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Abstract
Disease surveillance remains important for early detection of

new COVID-19 variants. For this purpose, the World Health
Organization (WHO) recommends integrating of COVID-19
surveillance with other respiratory diseases. This requires knowl-
edge of areas with elevated risk, which in developing countries is
lacking from the routine analyses. Focusing on Ghana, this study
employed scan-statistic cluster analysis to uncover the spatial pat-
terns of incidence and Case Fatality Rates (CFR) of COVID-19
based on reports covering the four pandemic waves in Ghana
between 12 March 2020 and 28 February 2022. Applying flexible
spatial scan statistic with restricted likelihood ratio, we examined
the incidence and CFR clusters before and after adjustment for
covariates. We used distance to the epicentre, proportion of the

population aged ≥ 65, male proportion of the population and urban
proportion of the population as the covariates. We identified 56
significant spatial clusters for incidence and 26 for CFR for all
four waves of the pandemic. The Most Likely Clusters (MLCs) of
incidence occurred in the districts in south-eastern Ghana, while
the CFR ones occurred in districts in the central and the north-
eastern parts of the country. These districts could serve as sites for
sentinel or genomic surveillance. Spatial relationships were iden-
tified between COVID-19 incidence covariates and the CFR. We
observed closeness to the epicentre and high proportions of urban
populations increased COVID-19 incidence, whiles high propor-
tions of those aged ≥ 65 years increased the CFR. Accounting for
the covariates resulted in changes in the distribution of the clus-
ters. Both incidence and CFR due to COVID-19 were spatially
clustered, and these clusters were affected by high proportions of
the urban population, high proportions of the male population,
high proportions of the population aged ≥ 65 years and closeness
to the epicentre. Surveillance should target districts with elevated
risk. Long-term control measures for COVID-19 and other conta-
gious diseases should consider improving quality healthcare
access and measures to reduce growth rates of urban populations.

Introduction
Measures, such as ban on travel, partial lockdown and closing

schools, public markets and private workplaces, were introduced
in the wake of the coronavirus disease 2019 (COVID-19) being
declared a pandemic by the World Health Organisation (WHO) in
early 2020 (https://www.who.int/europe/emergencies/situations/
covid-19). This crippled several global economies and left a last-
ing fear of re-emergence of the disease as the risk of new variants
could cause new surges of the disease (Adebowale et al. 2021).
Following the reduced number of new infections and deaths
reported by May 2023, WHO took the disease off the list of public
health emergencies of international concern (Jacqui, 2023).
However, it recommends the integration of COVID-19 surveil-
lance with other respiratory diseases and the institution of geo-
graphically representative genomic surveillance as strong and
timely surveillance is critical for the early detection of any
changes in incidence and death numbers (WHO 2022). Similar to
other African countries, the Ghana Health Service (GHS) monitors
such situations by sentinel surveillance, a strategy requiring iden-
tification of areas with a higher risk of the disease for targeted
surveillance (GHS, 2020). Similar to the surveillance of influen-
za-like-illness in Ghana, facilities situated in high-risk areas can
be designated to periodically obtain representative clinical sam-
ples for testing and genomic sequencing (GHS 2020). According
to the European Centre for Disease Prevention and Control, this
could find new variant in circulation and potential reservoirs

Correspondence: Ernest Akyereko, Faculty of Geo-Information
Science and Earth Observation (ITC), University of Twente, 
The Netherlands.
Tel.: +31685310183
E-mail: e.akyereko@utwente.nl 

Key words: flexible scan statistics, COVID-19, general linear
model, Ghana.

Conflict of interest: the authors declare no conflict of interest.

Contributions: EA, conceptualization, methods, analysis, writing the
initial draft. FB, AS & KN, investigation, supervision, validation,
writing, reviewing and editing.

Availability of data and materials: all data generated or analyzed
during this study are included in this published article.

Received: 4 January 2024.
Accepted: 9 August 2024.

©Copyright: the Author(s), 2024
Licensee PAGEPress, Italy
Geospatial Health 2024; 19:1265
doi:10.4081/gh.2024.1265

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License (CC BY-NC 4.0).

Publisher's note: all claims expressed in this article are solely those
of the authors and do not necessarily represent those of their affili-
ated organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article or claim
that may be made by its manufacturer is not guaranteed or endorsed
by the publisher.

Non
-co

mmerc
ial

 us
e o

nly



Article

[page 102]                                                             [Geospatial Health 2024; 19:1265]                                                                               

(ECDC, 2021). For the successful integration of COVID-19 in a
general surveillance system, it is important to understand the
underlying spatial and temporal patterns.

So far, Ghana has recorded over 130,000 COVID-19 cases and
1,400 deaths detected as counts across all districts utilizing routine
indicator-based surveillance (GHS, 2022). This approach has lim-
ited spatial resolution, which results in considerable informative
limitation. Spatial epidemiological methods such as cluster detec-
tion offer an effective way of uncovering the underlying patterns
for targeted intervention and surveillance (Arab-Mazar et al.,
2020; Zu et al., 2020; Fatima et al., 2021; Huang et al., 2021;
Bermudi et al., 2021a; Siljander et al., 2022). In the context of
surveillance, detecting districts with elevated risk of COVID-19
incidence and Case Fatality Rates (CFR) could identify changes in
viral characteristics and virulence. Hence, it might provide infor-
mation on sites that are the most useful for representative sampling
for genomic sequencing.

This study aimed to identify clusters of small areas (districts)
with elevated COVID-19 risk that could support precision surveil-
lance. To do so, we used the spatial scan statistic method proposed
by Kulldorff (Alves et al., 2021; Paul et al., 2021; Siljander et al.,
2022), which is powerful and relatively easy to implement,
although restricted by only detecting circular and elliptical-shaped
clusters (Toshiro & Kunihiko, 2005). We adapted the flexible scan
statistic with restricted likelihood ratio (Toshiro & Kunihiko,
2012) that would allow us to detect clusters of varying shapes.

Spatial cluster detection without accounting for potential con-
founders can only tell part of the story of spatial trends. An impor-
tant aspect of disease cluster analysis is to account for confounders
affecting the clustering behaviour. Studies have associated the
COVID-19 pandemic with overcrowding and emphasized its
prevalence in big cities (Chen et al., 2020). Therefore, an addition-
al objective was to determine how variation of the proportion of

certain variables affect the clustering, i.e. proximity to epidemic
centres, urban concentration of people, the numbers of males and
those aged ≥ 65 years. This should provide valuable information to
guide health professionals and governments in developing and
implementing interventions. 

Materials and Methods 

Study area 
Ghana is located in West Africa, with an area of approximately

240,000 km2 and an estimated population of about 30.42 million.
The country is divided into 16 administrative regions and 260 dis-
tricts as of the year 2020 (Figure 1). Health infrastructure and
implementation of health interventions are centred at the district
level, with five teaching hospitals located in Volta, Greater Accra,
Ashanti, Northern and Central regions, in addition to 16 regional
hospitals provide tertiary care. These facilities serve as referral
centers for the lower facilities at the district level. The national
capital Accra is located in the south-eastern part of the country and
hosts much of the genral infrastructure including the international
airport.

Data acquisition 
Anonymized data on reported COVID-19 cases and deaths in

Ghana from March 2020 to February 2022 were obtained from
GHS. The variables: date of sample taken, district of residence,
outcome, such as recovery or death (including date of death) were
extracted. Based on the date of each sample, the temporal pattern
of the pandemic was constructed. It appeared as Wave 1 (W1), from
12 March to 30 September 2020, Wave 2 (W2) from 1 October
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2020 to 22 April 2021, Wave 3 (W3) from 23 April to 30 November
2021 and Wave 4 (W4) from 1 December to 28 February 2022
(Figure 2). In line with Lawton et al. (2021) we considered the fol-
lowing variables affecting the distribution: the urban population,
the proportion of males, the proportion of those aged ≥ 65 years
and the distance from Greater Accra (the epicentre). The propor-
tions of the population living in urban settings in the districts were
obtained from the Ghana Statistical Service (2021).

Cluster detection 

Flexible scan statistic with restricted likelihood ratio
(FSRLR)

following the GHS disease surveillance report structure since
specific locations are not routinely monitored (GHS, 2020), dis-
trict-level reported cases ya (i,t) or deaths yb (i,t)  were aggregated
for each district i = i, ... , 260 to correspond to the four major waves
t = 1, ... , 4. For each combination of district and wave, we repre-
sented our counts of COVID-19 cases and deaths as an offset based
on realizations from the Poisson distribution according to an
underlying population at risk, N(i,t). Poisson-based spatial scan
statistic is widely employed to detect areas with elevated risk
(Alves et al. 2021; Franch-Pardo et al., 2020; US Department of
Health and Human, and Centers for Disease Control and
Prevention, 2006; Islam et al., 2021). Under the null hypothesis of
no clustering, H0, the expected null counts for incidence and death
were then H0: E [ya (i,t)] = Ea (i,t)  and H0: E [yb (i,t)] = Eb (i,t),
respectively. In this scenario, spatial scan statistics detects poten-
tial clusters by passing a circular window, Z, over the entire district
to detect clusters of variable sizes in proportion to the total popu-
lation that might be at risk (Kulldorff 1997),  recent applications to
COVID-19 (Alves et al., 2021; Islam et al., 2021). Although pow-
erful, this method falls short of correctly identifying non-circular

clusters (Otani & Takahashi, 2021). 
Since the 260 districts in Ghana all have an irregular shape,

flexible scan statistic would be preferable due to the possibility of
applying a large number of irregularly shaped windows on each
district shaped by connection to adjacent districts (Toshiro &
Kunihiko, 2005). To avoid absorbing surrounding areas with low
risk, the likelihood ratio is restricted so that scanning is limited to
districts with elevated risk (Tango & Takahashi, 2012). Using the
rflexscan package in R, the upper limit is determined by specifying
the maximum length,  of its nearest neighbours (K=50). Let Z
(i,ki,t) be the set of windows for the ith district composed of its ki

nearest neighbours for wave t. Let Zj (i,ki,t) denote the jth window
for the district i, and the set of its nearest neighbours ki, ki = 1, ... ,
K. Here j satisfies Zj (i,ki,t) Î Z (i,ki,t). For each scanning window,
the null hypothesis of no clustering within the window is evaluated
and compared to that outside. A log-likelihood ratio test is per-
formed and ranked to detect primary and secondary clusters (Otani
and Takahashi 2021). For instance, for the COVID-19 incidences,
the null hypothesis of no clusters is specified as H0: E [(i,t)] = ea

(Zj) and the alternate hypothesis of clusters is Hi: E [ya (Zj)] > ea

(Zj). Here, the expected number of cases is computed based upon
the fact that the risk of contracting COVID-19 is fixed for a given
wave. Thus, the fixed risk for a given wave is given by the equa-
tion:  

For a given window, Zj, the expected number of cases equals:

Figure 2. Distribution of COVID-19 cases in Ghana by date of a sample taken, identified as Waves W1, W2, W3, and W4.
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where Na(Zj) is the population within that window. The likelihood
of observing the recorded number of cases within and outside the
window Zj is given by the formula: 

where Zc
j represent the complement of Zj, ya(Zj) the observed num-

ber of cases within the specified window Zj, ea (Zj) is the null
expected number of cases within the specified window; and I(x) is
the indicator function, with I(x) for x = TRUE and 0 otherwise.
The window (Z) that reaches the maximum likelihood is defined
as the Most Likely Cluster (MLC). The significance of the clusters
was evaluated using 999 random Monte Carlo simulations to gen-
erate the corresponding p-values. The null hypothesis of no clus-
tering was rejected if p <0.05. A detailed description of the
FSRLR is provided here (Tango & Takahashi 2012; Otani &

Takahashi 2021). As shown in the Results section, the FSRLR can
be visualized using choropleth maps. Again, a matrix was devel-
oped to visualise the detected cluster along the four waves. In the
matrix, the distribution of the incidence and CFR were classified
into three groups. A district with a cluster in all four waves was
classified as ‘emerged’, a district detected as a cluster in more than
one wave but not directly following each other was classified as
‘re-emerged’, while a district with a cluster continuing into the
subsequent wave was classified as ‘persisted’.

Covariate adjustment
Adjustment for covariate effects is not straightforward.

Kulldorff proposed the use of a covariate-adjusted expected num-
ber of cases rather than those from the null hypothesis (Kulldorff
2021). We considered the distance to the epicentre (Greater Accra
Region), the proportion of the male population, the proportion of
the population aged ≥ 65 years and the percentage of the urban
population as possible factors influencing the distribution pattern.
To do so, we fitted a Poisson log-linear model

where the mean equals la (i,t) = Na (i,t) ra,ad j (i,t) and the unknown

Figure 3. Spatial distribution of District level detected clusters for COVID-19 incidence in Ghana.
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covariate-adjusted risk on the log scale is modelled as 

where β0α is the intercept; βdist,a(t) a time-varying effect of the dis-
tance from the epicentre; xdist(i,t), βupa(t) the time-varying effects of
the percentage of urban population; xup(i,t), βaged ≥ 65,a(t) the time-
varying effect of the proportion of male population; and xmale(i,t),
βaged ≥ 65,a(t) the time-varying effect of the proportion of the popula-
tion aged ≥  years xaged ≥ 65(i,t)  . This model was fitted using the glm
function in the R statistical software. For each district i and wave
t, the covariate-adjusted risk is predicted by the formula:

where 0α , dist,a(t), malea(t), aged ≥ 65,a(t), and  upa(t) are the esti-
mates for the parameters β0a, βdist,a(t), βmalea(t), βaged ≥ 65,a(t) and
βupa(t), respectively. The adjustment for the expected number of
cases is straightforward; for a given window Zj, the covariates-
adjusted expected cases ea,adj(Zj) = Na(Zj) a,adj(i,t)
We demonstrated this using the COVID-19 cases ya(i,t) and repeat-
ing the same approach for the COVID-19 deaths. Next, we imple-
mented these adjustments in the FSRLR to control for the covari-
ates. To implement these adjustments for the scan statistic, we
replaced the population variable with the adjusted expected counts.

Results

COVID-19: spatial distribution of district-level
clusters and relative risk 

The FSRLR detected significant clusters for all four waves (W1

(8), W4 (7), W3 (6), and W4 (4)). The MLCs were detected in the
Southeast (Greater Accra region) and persisted throughout the four
waves (Figure 3). For the MLCs, the relative risk (RR) of COVID-
19 incidence was 8.85 (p<0.001), 22.54 (p<0.001), 20.78
(p<0.001) and 32.10 (p<0.001) for waves W1, …, W4, respectively
(Supplementary materials Table1).

At the next level, the study identified SCs with RRs ranging
from 1.1 to 6.23 (p<0.001)in the southern, central and north-east-
ern parts. An SC persisted in the centre (Ashanti region) through-
out the whole period (Figure 3). Several persistent SCs were iden-
tified in the Southwest and  the East. Persistent SCs were identified
in the Southeast during W2 and W3, which shared a border with
Togo (Volta region).

CFR: spatial distribution of district-level clusters 
District-level clusters of CFR at p<0.05 were detected during

all four waves (W1 (3), W4 (3), W3 (3) and W4 (3)). The spatial pat-
terns of MLCs took relative risk values equal to RR = 2.12 for W1,
and for W2, persisted with values at 5.87 and 8.50 during W3 and
W4, respectively, (Supplementary materials Table 2). During W1,
the MLC was detected in the centre (Ashanti Region) whereas in

the 2nd wave, it was in the northern part of Ghana (Upper East,
Upper West, Savana, Northern and North-East regions). During W3

and W4, the MLC persisted in the central part of Ghana towards the
West, involving regions like Ashanti and Bono.

FSRLR also detected SCs during all four waves. During W1,

SC was detected in the centre, at just one district distance from the
MLC. During W2, the SCs persisted mainly in the centre (Ashanti,
Bono, Bono East and Ahafo). During W3, areas in the Northwest
(Upper Western region) and centre (Ashanti) persisted as SCs. In
the western part of the centre (Bono and Bono East region), an SC
during W2 developed into an MLC during W3 with increased RRs
3.74 (p<0.001) to 5.87 (p<0.001)) (Supplementary materials Table
2). These detected clusters persisted into W4 with the re-emergence
of SCs in the Northeast and Northwest. 

GLM performance of variables explaining varia-
tion in incidence and CFR distributions

Our initial scan statistics results show that the south was par-
ticularly susceptible to the COVID-19 infections (Figure 3).
Considering the urban population, the proportion of the male pop-
ulation, the proportion of the population aged ≥ 65 years and dis-
tance to the epicentre as explanatory variables, we fitted a Poisson-
GLM to explain the observed distribution of the incidence and case
fatalities. For all epidemic waves, the incidence rate was positively
related to the urban population, while it was negatively related to
the epicentre distance (Greater Accra Region) and the proportion
of population aged ≥ 65. During W1, we observed that one unit
increase in the urban population, the proportion of male population
became associated with an increased RR of 2.5346 and 2.35
(p<0.001), whereas the proportion of population aged ≥ 65 years
reduced the incidence rate by 1.28 (p<0.001) (Table 1). During W2,
W3 and W4, a similar relationship was observed between the inci-
dence rate and urban population with their estimated coefficients
increasing as the epidemic wave progressed. The proportion of
population aged ≥ 65 years was negatively associated with
COVID-19 incidence in W2-7.09 (p<0.001), W3 -2.0 (p<0.001) and
W4 -1.10 (p<0.001). In the 2nd and 4th wave, an increase in the
proportion of male population was found to reduce the COVID-19
incidence.

For CFR, the urban population, the proportion of population
aged ≥ 65, and the distance to the epicentre (Greater Accra Region)
were positively associated with deaths (Table 1). Significant asso-
ciations between urban population and CFR were detected during
all waves (Table 1). The coefficients for urban population of 3.72
(p<0.001), 4.17 (p<0.001), 2.91 (p<0.001) and 3.88 (p<0.001)
were observed for W1, W2, W3 and W4. A higher positive associa-
tion was found between the proportion of population aged ≥ 65
years and the CFR in all pandemic waves (W1 (2.00, p<0.001), W2

(5.06, p<0.001), W3 (3.86 p<0.001), W4 (4.59 p<0.001)).

Spatial distribution of clusters after adjusting for
covariates

The Poisson log-linear model showed a significant association
between urban population, the proportion of population aged ≥ 65,
the proportion of males, distance to the epicentre both incidence
and CFR. Therefore, results from the FSRLR determining the dis-
tribution of incidence and CFR were obtained after adjusting for
these covariates. Significant clusters (p<0.05) were detected dur-
ing all four waves (W1 (8), W2 (6), W3 (8) and W4 (5)). MLCs were
detected in two districts during W1 (RR = 18.21, p<0.001), nine
districts during W2 (RR = 11.77, p<0.001), eight districts in W3 (RR

β̂ β̂ β̂ β̂ β̂

r̂
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= 11.17, p<0.001) and five districts during W4 (RR = 18.52,
p<0.001). The MLCs persisted in the South during all four waves
similar to what we observed before covariate adjustment, but with
a lower RR (11.17 – 18.52, p<0.001). The number of secondary
clusters was also higher after covariate adjustment (Figures 3 and
5). Additional SCs were mostly located in the centre (Bono, Bono
East and Ashanti districts) during W1 and W3. Most clusters per-
sisted across the four epidemic waves with few emerging and re-
emerging (Figure 5).

In total, 10 clusters were identified during all four waves of the
pandemic after adjusting for urban population, the proportion of
population aged ≥ 65, the proportion of males and distance to the
epicentre. Out of these, four districts persisted as significant CFR
clusters (Figure 6). During all pandemic waves, the MLC (RR =
7.04 – 9.03, p<0.001) were predominantly found in the in the
South (Greater Accra, Volta and eastern regions). This was differ-
ent from what was detected without covariate adjustment (Figures
2 and 4). The MLCs (RR = 7.04, p<0.001) during W2 were found
in the Southeast (Volta Region) after controlling for the covariates.
Additional SCs were detected in the centre (Ashanti Region),
which persisted throughout the pandemic waves (Figure 6). During
W4, the MLC was detected in the South (Eastern Region) whereas
a SC persisted in the centre (Bono and Ashanti Regions).

Discussion
Despite the current low number of COVID-19 cases in Ghana,

the risks of its severity and increase in cases remain eminent.
Strong disease surveillance remains critical to understanding the
evolution of the disease pattern (WHO Africa Region 2019;
Kaburi et al. 2017). The call by WHO to integrate COVID-19
surveillance into the respiratory disease (WHO 2022) leaves

countries like Ghana to identify possible high-risk areas for tar-
geted surveillance and to improve sampling for genomic sequenc-
ing of the virus (Jacqui 2023). Application of the FSRLR before
and after controlling for the covariate detected statistically signif-
icant clusters of high incidences during all four waves. Most of
these clusters persisted in the South. During the first wave, Ghana
instituted a partial lockdown together with other measures in
Greater Kumasi and Accra in the South (Owusu et al., 2020).
These measures were expected to influence the distribution of the
clusters during subsequent waves. Therefore, the persistent clus-
ters most likely resulted from factors such as low level of adher-
ence to the COVID-19 measures, and person-to-person contacts
propagated by community interaction. In Ghana, there is a contin-
uous migration from the poor North to the more developed South.
This comes with challenges such as poor housing and increased
risk of disease, which predominantly characterizes the South
(Ghana Statistical Service 2021). Since COVID-19 is primarily
transmitted in an enclosed place, the partial lockdown measures
could have generated a unique transmission path such as increased
contact within compound homes, possibly increasing the risk (Yi
et al., 2020; Zhang et al., 2023; Alves et al., 2021). Therefore,
long-term disease response measures should take into considera-
tion the unique Ghanaian setting when implemented. They should
include improving housing in urban areas to reduce their vulnera-
bility to infectious diseases. In the presence of these transmission
dynamics, districts with persistently high disease incidence or
CFR are particularly suited for targeted surveillance. Additionally,
given the limited available resources, prioritization of health inter-
ventions such as surveillance, health education, restriction of
movement and development of standards and disinfection, should
be location-specific.

CFR is not only a disease severity measure (Suleiman et al.,
2021), but provides also a proxy estimate of the health system’s

Table 1. GLM performance of covariates on COVID-19 outcomes.

Wave              Variable                                    Incidence estimate                p-value                    CFR estimate                     p-value

W1                     (Intercept)                                                      -1.90                                  0.001                                   -2.21                                    0.001
                           Urban population                                           2.53                                   0.001                                   3.72                                    0.001
                           Epicentre distance (km)                                -1.70                                  0.001                                   1.46                                    0.604
                           Male population                                             2.35                                   0.001                                   1.51                                    0.005
                           Population ≥ 65 years                                    -1.28                                  0.001                                   2.00                                    0.003
W2                     (Intercept)                                                      -2.14                                  0.001                                   -1.67                                    0.001
                           Urban population                                           3.67                                   0.001                                   4.17                                    0.001
                           Epicentre distance (km)                                -2.65                                  0.001                                   2.10                                    0.001
                           Male population                                             2.64                                   0.001                                   -2.36                                    0.996
                           Population ≥ 65 years                                    -7.09                                  0.001                                   5.06                                    0.001
W3                     (Intercept)                                                      -7.07                                  0.001                                   -1.08                                    0.001
                           Urban population                                           3.02                                   0.001                                   2.91                                    0.001
                           Epicentre distance (km)                                -2.80                                  0.001                                   9.86                                    0.001
                           Male population                                             -1.05                                  0.078                                   -8.84                                    0.114
                           Population ≥ 65 years                                    -2.00                                  0.001                                   3.86                                    0.001
W4                     (Intercept)                                                       1.78                                   0.001                                  18.88                                   0.001
                           Urban population                                           3.49                                   0.001                                   3.88                                    0.001
                           Epicentre distance (km)                                -3.58                                  0.001                                   1.76                                    0.001
                           Male population                                             -4.70                                  0.001                                   3.31                                    0.001
                           Population ≥ 65 years                                    -1.10                                  0.001                                   4.59                                    0.001
W, epidemic wave; CFR, case fatality rate.
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ability to manage the prevailing situation (Zhang et al., 2023).
Unlike incidence, our findings indicate persistent clusters of higher
RR in the central part of Ghana, during the first, third and fourth
wave. The identified clusters occurred in the centre of the country
and gradually moved towards the North during the second wave.
The first case in Ghana was reported in the Greater Accra Region
located in the South. The first wave spanned between 12 March
and 30 September 2020 during which many districts in the North
had zero reported cases likely accounting for low fatalities. Also,
its progression to other parts of the country may have been slowed
down by the partial lockdown implemented in the Greater Kumasi
(in the centre) and the Greater Accra Region (in the South). As
fatalities arise from incidences, it likely affected the distribution of
the CFR clusters. Conversely, despite clusters of high incidences in
the South (Greater Accra Region) there were no districts with high-
er RR for CFR. This could be due to the high number of reported
cases in this region as CFR estimation uses the total number of
reported cases as denominator. Additionally, most management
resources were located in the Greater Accra Region in the South.
Key health facilities such as Korlebu Teaching Hospital,
University of Ghana Medical Centre, Ga East Hospital and Ghana
Infectious Disease Centre are all located in the South. Therefore,
the low CFRs could be due to better management of cases com-
pared to other areas. Another factor affecting the CFR distribution

is uneven testing rates, health-seeking behaviour and accessibility
to health care that are better in the South. Actions aiming to reduce
CFR during pandemics should consider improving measures
regarding healthcare access. Higher CFR could also reflect
changes in the virus’s characteristics helping the virus evade the
immune system and thus result in high fatalities. High CFRs
should also be seen as a potential early warning for viral mutation
and direct targeted surveillance towards areas where detected.

The influence of urbanization, proximity to infectious
sources, age, and sex distribution on COVID-19 have been docu-
mented elsewhere (Bashir et al., 2020; Huang et al., 2021; Aral
and Bakir 2022). Our analysis indicated a significant association
between the COVID-19 distribution in Ghana and these covari-
ates. We identified a reduction in the number of reported cases
with an increase in the distance to the epicentre (Greater Accra
Region) located in the south, together with a reduction in the RR,
with regard to the proportion of the population aged ≥ 65 years
and the urban population. Our study also detected a persistent
MLC and SC in the centre (Bono and Ashanti regions) that in
most districts persisted from W1 into W4. Such a pattern could be
influenced by low capacity to manage COVID-19 cases propagat-
ed by an uneven distribution of health resources. Hence, an
increase in resource distribution to these areas is advocated.

COVID-19 is a systemic disease with preferential symptoms

Figure 4. Spatial distribution of district-level detected cluster for COVID-19 CFR.
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from the respiratory tract whose reproduction rate rests on direct
human interactions. Therefore, high urbanization and close dis-
tance to the epicentre increase the risk of infection. Again, the
observed reduction in cases when the proportion of the population
aged ≥65 increases could be due to their low mobility and therefore
less contact with infected individuals. For the CFR, the urban pop-
ulation, the proportion of aged ≥65 years and the distance from the
epicentre increased this risk. The reason is that longer distances
correspond to low healthcare infrastructure, whereas a higher
urban population could mean higher competition for limited health
resources (Fatima et al., 2021). Therefore, programs to reduce
rural-urban migration and decentralization of health resources
should include long-term measures to reduce CFR during pan-
demics. Again, people aged ≥ 65 years have lower immunity and
higher susceptibility to comorbidities, such as diabetes and cardio-
vascular disease that both increase the risk for fatality due to
COVID-19 (Owusu et al., 2020). Therefore, future interventions
should consider program that protect these vulnerable populations.

The study found that, more districts with significantly high
incidence were detected after adjusting for covariates. These addi-
tional districts included some districts in the North that were not
detected. This means that transmission in these areas could be
higher if new infections occur in closer proximity. During the 2nd

wave, for instance, more secondary clusters were identified in the
Southeast (Volta Region) which persisted during the 3rd Wave.
These districts share a border with Togo with many approved and
unapproved entry routes. Consequently, the district with a persis-
tent secondary cluster after taking out the covariates could also be
a pointer to the district’s interaction with bordering countries.
Therefore, such districts could be good sites for sampling to mon-
itor viral mutations and imported COVID-19 cases. It also points
to taking more international measures, than country-specific ones.
Concerning to CFRs, fewer districts with higher RR were identi-
fied in the northern part after adjustment. During the 2nd wave, for
instance, 15 districts detected as MLCs with regard to CFR in the
North disappeared with few SCs after accounting for the covari-
ates. This highlights the possible effect of low-quality healthcare
accessibility in these districts. Improved resource allocation could
limit the high number of deaths in these areas (Zhang et al., 2023;
Bermudi et al., 2021b; Rodriguez Velásquez et al., 2021). The
cluster detected in the Northeast shares a border with Burkina
Faso; therefore, the high CFR could also be due to the transmission
dynamic along the border, which calls for international rather than
national measures. In addition, such districts should be considered
as surveillance sites for genomic representative sampling which
could help identifying any changes and imported cases early.

Figure 5. Spatial distribution of district-level detected cluster for COVID-19 IR after covariate adjustment. DID, district identification
number,W1,..,4:-pandemic wave 1 to 4.
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Cluster detection from irregular shape polygons such as in our
study is often the case in most health spatial data analysis
(Abolhassani et al., 2020). Detecting clusters using the spatial scan
statistics presents a challenge due to non-standard shapes (Otani
and Takahashi 2021; Toshiro and Kunihiko 2005; Tango and
Takahashi 2012). Overall, the FSRLR used in the study offered a
good opportunity to identify areas with elevated risk of COVID-19
incidence and CFR within the complex geographic boundaries.

Conclusion
The study investigated the spatial heterogeneity of district-

level COVID-19 incidences and CFR in Ghana. FSRLR and a
Poisson-GLM identified districts with elevated risks of COVID-19
incidence and CFR. Different patterns of clusters were observed
during the four waves.  The MLC of incidence was persistent in the

South (Greater Accra Region) also after covariate adjustment.
Districts with elevated CFR risks were found in the centre (Bono
Region) and the North but the clusters in the northern part disap-
peared after adjustment. Considering the WHO surveillance strate-
gies for COVID-19, the identified high-risk areas could aid in
selecting sentinel sites for targeted surveillance. In genomic
surveillance this study could guide representative sampling for
sequencing and monitoring. The results further show how the dis-
tribution pattern of incidence and CFR changes if the urban popu-
lation, the proportion of the male population, the proportion of the
population aged ≥ 65, and the distance to the epicentre are taken
into account. Therefore, long-term control measures for COVID-
19 and other contagious diseases should consider improving qual-
ity healthcare access in peripheral districts. Additionally, measures
aimed at preventing rural-urban migration could reduce incidence
in Ghana. Finally, the study calls for cross border measures in addi-
tion to national measures.

Figure 5. Spatial distribution of district-level detected cluster for COVID-19 IR after covariate adjustment. DID, district identification
number,W1,..,4:-pandemic wave 1 to 4.
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