is used to set the parameters required
to calculate the travel time to the closest health facility (Ray &
Ebener, 2008; University of Geneva/GeoHealth group et al.,
2023). However, data imported to AccessMod concerning
localised transport such as road speeds, roadblocks, (near-) real-
time traffic conditions and weather variability, are rarely available
or accessible (Ahmed et al., 2019; Macharia, Ray, et al., 2021).
Even when they are available, they might be outdated, inaccurate,
incomplete, or at a low resolution (Ahmed et al., 2019; Macharia,
Ray, et al., 2021). Therefore, pragmatic assumptions are generally
made, for example, about modes of transport and associated aver-
age speed on each type of road and off-road (Juran et al., 2018;
Ouma et al., 2018), and reduced speeds due to traffic in urban areas
(Blanford et al., 2012; Ouma et al., 2021) or during a rainy season
(Blanford et al., 2012; Ouma et al., 2021). Hence, this allows the
least-cost path algorithm to execute and generate travel time esti-
mates (Juran et al., 2018; Ouma et al., 2018). These assumptions
should typically be captured through workshops involving local
expertise (Molenaar et al., 2023). However, this approach is not
easily scalable (Molenaar et al., 2023). Depending on the availabil-
ity and accuracy of the data, this may result in non-location specif-
ic and generic estimates of travel times. The information that
AccessMod requires to compute travel times is similar to that of
GIS software such as QGIS (QGIS Development Team, 2023) and
most of the packages in R (R Core Team, 2021).

On the other hand, routing tools such as Google Maps
Directions API (Google, 2023) and Esri routing services (Esri,
2022) are increasingly being used in research to derive travel time
(Banke-Thomas, Avoka, et al., 2022; Banke-Thomas et al., 2024;
Cuervo et al., 2022; Mutono et al., 2022; Wong et al., 2024). The
APIs use a range of specifications (such as mode of transporta-
tion), current and historic road traffic patterns and road network
data within a machine learning environment to predict travel time
or distance (Lau, 2020; Shashidharan, 2023). Attributes of road
network such as surface, size, speed limits, tolls, and incident
reports from drivers due to weather conditions or construction are
incorporated (Lau, 2020; Shashidharan, 2023). Google Maps
Directions API traffic data is based on Global Positioning System
(GPS) enabled devices in mobile phones collected through crowd-
sourcing from users who have switched their location ‘on’ in the
Google Maps application. By relaying anonymous phone loca-
tions, the time it takes to move from one location to another can be
computed (Barth, 2009). Both the Google Maps Directions API
and AccessMod depend on road network data, account for mode of
transport, travel barriers and speeds. However, how these two tools
incorporate these datasets and account for parameters that affect
travel is different, which in turn affects the estimated travel time.
Google Maps Directions API depends on traffic data to govern
travel speeds along a route (indirectly accounting for congestion
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due to different factors, time of the day, and day of the week when
the journey was made). AccessMod depends on user-defined
speeds that can vary according to road and landcover category, but
rarely vary across a given road category due to data limitations.
However, users of smart phones whose traffic data are collected,
(hence traffic from Google Maps Directions API) make journeys
for different purposes that are not specific to healthcare-seeking
behavior. For example, in an obstetric emergency case, Google
Maps Directions API might over-estimate travel time because most
of its data points could be routine users of road sections who are
not in an emergency (Macharia, Banke-Thomas, et al., 2023). On
the other hand, AccessMod inputs (geospatial data, travel modes
and speeds) can be tailored to the specific use case, in this case, an
obstetric emergency. Further, while AccessMod has a user-friendly
interface which is simpler to use, the computational expertise and
financial resources needed to extract travel time from the Google
Maps Directions API are high. This may explain why the applica-
tion of Google Maps Directions API to derive geographic accessi-
bility estimates to healthcare services is limited. Only a few appli-
cations of the tool in deriving travel time to healthcare have been
published (Gligorić Kristina et al., 2023; Macharia, Banke-
Thomas, et al., 2023), mainly in urban areas of LMICs, including
Nairobi, Kenya (Mutono et al., 2022), Lagos, Nigeria (Banke-
Thomas, Wong, Ayomoh, et al., 2021; Banke-Thomas, Wong,
Collins, et al., 2021), and Cali, Columbia (Cuervo et al., 2022).

Emerging evidence suggests that travel time estimates from
routing APIs reflect reconstructed travel times of women in obstet-
ric emergencies more closely than outputs from the least cost-path
algorithm or OSRM (Banke-Thomas, Wong, Ayomoh, et al.,
2021). This is likely due to the use of generic input data that are not
context-specific and travel speeds that are exaggerated in the mod-
elling of travel times in least-cost path algorithms (Banke-Thomas,
Wong, Ayomoh, et al., 2021). Closer to reality estimates of travel
time are critical. For example, timely accessibility to facilities that
can offer comprehensive emergency obstetric care (CEmOC), pro-
vided by skilled health personnel, can reduce maternal deaths by
15-50% and intrapartum stillbirths by 45–75% (Paxton et al.,
2005). Hence there is a need to interrogate estimates derived from
these two independent modelling frameworks. However, to date,
there are no systematic evaluations comparing travel time esti-
mates to CEmOC derived from AccessMod (based on a least cost
path algorithm) and Google Maps Directions API (that is more
likely to yield realistic travel times because of the quality and nov-
elty of the input data it relies on (Banke-Thomas, Wong, Ayomoh,
et al., 2021)) in urban settings. Therefore, in this study, we model
and compare estimates of travel time to the nearest CEmOC facil-
ity derived from Google Maps Directions API with those modelled
using a least-cost path algorithm in AccessMod. Specifically, we
assess the extent of differences between estimates from these two
tools and summarise the possible reasons for such differences in
three large Nigerian conurbations (city and adjacent suburbs)
(Cambridge Dictionary, 2023): Kano, Port Harcourt, and Lagos.

Materials and Methods

Study setting
The study was conducted in Nigeria which is made up of 36

states and a Federal Capital Territory. At a smaller administrative
level, the country is divided into 774 local government areas
(LGAs) and 8,813 wards. In this study, our administrative level of

analysis was conurbations (aggregation of wards including those
within the central city and surrounding suburbs) and included
Kano (in Kano state) comprising 16 LGAs and 189 wards, Port
Harcourt (in Rivers state), nine LGAs and 101 wards and Lagos (in
Lagos State) 20 LGAs and 375 wards. The three conurbations are
a subset of 15 conurbations from a larger study on geographic
accessibility to CEmOC facilities (Banke-Thomas et al., 2024).
They were selected as they represent the most populous urban
areas in the three major regions of Nigeria, North, South and West,
respectively: Kano (4.2 million people), Port Harcourt (3.3 million
people) and Lagos (15.4 million people; Figure 1). According to
the 2018 Nigeria Demographic and Health Survey, only 19.2% of
births in Kano state occurred in health facilities, 48.2% (7.4%) in
Rivers state and 75.7% (12.5%) in Lagos state. Also, the percent-
age of women aged 15-49 years who reported distance to a health
facility as the main problem in accessing health care was highest
in Kano (17.7%) and relatively lower in Rivers (13.3%) and Lagos
(12.7%) states (National Population Commission Nigeria & The
DHS Program ICF, 2019).

Study approach
We applied a four-step approach (Figure 2). The first step

entailed the assembly of spatial layers of CEmOC facilities and
factors which affect travel to facilities for import in AccessMod.
Second, we estimated median travel time (MTT) from every loca-
tion to the nearest CEmOC facility within each conurbation using
the least-cost path algorithm in AccessMod, at raster cell-level and
aggregated at subnational units of decision making (wards). Third,
using the Google Maps Directions API, equivalent MTT estimates
to the nearest CEmOC facilities were extracted (for each raster cell
and ward) within each of the three conurbations. Finally, we com-
pared the estimated MTT derived from the two tools. The compar-
ison was at raster cell-level (based on correlation coefficient, linear
model and a smoothed curve approximated by a piecewise linear
function) and wards (based on 15-minute bins of ≤15, >15-≤30,
>30-≤45, >45-≤60, >60).

Step 1: assembly of spatial layers of CEmOC facil-
ities and factors affecting travel for import in
AccessMod 

Defining spatial extent of conurbation boundaries
As there were no administratively defined spatial extents of

conurbations in the selected urban areas we defined these bound-
aries by overlaying three geospatial layers: the population map
showing the distribution of people (Bondarenko et al., 2022), the
Global Human Settlement Layer showing the degree of urbanisa-
tion (Schiavina et al., 2022), and Google Maps to show road net-
work and built-up areas. Any wards and LGAs which intersected
with the overlay of these three spatial layers were deemed part of
the conurbation. The wards and LGAs included in each conurba-
tion are shown in Figure 1.

Assembly of a geocoded database of CEmOC health
facilities

We utilised an existing database of geocoded CEmOC facili-
ties, both public and private in 15 conurbations in Nigeria. We
included all known 1,021 CEmOC facilities within the boundaries
of the three conurbations: 145 (16 public and 129 private) in Kano,
84 (5 public and 79 private) in Port Harcourt and 792 (27 public
and 765 private) in Lagos (Macharia, Wong, et al., 2023;
Olubodun et al., 2023).

                                                                                                                                Article
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Population distribution of women of child-bearing age
(WoCBA)

These 2020 estimates were available from the WorldPop Open
spatial demographic data and research portal (Tatem, 2017). We
downloaded and summed the constrained version of population
distribution maps showing 5 year-age groups between 15 and 49
years for females to obtain estimates of WoCBA. Data on WoCBA
and the list of the CEmOC facilities were the only common
datasets (same source) that were used in both AccessMod and
Google Maps Directions API.

Factors affecting travel to health facilities
We used publicly available spatial layers of factors which

affect travel to CEmOC facilities. These included road networks
from OpenStreetMap (OSM) from 2022 (Geofabrik GmbH, 2023),
Sentinel-2 land cover at 10m resolution that included water bodies
(travel barriers) from 2021 (Karra et al., 2021), and Shuttle Radar
Topography Mission digital elevation model (DEM) at 30m reso-
lution (Van Zyl, 2001). The road network represented routes for
motorised transport when accessing healthcare from residential
areas. Roads were reclassified into four classes: primary, sec-
ondary, tertiary, and minor, based on the road attributes data from
OSM (Geofabrik GmbH, 2023). The Land cover dataset was used
to represent areas where no roads existed to represent the geo-

graphical space that people need to traverse. In these areas without
road network, people often walk (patients might be carried) to get
to the road. The DEM was used to calculate the slope of the land
for adjusting the walking speeds uphill and downhill (Tobler,
1993). Travel barriers that impede travel include water bodies and
flooded vegetation (except in the presence of a bridge). The maps
are shown as an Supplementary materials.

Travel speeds to CEmOC facilities
In obstetric emergencies occurring to urban residents, women

and their families are likely to opt for motorised transport
(Ekpenyong et al., 2022), unless a particular section of the jour-
ney is inaccessible by motorised transport, in which case walking
becomes the predominant means of travel. We assigned travel
speeds to various types of road classes as outlined in Table 1,
maintaining consistency with previous studies on emergency
healthcare accessibility in Africa (Ouma et al., 2018; Rudolfson
et al., 2020; Stewart et al., 2016). In areas lacking roads (or areas
where road data might be incomplete based on OSM), we
assumed that women in an emergency either walked or were car-
ried to the nearest road before commencing motorized travel
(Ouma et al., 2018). Consequently, all areas without road con-
nectivity were assigned a speed of 4 or 5 km/h (approximate
walking speed) (Ouma et al., 2018).

                   Article

Figure 1. The study area location showing three conurbations (Kano, Port Harcourt, and Lagos) in Nigeria.
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Step 2: estimating travel time in AccessMod
To estimate travel time to the nearest CEmOC facility in

AccessMod, we combined data from the assembled layers of fac-
tors that affect travel and the defined travel speeds based on litera-
ture and used a least-cost path algorithm. For this, we modelled
travel time to reach the nearest CEmOC facility for a multi-modal
transport scenario (walking and motorised transport) using a least-
cost path algorithm in AccessMod 5.7.17 (Ray & Ebener, 2008) at
0.09km spatial resolution. To harmonize all the input datasets to
that spatial resolution, the landcover and the DEM were resampled
to 0.09km using the majority and the bilinear interpolation tech-
niques, respectively. The resampled land cover was then merged
with the road network via the “merge land cover” module in
AccessMod to create a merged gridded surface. 

The resulting merged gridded surface, corresponding travel
speeds (Table 1) and location of CEmOC facilities were used to
compute cumulative travel time from each raster cell to the nearest
CEmOC facility considering the least cost path (cost measured in
terms of time). To factor in topography, walking speeds were
adjusted for slope based on Tobler’s formulation, which charac-
terises changes in human walking velocity due to slope variation
(Tobler, 1993). The model was executed for each conurbation at a
time. The raster cell travel time estimates were aggregated at the
ward level to obtain MTT to the nearest CEmOC facility per
conurbation using the ‘Zonal statistics’ tool in ArcGIS Pro version
3.2.2 (ESRI Inc., Redlands, CA, USA). The extraction was done
within populated areas based on the population distribution of
WoCBA. 

                                                                                                                                Article

Figure 2. Analytical flow of estimating travel time to facilities using cost friction surface and routing services and their comparisons.
OSM, OpenStreetMap; SRTM, The Shuttle Radar Topography Mission; GHS-SMOD, Global Human Settlement Layer Settlement Model
Grid; CEmOC, Comprehensive Emergency Obstetric Care; API, Application Programming Interface

                                                                               [Geospatial Health 2024; 19:1266]                                                            [page 101]

Table 1. Travel speeds assigned to different road categories and landcover types for AccessMod. 

Category                             Class/type                                            Speed (km/h)                                     Mode of transport

Road network                           Primary road                                                          100                                                             Motorized
                                                  Secondary road                                                       50                                                                       
                                                  Tertiary road                                                           30                                                                       
                                                  Minor road                                                              20                                                                       
Non-road areas                         Trees, crops, rangeland                                            4                                                                 Walking
                                                  Bare ground, built-up                                               5                                                                        
Barriers to travel                       Water, flooded vegetation                                        0                             Non-traversable (routed around or through a bridge)
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Step 3: estimating travel time to the nearest
CEmOC facility in Google Maps Directions API

We extracted estimates of travel time for each conurbation from
a database of MTT calculated using Google Maps Directions API
for 15 Nigerian conurbations (Macharia, Wong, et al., 2023). The
detailed approach to creating this database is outlined elsewhere
(Macharia, Wong, et al., 2023). Briefly, travel time estimates were
based on Google Maps Directions API extracted in January 2023
(Google, 2023). To predict travel time, Google Maps Directions
API uses real-time and historical traffic patterns, road network data
(and its attributes such as speed limits and incident reports from
drivers), and specified modes of transport (Cuervo et al., 2022;
Google, 2023) within a machine learning environment (Lau, 2020;
Shashidharan, 2023). Therefore, the travel speeds are based on
Google traffic data while road network and travel barriers are based
on Google Maps. The mode of transport, spatial resolution, and the
origin-destination matrix were specified by the users.  The destina-
tion was the location of each CEmOC facility from our assembled
database, while the origin was raster cells of approximately 0.6 km
x 0.6 km (The s2geometry.io, 2022). For this analysis, we used two
extreme traffic scenario estimates: weekday/6-8pm (peak) and
weekend/1-3am (non-peak), representing when travel time is likely
to be longest and shortest because of traffic congestion, respective-
ly. Like AccessMod, for every populated raster cell (based on pop-
ulation distribution WoCBA), there was an estimate of tavel time
which was also aggregated to the ward level to MTT.

Step 4: comparing travel time estimates from
AccessMod and Google Maps Directions API 

We compared travel time estimates from AccessMod and
Google Maps Directions API at two levels, separately for each
conurbation. First, we compared the agreement/concordance in the
classification of wards into travel bands for aggregated (ward)
travel estimates. Second, for each conurbation, we compared the
raster cell travel time estimates between AccessMod and Google
Maps Directions API travel time using correlation coefficients and
three statistical models. In the comparison, four wards (two in
Kano and Lagos each) were excluded since a majority of the space
was water bodies and we did not account for water transport.

Ward-level comparisons
We used the ward-level MTT (aggregated from raster cell val-

ues) from both AccessMod and Google Maps Directions API (peak
and off-peak) to classify and create choropleth maps of 15-minute
incremental bands (band 1: ≤15 minutes, band 2: >15-≤30 minutes,
band 3: >30-≤45 minutes, band 4: >45-≤60 minutes, and band 5:
>60 minutes). We compared the 15-minute bands from AccessMod
estimates and identified the percentage of wards that fell into dif-
ferent categories against the two estimates of travel time from
Google Maps Directions API (peak and non-peak). We used these
15-minute bands because they are widely used as benchmarks for
policy and research on spatial access to services in general and
healthcare in particular (Curtis et al., 2021; Geldsetzer et al., 2020;
Moturi et al., 2022). For example, Target 4 of the strategies for
Ending Preventable Maternal Mortality uses a threshold of 120
minutes to assess physical access (EPMM Working Group, 2015)
while the 15-minute city concept envisions services being accessi-
ble within 15 minutes by urban dwellers (Allam et al., 2022).

Raster cell level comparisons
Beyond the ward-level estimates produced for policy rele-

vance, we sought to explore and better understand the relationship

between these three estimates (AccessMod, Google Maps
Directions API-peak and non-peak) at the level of raster cell. The
raster cell estimates from AccessMod were resampled to 0.6km
resolution to match the Google Maps Directions API’s raster cell
resolution. First, Pearson’s product-moment correlation coefficient
was estimated across the three datasets and classified as either very
high (≥0.9), high (0.7 to 0.9), moderate (0.5 to 0.7), low (0.3 to
0.5), or very low (≤0.3) (Mukaka, 2012). Second, we fitted three
statistical models between AccessMod (predictor-x) and Google
Maps Directions API (outcome-y) raster cell estimates. We started
with a simple linear model. However, as the relationship between
estimates from these two tools might exhibit a non-linear relation-
ship, we also fitted a smoothing curve to allow for better visualisa-
tion of the nature of non-linear relationships. However, as such
curves are not easily interpretable, we used a piecewise linear
function (broken-stick models) with one knot to obtain more inter-
pretable parameters whilst accounting for any potential non-linear
relationships (Giorgi et al., 2021). Fitting was done using the
‘mgcv’ package (Wood, 2017) in the R software environment (ver-
sion 4.1.2) (R Core Team, 2021). All the maps were created in
ArcGIS Pro version 3.2.2 (ESRI Inc., Redlands, CA, USA), while
statistical analyses were done in the R software environment (R
Core Team, 2021).

Results
We present the comparison results separately for Kano, Port

Harcourt, and Lagos due to the different characteristics of the
cities. For each conurbation, we first describe the congruence in
the classification of wards into 15-minute bands followed by the
raster cell-level comparison of travel time estimates from both
tools.

Kano 
In Kano, the median of all 189 ward-level MTT estimates to

the nearest CEmOC facility based on AccessMod tool was 7.0
minutes (interquartile range (IQR): 18.5). The ward-level esti-
mates were heterogeneous; the majority (66.1%) were in band 1
(≤15 minutes) while only one ward was in band 5 (>60 minutes)
(Table 2). There was minimal difference between peak and non-
peak travel scenarios from the Google Maps Directions API for the
percentage of wards falling in the same 15-minute bins (Table 2
and Figure 3). The ward-level MTT from Google Maps Directions
API peak was 14.0 minutes (IQR: 19.4) while during non-peak it
was 13.5 minutes (IQR: 19.0) or twice as long relative to
AccessMod. By grouping wards into 15-minute incremental bands
(Figure 3), 138 (73%) and 136 (72%) wards were classified into
the same band based on MTT estimates from both AccessMod and
Google Maps Directions API, peak and non-peak scenarios,
respectively (Table 2). For wards in band 3 (>30-≤45 minutes), the
concordance between AccessMod and Google Maps Directions
API reduced to 50% (peak) and 44% (non-peak), compared to 80%
concordance in wards band 1 (≤ 15 minutes) in both peak and non-
peak travel scenarios. In 87.0% of wards, ward-level MTT esti-
mates from Google Maps Directions API (peak) were longer than
those from using AccessMod by a median of 3.7 minutes (IQR:
5.7) (Supplementary materials). In the rest of the wards (13%),
ward-level MTT estimates from AccessMod were longer than
Google Maps Directions API by a median of 2.7 minutes (IQR:
6.2). The results for the non-peak scenario followed a similar trend
(Supplementary materials).

The MTT to the nearest CEmOC facility of all the 2,158 raster
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cells in Kano was 9.0 minutes (IQR: 17.0) based on AccessMod,
while those from Google Maps Directions API were 14.2 minutes
(IQR: 17.3) during peak and 13.7 minutes (IQR: 16.7) during non-
peak. The median absolute difference between AccessMod and
Google Maps Directions API travel time estimates was 4.8 minutes
(IQR: 6.5) during peak and 4.5 minutes (IQR 5.8) during non-

peak. During peak and non-peak scenarios, 80.3% and 83.7% of
the raster cells each had a difference of <10 minutes, respectively.
Only 3.2% (peak) and 2.9% (non-peak) of the raster cells had a dif-
ference of over 20 minutes. Travel time estimates from AccessMod
were shorter than those from Google Maps directions API in 80%
of the 2,158 raster cells during either peak or non-peak scenarios.

                                                                                                                                Article
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Table 2. Categorisation of wards based on travel time from AccessMod compared to Google Maps internal Directions API (peak and non-
peak) in Kano, Port Harcourt, and Lagos conurbations. Green indicates 100% agreement between the time bands.

Time bands (minutes)                                Agreement between Google Directions API and AccessMod
AccessMod (wards)                                    Google Directions API                Peak: No. of wards (%)             Non-peak: No. of wards (%)

Kano Conurbation (189 wards)

Band 1: ≤15 (125)                                                 ≤ 15                                                                      99 (79.2)                                                  101 (80.8)
                                                                               > 15 - ≤30                                                            26 (20.8)                                                   24 (19.2)
Band 2: >15 - ≤30 (47)                                         ≤ 15                                                                        4 (8.5)                                                      7 (14.9)
                                                                               > 15 - ≤ 30                                                           30 (63.8)                                                   27 (57.4)
                                                                               > 30 - ≤ 45                                                           12(25.5)                                                   12 (25.5)
                                                                               > 45 - ≤ 60                                                             1 (2.1)                                                       1 (2.1)
Band 3: >30 - ≤45 (16)                                         > 15 - ≤ 30                                                            4 (25.0)                                                     5 (31.3)
                                                                               > 30 - ≤ 45                                                            8 (50.0)                                                     7 (43.8)
                                                                               > 45 - ≤ 60                                                            3 (18.8)                                                     4 (25.0)
                                                                               > 60                                                                       1 (6.3)                                                       0 (0.0)
Band 4: >45 - ≤60 (0)                                           -                                                                                   -                                                                -
Band 5: >60 (1)                                                     >60                                                                       1(100.0)                                                   1 (100.0)
Overall (189 wards)                                                                                                                           138 (73.0)                                                 136 (72.0)
Port Harcourt conurbation (101 wards)

Band 1: ≤ 15 (70)                                                  ≤ 15                                                                      54 (77.1)                                                   57 (81.4)
                                                                               > 15 - ≤30                                                            15 (21.4)                                                   13 (18.6)
                                                                               > 30 - ≤ 45                                                             1 (1.4)                                                       0 (0.0)
Band 2: > 15 - ≤ 30 (13)                                       > 15 - ≤ 30                                                            9 (69.2)                                                    11 (84.6)
                                                                               > 30 - ≤ 45                                                            3 (23.1)                                                     2 (15.4)
                                                                               > 45 - ≤ 60                                                             1 (7.7)                                                       0 (0.0)
Band 3: > 30 - ≤ 45 (16)                                       > 15 - ≤ 30                                                            9 (56.3)                                                    10 (62.5)
                                                                               > 30 - ≤ 45                                                            6 (37.5)                                                     5 (37.5)
                                                                               > 45 - ≤ 60                                                             0 (0.0)                                                       0 (0.0)
                                                                               > 60                                                                        1 (6.3)                                                       1 (6.3)
Band 4: > 30 - ≤ 45                                               -                                                                                   -                                                                -
Band 5: > 60 min (2)                                             > 45 - ≤ 60                                                            2 (100)                                                      2 (100)
                                                                               > 60                                                                         0 (0)                                                          0 (0)
Overall (101 wards)                                                                                                                            69 (68.3)                                                   73 (72.3)
Lagos conurbation (375 wards)

Band 1: ≤ 15 (357)                                                ≤ 15                                                                     331 (92.7)                                                 334 (93.6)
                                                                               > 15 - ≤30                                                             22 (6.2)                                                     19 (5.3)
                                                                               > 30 - ≤ 45                                                             4 (1.1)                                                       4 (1.1)
Band 2: > 15 - ≤ 30 (7)                                         > 15 - ≤ 30                                                            2 (28.6)                                                     2 (28.6)
                                                                               > 30 - ≤ 45                                                            1 (14.3)                                                     1 (14.3)
                                                                               > 45 - ≤ 60                                                            4 (57.1)                                                     4 (57.1)
Band 3: > 30 - ≤ 45 (5)                                         > 15 - ≤ 30                                                             0 (0.0)                                                       0 (0.0)
                                                                               > 30 - ≤ 45                                                            1 (20.0)                                                     1 (20.0)
                                                                               > 45 - ≤ 60                                                            1 (20.0)                                                     2 (40.0)
                                                                               > 60                                                                       3 (60.0)                                                     2 (40.0)
Band 4: > 30 - ≤ 45 (0)                                         -                                                                                   -                                                                -
Band 5: > 60 min (6)                                             ≤ 15                                                                       2 (33.3)                                                     2 (33.3)
                                                                               > 45 - ≤ 60                                                            1 (16.7)                                                     3 (50.0)
                                                                               > 60                                                                       3 (50.0)                                                     1 (16.7)
Overall (375 wards)                                              337 (89.9)                                                           338 (90.1)
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The raster cell-level travel time estimates between the two tools
exhibited a high positive correlation in both peak (0.845 [CI:0.833
- 0.857]) and non-peak (0.850 [CI:0.838 - 0.862]) (Table 3). The
scatter plot showed a strong linear relationship up to around 45
minutes (Figure 4). The adjusted R2 based on the simple linear
model indicated that AccessMod estimates accounted for a consis-
tently high variance of the Google Maps Directions API estimates,
0.714 during peak and 0.723 during non-peak hours. After 45 min-
utes, the direction of the relationship changes and is represented by
a spline with an adjusted R2 of 0.749 and 0.757, respectively,
slightly higher than the simple linear model (Table 3).

Port Harcourt 
In Port Harcourt conurbation (101 wards), AccessMod MTT to

the nearest CEmOC facility in all wards was 6.0 minutes
(IQR:19.0). The ward-level MTTs were very heterogeneous; the
majority (69.3%) were in the first band (≤15 minutes), 12.9% in
band 2 (15 to 30 minutes), 15.8% in band 3 (30 to 45 minutes),
while only 2 wards (2.0%) were in the fifth band (>60 minutes).
On the other hand, based on the Google Maps Directions API, dur-
ing peak hours, the median of all ward-level MTT estimates was
14.1 minutes (IQR:19.7), and 12.1 minutes (IQR:19.7) during non-
peak hours, (Figure 5). In both traffic scenarios, most of the wards
(at least 50%) had a ward level MTT of ≤ 15 minutes while at least

16% were either band 3, 4 and 5 combined in both traffic scenar-
ios. In Port Harcourt conurbation, just like in Kano, there was a
two-fold difference in the median ward-level MTT estimates
between the AccessMod and the Google Maps Directions API
(both traffic scenarios). When wards were grouped in 15-minute
bands, 68.3% (peak) and 72.3% (non-peak) of wards were in the
same band for estimates from both AccessMod and Google Maps
Directions API. Similar to Kano, concordance decreased for wards
in which MTT was longer. That is across the 15-minute bands,
77.1%, 69.1% and 35.1% of the wards were classified in the same
band for the first three bands, respectively, considering AccessMod
and Google Maps Directions API’s peak estimates (Table 2). A
similar trend was observed for the non-peak travel scenario (Table
2). Finally, in 85 out of the 101 wards (84.2%), Google Maps
Directions API ward level MTT were longer than those of
AccessMod by a median of 5.0 minutes (IQR: 6.8) (Supplementary
materials). In the rest of the wards (15.8%), ward-level TT esti-
mates from AccessMod were longer by a median of 10.9 minutes
(IQR: 13.1) (Supplementary materials). The MTT to the nearest
CEmOC facility of all the 1,395 raster cells in Port Harcourt conur-
bation was 7.0 minutes (IQR: 10.5) based on AccessMod, while
those from Google Maps Directions API were 14.4 minutes (IQR:
15.9) during peak and 12.3 minutes (IQR: 13.9) during non-peak.
The median absolute difference between AccessMod and Google
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Figure 3. Travel time to CEmOC facilities using least-cost path in AccessMod and Google Maps internal Directions API during peak and
non-peak times classified into 15-minute bands in Kano, Nigeria. Wards falling into different bands comparing AccessMod and Google
Directions API are hatched. 
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Figure 4. Scatter plots of travel time (in minutes at 0.6km grids) from Google Maps internal Directions API (peak and non-peak) against
those from AccessMod in Kano, Port Harcourt, and Lagos. The blue and red lines are natural and linear (with 2 knots splines, respectively.
The green line is a simple linear model.
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Maps Directions API travel times was 6.8 minutes (IQR: 7.5) dur-
ing peak and 4.9 minutes (IQR: 5.8) during non-peak. During peak
and non-peak, 70.9% and 85.9% of the raster cells had a travel
time difference of less than 10 minutes, respectively, when
AccessMod was compared with Google Maps Directions API.
Only in 30 raster cells (2.2%) was the difference >20 minutes in
the peak scenario and in 0.8% raster cells in the non-peak scenario.
Travel time estimates from AccessMod were always shorter than
those from Google Directions API in 90.6% and 87.4% of the
raster cells during peak or non-peak scenarios, respectively. The
raster cell level estimates from AccessMod and Google Directions
API had a strong positive correlation in both peak (0.790
[CI:0.770–0.809]) and non-peak (CI:0.834 [0.817- 0.849]) travel
scenarios (Table 3). The scatter plot showed a linear relationship
up to about 50 minutes; the fitted linear model had an adjusted R2

of 0.624 for the peak and 0.695 for the non-peak travel scenario
(Figure 4). After approximately 60 minutes, the direction of the
relationship changed slightly; piecewise linear function adjusted
R2 increased to 0.677 for peak and 0.746 for non-peak travel sce-
nario, respectively (Table 3 and Figure 4).

Lagos
The AccessMod modelled median of all ward-level TT esti-

mates (to the nearest CEmOC facility), was 1.0 (IQR:2.0) in Lagos
conurbation (375 wards). Almost all wards (95.2%) were in the
first band (≤15 minutes), while all the remaining 15-minute bands
had approximately 1.5% of the wards each (Table 2 and Figure 6).
Based on Google Maps Directions API estimates, the median of all
ward-level TT estimates for Lagos was 4.6 minutes (IQR: 4.7) and
3.8 minutes (IQR 3.9) during the peak and non-peak travel sce-
nario. Similarly, the majority of the wards were within the first
band (at least 15 minutes): 89.3% for peak and 90.1% for non-peak
scenarios. Therefore, Google Maps Direction API was about four

times longer relative to those of AccessMod level MTT. When con-
sidering the proportion of wards falling within the same 15-minute
bands, 90% of the wards were classified in the same band by
AccessMod and Google Maps Directions API estimates. These
were driven mainly by similarities in the first band of 15 minutes
(Table 2). In 364 out of the 375 wards (97.1%), Google Maps
Directions API ward level MTT were longer than those of
AccessMod by a median of 3.4 minutes (IQR: 2.6) (Supplementary
materials). In the rest of the wards (2.9%), ward level TT estimates
from AccessMod were longer by a median of 13.1 minutes (IQR:
14.4 minutes) (Supplementary materials).

The MTT to the nearest CEmOC facility of all the 3,460 raster
cells in Lagos conurbation was 3.0 minutes (IQR: 5.0) based on
AccessMod, while those from Google Maps Directions API were
7.5 minutes (IQR: 10.2) during peak and 6.6 minutes (IQR: 9.5)
during non-peak. The median absolute difference between
AccessMod and Google Maps Directions API travel times was 4.4
minutes (IQR: 5.8 minutes) during peak and 3.7 minutes (IQR 4.9
minutes) during non-peak. During peak and peak, 81.9% and
85.3% of the raster cells had a travel time difference of less than
10 minutes, respectively when AccessMod was compared with
Google Maps Directions API. In 3.8% of the raster cells was the
difference >20 minutes in the peak scenario and in 2.7% of raster
cells in the non-peak scenario. Travel time estimates from
AccessMod were always shorter than those from Google Maps
Directions API in 96% of the raster cells during peak both and non-
peak scenarios. Raster cell-level estimates between AccessMod
and Google Maps Directions API exhibited high positive correla-
tions in both peak (0.840 [0.829 - 0.849]) and non-peak hours
(0.839 [0.829 - 0.849]) (Table 3). The scatter plot showed a strong
linear relationship up to around 45 minutes. The adjusted R2 from
the simple linear model shows that AccessMod estimates account-
ed for 0.705 (during peak) and 0.704 (during non-peak hours) vari-
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Table 3. The correlation coefficients, linear and spline models, adjusted R-squared values depicting the relationship between travel time
estimates from AccessMod and Google Maps internal Directions API (peak and non-peak) in Kano, Port Harcourt, and Lagos.

                                                        Peak                                                                       Non-peak
Kano conurbation

r [95% CI]                                              0.845 [0.833 - 0.857]                                                        0.850 [0.838 - 0.862]
Linear model                                          y = 7.159 + 0.735X                                                          y = 6.785 + 0.716X
Adjusted R2                                            0.714                                                                                 0.723
Spline model                                          y = 5.951+ I((0.845X - 80) * (-1.492 X>80))                 y = 5.633 + I((0.821X - 80) * (-1.425 X>80))
Adjusted R2                                            0 .749                                                                                0.757
Port Harcourt conurbation

r [95% CI]                                              0.790 [0.770 - 0.809]                                                        0.834 [0.817- 0.849]
Linear model                                         y = 8.66+ 0.753X                                                             y = 6.870 + 0.727X
Adjusted R2                                            0.624                                                                                 0.695
Spline model                                          y = 7.530+ I((0.882X - 55) * (-0.910X>55))                  y = 5.85+ I((0.843X - 55) * (-817X>55))
Adjusted R2                                            0.677                                                                                 0.746
Lagos conurbation

r [95% CI]                                              0.840 [0.829 - 0.849]                                                        0.839 [0.829 - 0.849]
Linear model                                          y = 5.589+ 1.037X                                                           y = 4.965 + 0.984X
Adjusted R2                                            0.705                                                                                 0.704
Spline model                                          y = 3.592+ I((1.520X - 30) * (-1.214 X>30))                 y = 2.923 + I((1.477X - 30) * (-1.240 X>30))
Adjusted R2                                            0.794                                                                                 0.807
r, Pearson correlation coefficient, travel time estimates form Google Directions API (y) and AccessMod tool (X).
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Figure 5. Travel time to CEmOC facilities from AccessMod and Google Maps internal Directions API during peak and non-peak times
classified in 15-minute bands in Port Harcourt, Nigeria. Wards falling into different bands are hatched. 

Figure 6. Travel time to CEmOC facilities compared using AccessMod and Google Maps internal Directions API during peak and non-
peak times in Lagos conurbation Nigeria. Wards falling into different bands are hatched.
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ance in the Google Maps Directions API estimates. At travel times
longer than 45 minutes, the direction of the relationship changed
and was approximated by splines, with adjusted R2 of 0.794 and
0.807, respectively (Table 3 and Figure 4).

Discussion 
We evaluated the relationship between travel time estimates

derived from a least-cost path algorithm in AccessMod and those
from Google Maps Direction API (during peak and non-peak trav-
el scenarios) for three conurbations in Nigeria. Overall, about 70%
of wards in all three conurbations were classified in the same 15-
minute bands by both tools. There were negligible differences
between peak and non-peak travel scenarios in terms of generated
MTT for wards falling within the same 15-minute bins. At the
raster cell level, the travel time estimates exhibited a strong corre-
lation across the conurbations between the two tools, and moderate
agreement was observed at lower travel times, while large differ-
ences were observed after 45 minutes. 

MTT estimates to the nearest CEmOC facility were more sim-
ilar across AccessMod and Google Maps Directions API at shorter
travel times (AccessMod estimates being somewhat shorter), at
both raster cell and ward levels. These areas with shorter travel
times are associated with a high number of facilities, density of
road network, and occupy a small densely populated area within
and around the core urban area of the conurbation. Thus, the role
played by the nearest facility approach is less evident. In such an
area, the choice of the tool used to define spatial accessibility does
not have a substantial effect on the outputs. Similar travel time
estimates were also observed when Euclidean distance and mod-
elled least cost distances were compared in four urban to semi-
urban settings with good road networks and a high density of
health facilities in Kenya (Bouanchaud et al., 2022).

However, our results suggest substantially longer travel time
estimates by AccessMod for a small number of wards and raster
cells beyond the 45-minute threshold. These areas were mainly
located at the edge of conurbations (typically suburbs), adjacent to
a water body or with a low density of health facilities and road net-
works. The observed differences could be due to how both tools
compute travel time. Specifically, as you move away from the city
centre, there is much more walking allocated in AccessMod than
the amount of walking in Google Maps Directions API i.e in areas
with low densities of roads, the spaces (raster cells) in between the
roads are travelled through walking in AccessMod. However, in
these areas without a road network, Google Maps snaps to the road
that is nearest to the starting point when a user initiates directions.
Hence, more walking in AccessMod leads to longer travel time
compared to the Google Maps Directions API.

In any case, road coverage and amount of walking are not the
only factors that could have contributed to the observed differ-
ences; other factors, such as traffic lights and travel speeds, could
have also played a part. The speeds used in AccessMod were based
on previously published literature (Ouma et al., 2018; Rudolfson et
al., 2020; Stewart et al., 2016) to allow comparability and contex-
tualisation. These speeds do not vary across different sections of
the roads as they should, given that they are influenced by personal
driving traits, speed limits, weather variations, traffic on the road,
and road conditions. Indeed, assigning an objective speed across
various road types is challenging and often seen as the most signif-
icant barrier to achieving accurate estimates in cost friction mod-
elling (Molenaar et al., 2023). Molenaar et al. proposed strategies

to optimise and harmonise knowledge elicitation practices for
developing travel scenarios that approximate reality as much as
possible for a given target population (Molenaar et al., 2023). Such
a strategy could improve the accuracy of cost friction estimates
and reflect on-ground realities. However, eliciting speeds requires
resources, which partly explains why most accessibility studies
rarely incorporate localised speeds. Further research is needed on
i) how well such workshops can capture the variability of traffic
scenarios in urban areas, ii) who should attend these workshops
(e.g., residents, traffic controllers, commuters, health workers,
urban and regional planners) to better reflect the speeds, and iii)
how well do these cadres recognise traffic fluctuations and changes
throughout a day or a week.

On the other hand, the Google Maps Directions API will indi-
rectly account for speed variation by considering on-ground reali-
ties such as weather variability, road accidents, tolls, speed limits,
time of the day, and day of the week when the journey was made,
among others by using historical and current traffic data.
Consequently, these different strategies of accounting for speeds
may have led to variable results. However, we ruled out the issue
of heavy traffic since peak and off-peak were similar in these three
conurbations when considering the percentage of wards within 15-
minute bins. This observation is not generalisable to other conur-
bations where peak hours could have a much larger impact.

Implication for policy, practice and research
At longer travel times (above 45 minutes), there were larger

differences between the tools for a small number of wards and
raster cells. This translated to seven in 10 wards being classified in
the same 15-minute bin for either AccessMod or Google Maps
Direction API. Therefore, which tool (AccessMod or Google Maps
Direction API) is used will matter for policy when identifying
which of the remaining three wards have longer travel times. The
coefficients from the piecewise linear model might be used as an
adjustment factor in urban areas, allowing for the conversion of
cost friction estimates from AccessMod to Google Maps
Directions API-like estimates when routing services are unavail-
able. Here, we default to Google Maps Directions API as the ref-
erence because emerging evidence indicates that its outputs—com-
pared to those from the least cost-path algorithm or OSRM more
closely reflect travel time reconstructed for women in obstetric
emergencies in urban areas (Banke-Thomas, Wong, Ayomoh, et
al., 2021). That is when the travel time between a residence and a
health facility for women is mimicked or replicated by a profes-
sional motor vehicle driver, it is closer to the Google Maps
Directions API travel time estimate relative to AccessMod.
However, as the inputs of AccessMod are facilitated by the end-
user, there are two lenses with which we prospect as a way of gen-
erating and making available travel time estimates closer to reality.
First, we recommend that providers of routing services (such as
Google Maps Directions API) consider making their services open
source and more widely accessible through user-friendly portals.
This would enable decision-makers and researchers to generate
more accurate estimates, particularly for emergencies where inter-
ventions are needed promptly to save lives compared to routine
care where health-seeking can be timed to a larger extent. It is also
known that the APIs are based on data from much fewer users as
you move from urban to peri-urban (suburbs) to rural areas
(Gligorić et al., 2023; Macharia, Banke-Thomas, et al., 2023). This
calls for the added value of additional voluntary geographic infor-
mation such as a front-end (web portal or mobile application) that
would allow the user to indicate average travel time on roads (and
off-road) in rural areas to improve the utility of travel time gener-
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ated from the APIs in rural settings. Google also collects data from
traffic sensors and cameras installed by government transportation
agencies and select private companies. However, the network of
sensors is limited and mostly on major roads. This could be
expanded to facilitate a fuller picture of on-ground movement of
vehicles.

The success and widespread application of AccessMod can be
attributed to several reasons. Its open-source, user-friendly graph-
ical user interface, and WHO-endorsed approach with facilitated
capacity building activities in many countries. AccessMod has a
wide array of proximity related analyses that are not implemented
in other API’s. For example, scaling up analysis, geographic cov-
erage to obtain catchments, and referral times among different
types of health services, among others. In addition, AccessMod
was developed originally to better understand accessibility in rural
areas (historically associated with healthcare accessibility chal-
lenges) for which APIs are particularly limited due to lower own-
ership of smartphones in LMICs (Milusheva et al., 2021). 

Second, several other aspects of least-cost path modelling can
be improved to make its output closer to reality or more similar to
that of the API. Some factors not routinely included in cost friction
analyses but indirectly accounted for in APIs can be incorporated
into the cost friction estimates. For instance, accounting for traffic
variability (Ahmed et al., 2019), seasonal and weather variation
(Makanga et al., 2017) and other localised aspects specific to an
area, such as flooding (Hierink et al., 2020) could enhance the
accuracy of the estimates. However, these factors are often not
considered in cost friction modelling, partly due to data limitations
and a lack of clear guidelines for incorporating them. Finally,
beyond the use of open-source data on road networks, comple-
menting these with country road networks whenever possible,
would more accurately capture means of travel (access) to emer-
gency care.

Separately, there is a need to generate uncertainty bounds of
travel time by adjusting the mean speed used in AccessMod mod-
elling by a percentage, for instance, ±20%. Instead of a point esti-
mate, the generated range from AccessMod is more likely to cap-
ture the true value. Therefore, the estimates from cost friction mod-
elling and those of API could be more comparable (and fall within
the same class given the uncertainty bounds based on input
speeds), as weather, traffic, automobile type, personal preferences,
time of day, and other differences may be accounted for and
reflected in the upper and lower boundaries (Hierink et al., 2020;
Macharia, Mumo, et al., 2021). However, most spatial access stud-
ies seldom take this step, with only a few examples available in the
literature (Curtis et al., 2021; Hierink et al., 2020; Macharia,
Mumo, et al., 2021; Ouma et al., 2018). Related to travel speeds,
it is only possible to target a particular subgroup of the population
in AccessMod but not in Google Maps Directions API. Travel
speeds in AccessMod can be flexibly defined to correspond to dif-
ferent travel scenarios specific to population sub-groups, for exam-
ple, emergency care (Juran et al., 2018; Ouma et al., 2018), urban
areas  settings (Macharia, Mumo, et al., 2021) and primary school
education (Macharia, Moturi, et al., 2022; Macharia, Ray, et al.,
2022). 

In terms of implication for research especially in urban areas,
it is clear that within conurbations there is good connectivity of
road network with complex travel patterns, for example, public
transportation with dedicated bus and trap stops, and one-way traf-
fic with sections controlled by traffic lights. Travel to seek care
almost always follows the road network and patterns, therefore, a
vector-based tool that computes spatial accessibility to healthcare
along a network will provide the most realistic estimates in urban

areas when compared to raster-based approach (Delamater et al.,
2012). For example, the routing services in the market (such as the
Google Maps Directions API) compute accessibility along these
routes while accounting for traffic patterns or the vector-based
Network Analyst (in ArcGIS Pro), which are thus more suited for
urban areas. On the other hand, raster-based approaches (for exam-
ple, in AccessMod) are more suited to areas with lower road con-
nectivity and complexity of travel patterns, such as rural areas
(Delamater et al., 2012). The future thus would be to have a mix of
methods that would use big data (or network-based approaches) in
urban areas and least-cost approach in rural areas (Delamater et al.,
2012). A combination of these approaches would be more suitable
in peri urban (suburbs), which were more affected both by longer
travel times and by discrepancies in the travel time estimates.
Suburbs are a key urbanisation frontier where growth happens,
therefore, should not be left behind in improving their accessibility
and health outcomes. 

In addition, our analysis largely utilized MTT derived from
motorized transport. However, other modes of transport such as
walking and biking utilise private or unofficial paths between
home and health facilities are also used in urban settings (Avoka et
al., 2022; Macharia, Mumo, et al., 2021), although to a minimal
degree. These paths are not mapped as part of the road network, for
example in slum areas and are not affected by congestion in the
same way as motorized transport. Therefore, in such scenarios
AccessMod will be more relevant in computing spatial accessibil-
ity to care through walking and bicycling. 

Strengths and limitations
First, our study contributes to the ongoing discussion of how

best to assess spatial accessibility to healthcare in low-resource
urban settings and focuses on two emerging tools relevant to such
settings (Banke-Thomas et al., 2024; Cuervo et al., 2022; Mutono
et al., 2022; Wong et al., 2024). We are hopeful that our results will
inform future decision-making processes in both research and
implementation settings. Increasingly, there is literature aiming to
provide a better understanding of how different methods and input
data affect estimates of travel time. For example, the role of differ-
ent gridded populations (Hierink et al., 2022), road networks (Lin
et al., 2021), and vector versus raster-based methods (Delamater et
al., 2012). Second, previous comparator studies have considered
public facilities only, especially those contained in the country’s
master health facility list. However, in this study, we included both
public and private facilities, which were further validated using on-
ground surveys to capture all facilities, whether recorded in master
facility lists or not. It is clear from our findings that if we had con-
sidered public facilities only, MTT would have been longer and the
agreement between AccessMod and Google Maps Directions API
would have been reduced.

On the other hand, the findings of this study should be inter-
preted while considering some limitations. First, our study consid-
ered only travel time to the nearest health facility, ignoring bypass-
ing that some pregnant women might do due to trust-related issues,
cost, and quality of care, which could also influence healthcare-
seeking behaviour in emergencies (Keyes et al., 2019; Kruk et al.,
2009; Makacha et al., 2020; Yao & Agadjanian, 2018). By gener-
ating travel time to the nearest facility which women may bypass,
it means the actual MTT could have been longer, leading to poten-
tially less agreement with Google Maps Directions API and
AccessMod. Therefore, considering the bypassing mechanism is
critical for realistic estimates, there is a need to adjust AccessMod
outputs based on the piecewise linear coefficients we generated if
bypassing is not considered. 
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Second, the use of generalisable speeds for comparability with
previous studies poses a limitation. Expert-elicited speeds with
uncertainty bounds would have been more appropriate for realistic
estimates. However, we deliberately applied speeds derived from
literature to better understand how the current state of implement-
ing accessibility compares with the closer-to-reality estimates from
Google Maps Directions API (Banke-Thomas, Wong, Ayomoh, et
al., 2021). Third, it is possible that women in emergency residing
in the selected wards may seek care from adjacent wards outside
the conurbation which we did not capture in our analysis.
However, the focus of this comparison study is on the relationship
in the estimates from both tools and not the precise location where
women seek care. 

Finally, our estimates from both tools are only as good as the
underpinning data. For example, if the road network data we used
from OSM was more comprehensive than those available on
Google (used within the Google Maps Direction API), this likely
contributed to the differences observed in larger travel times
between the two tools. For example, OSM’s reliance on communi-
ty contributions can provide a more up-to-date and localised view
in some cases. This includes voluntary mapping communities such
as Humanitarian OpenStreetMap Team (HOT) Tasking
Manager0F, Missing Maps1F and YouthMappers2F. Particularly
for areas such as urban slum areas with limited road networks but
local routes could be mapped through OSM’s communities. 

It has been shown that depending on the nature of street net-
works used, with different levels of completeness there will be
considerable differences in travel times (Lin et al., 2021). These
differences will be more pronounced in less urbanised regions rel-
ative to the core metropolitan areas (Lin et al., 2021). We made the
same observation; the core urban area outputs were more similar,
while differences became more pronounced outward to the suburbs
when contrasting AccessMod and Google Maps Directions API
(Lin et al., 2021). Data on road network in the suburbs are likely
to be incomplete, even when complete, suburbs might arguably
have fewer roads because of the fewer services that need to be con-
nected. Further, the completeness of the spatial data plays a key
role. For example, where OSM has lower completeness than
Google, it means more walking speeds will be assigned in some
sections, while the API will use driving speeds if Google Maps has
better completeness of road network data. These issues will likely
be observed at the edges of the conurbations where volunteered
geographic information may not be as widely available as in the
developed core urban area. 

Conclusions
Estimates obtained from the AccessMod correlated to those

from the Google Maps Directions API and classified in the same
15-minute bands for areas with median travel times <45 minutes
which formed the majority of the wards and raster cells. However,
significant differences were observed for longer travel times
(mainly in suburban settings), with AccessMod estimates being
longer than Google Maps Directions API’s estimates beyond 45
minutes for a small proportion of the raster cells and the wards.
This relationship can be approximated using a piecewise linear
function, which can be used as the basis to convert AccessMod to
Google Maps Directions API-like estimates. Ultimately, in emer-
gencies, timely access is critical, such as in cases where pregnant
women face complications and need to reach a health facility
quickly (Banke-Thomas, Avoka, et al., 2021; Chavane et al.,

2018). In such scenarios, the estimates must accurately reflect the
actual conditions on the ground, as every minute counts.
Therefore, assessment of accessibility to emergency care using
accessible, comparable datasets and innovative methods is key for
making sure women can access life-saving interventions that they
need with no physical access barriers.
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Online supplementary materials

Maps of factors that affect travel to healthcare and comparison of travel time estimates derived from AccessMod and Google Maps Directions API

Figure S1. Health facilities in Kano.

Figure S2. Land cover in Kano.

Figure S3. Digital elevation model in Kano.

Figure S4. Road network in Kano. 

Figure S5. Population density in Kano. 

Figure S6. Comparison of travel time estimates generated from AccessMod (least-cost Path algorithm) and Google Maps internal direction Application Programming Interface
(API) in Kano.

Figure S7. Health facilities in Port Harcourt.

Figure S8. Land cover in Port Harcourt.

Figure S9. Digital elevation model in Port Harcourt. 

Figure S10. Road network in Port Harcourt. 

Figure S11. Population density in Port Harcourt. 

Figure S12. Comparison of travel time estimates generated from AccessMod (least-cost Path algorithm) and Google Maps internal direction Application Programming
Interface (API) in Port Harcourt.

Figure S13. Health facilities in Lagos.

Figure S14. Land cover in Lagos.

Figure S15. Digital elevation model in Lagos. 

Figure S16. Road network in Lagos.

Figure S17. Population density in Lagos. 

Figure S18. Comparison of travel time estimates generated from AccessMod (least-cost Path algorithm) and Google Maps internal direction Application Programming
Interface (API) in Lagos.

Non
-co

mmerc
ial

 us
e o

nly




