
Abstract
Rabies continues to be one of the deadliest, high risk diseases

worldwide, posing a severe threat to public health. The lack of
human-to-human transmission means that the spread of rabies is not
significantly affected by the distribution of humans or migration.
Thus, the spatiotemporal dynamic of cases in both wild and domestic
animals is an important issue that can result in human cases. This
paper gives an overview of the methodologies for the spatial and
temporal dynamic analysis of this disease. It introduces the most rep-
resentative research progress of spatial aggregation, dynamic trans-
mission, spatiotemporal distribution, epidemiological analysis and
application of modelling in the study of rabies transmission in recent
years. This overview should be useful for investigating the spatial
and temporal dynamics of rabies, as it could help understanding the
spread of cases as well as contribute to the development of better pre-
vention and control strategies in ecology and epidemiology.

Introduction
Rabies is caused by neurotropic viruses of the genus

Lyssavirus. The untreated disease, presenting as progressive

encephalomyelitis, has an almost 100% case fatality rate (Fooks et
al., 2014; Hemachudha et al., 2002). Africa and Asia, with thou-
sands of deaths recorded annually, account for more than 99% of
all human rabies infections (Fooks et al., 2014; Knobel et al.,
2005). Although infected cases are uncommon in wealthy nations,
the potential dissemination of the common rabies virus (genotype
1) in different animal species continues to be one of the most sig-
nificant and feared risks to public health in the 21st century (Yu et
al., 2012). Dogs constitute the main reservoir and almost all
human cases of infection are caused by infected canine bites.
However, rabies has formed chronic transmission networks in var-
ious other terrestrial carnivores, including foxes, coyotes, rac-
coons, skunks and several bat species. Although animal bites are
the principal route of rabies transmission, alternative ways,
including aerosol, ingestion and transplantation have also been
reported (Beran, 1994; Kaplan et al., 1986).

During the past century, numerous countries have carried out
successful, extensive vaccination campaigns to eradicate canine
rabies, dramatically lowering the frequency of human infections
(Müller et al., 2015). In Western Europe, Latin America, USA,
Canada, Japan and Malaysia, dog-mediated human cases were
eliminated. These initiatives have helped to decrease enzootic dog
rabies in many metropolitan areas, but they have mostly failed to
control the spread of the disease from wildlife to livestock species
and humans in most of these nations (Mitmoonpitak et al., 1998;
Touihri et al., 2011). However, there are still high-risk countries
with a tendency towards spatial expansion of the disease.
Examples in Asia include China (Zhang et al., 2011; Zhou et al.,
2016), Republic of Kazakhstan (Abdrakhmanov et al., 2016),
India (Brookes et al., 2018), Thailand (Thanapongtharm et al.,
2021), Indonesia (Ward, 2014); in the Americas Mexico
(Bárcenas-Reyes et al., 2019; Ortega-Sánchez et al., 2022), Chile
(Escobar et al., 2015), Brazil (Oviedo-Pastrana et al., 2015); in
Europe Germany (Eckardt et al., 2015) and Ukraine (Polupan et
al., 2017); and Africa Tunisia (Kalthoum et al., 2021). The World
Health Organization (WHO) mapped the rabies risk in 2013 with
Asia and Africa being at the highest level (Figure 1; source: World
Health Organization, modified).

In the temporal domain, a distinct seasonal pattern has been
observed. Furthermore, the spread of rabies cases is not particular-
ly significant to the distribution and migration of humans since
there is no human-to-human transmission (Heeney, 2006). For
these reasons, the spatial and temporal dynamics of rabies are cru-
cial for understanding the rabies distribution, both in humans and
in the animal reservoirs. We outline the methods for analysing the
dynamics, which may contribute to finding the best ways to lessen
the risk of new outbreaks by increasing the understanding of how
these epidemics start. Risk-based techniques can improve veteri-
nary surveillance by determining the requirements and priorities
for monitoring (Thanapongtharm et al., 2021), which would lead
to effective prevention and management of both animal and
human rabies.  

Correspondence: Shuaicheng Chen, Shandong Agricultural University,
7 Panhe Street, Taishan District, 271001 Tai’an, China.
Tel.: +86 0538-8249579.
E-mail: shuaichengchen@outlook.com

Key words: Spatial analysis; temporal analysis; rabies; zoonotic disease.

Conflict of interest: The Author declares no potential conflict of interest.

Received for publication: 10 August 2022.
Revision received: 14 November 2022.
Accepted for publication: 14 November 2022.

©Copyright: the Author(s), 2022
Licensee PAGEPress, Italy
Geospatial Health 2022; 17:1139
doi:10.4081/gh.2022.1139

This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License (CC BY-NC 4.0) which permits any
noncommercial use, distribution, and reproduction in any medium, pro-
vided the original author(s) and source are credited.

Publisher's note: All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated organiza-
tions, or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article or claim that may be made by its man-
ufacturer is not guaranteed or endorsed by the publisher.

Spatial and temporal dynamic analysis of rabies: A review of current
methodologies
Shuaicheng Chen
College of Animal Science and Technology, Shandong Agricultural University, China

                                                                       Geospatial Health 2022; volume 17:1139

                                          [Geospatial Health 2022; 17:1139]                                                          [page 293]

Non
-co

mmerc
ial

 us
e o

nly



[page 294]                                                           [Geospatial Health 2022; 17:1139]                                         

Spatial analysis and mapping
In the field of spatial epidemiology, disease mapping refers to

the process of visualizing disease data using geographic informa-
tion systems (GIS) tools, which may most naturally show the spa-
tial distribution of diseases. The British physician John Snow first
drew a famous case map of the London cholera outbreak in 1854,
revealing the connection between cholera and wells for drinking
water (Elliot et al., 2000). Rabies case data can be visualized in a
similar way (Seetahal et al., 2019). In addition, maps can be com-
bined with histogram or line chart to be more effective in describ-
ing the temporal and spatial trend of rabies (Mondul et al., 2003).

When all the animal rabies cases in Sri Lanka from 1999 to
2010 were projected on a map, it was evident that the western
provinces had the majority of instances (Karunanayake et al.,
2014). The geographical distribution of animal rabies cases in
Tunisia from 2012 to 2018 showed that the disease was mainly
restricted to the North and the Centre of the country (Kalthoum et
al., 2021). The maps of human rabies cases in China between 2005
and 2012/2013 present a decreasing incidence trend in high-risk
areas but an increasing one in low-risk areas (Song et al., 2014). In
addition, Guo et al. (2018a) showed that cases are more common
in the East and South in China, with a widening geographical pat-
tern indicating that the extent of infection was still growing.
Despite a drop in the overall number of rabies cases in people in
Brazil, recent, three high-risk clusters of equine rabies have very
recently been reported (Oliveira et al., 2022).

Spatial aggregation analysis 
Waldo Tobler stated in his First Law of Geography in 1970 that

everything is connected and the closer the distance, the more relat-
ed things are (Tobler, 1970). Spatial autocorrelation refers to the
notion that the locations of objects or phenomena are interconnect-

ed, i.e. they show some degree of spatial aggregation. Analysis of
this comes in two types: global and local, where the former is used
to determine whether attributes supplied throughout the whole
study range show autocorrelation but without revealing where they
are clustered, while the latter can tell whether or not specified
attributes in a local area are autocorrelated.

The three most commonly used global spatial autocorrelation
methods are Moran’s I (Moran, 1950), Geary’s C (Geary, 1954)
and Getis-Ord’s G (Getis and Ord, 2010; Ord and Getis, 1995).
Moran’s I varies between 1 and -1, where  >0 indicates a positive
spatial correlation between research objects, <0 a negative spatial
correlation or dispersion, and = 0 a spatial random distribution.
Geary’s C compares the difference of attributes of adjacent items
with values ranging between 0 and 2, with those close to 0 indicat-
ing a higher spatial positive correlation; those close to 2 a stronger
negative correlation; and those closer to 1 a more randomly dis-
tributed set of data. Getis-Ord’s G estimates the degree of correla-
tion between the value at one location and that at other locations
within a distance. It can tell whether there is a spatial clustering
area and further determine whether it is strong or weak. All these
methods can be tested by Monte Carlo simulation (Binder et al.,
1993).

Moran's I is the most commonly used method and it can be cal-
culated according to Lee and Wong (2001) as follows:

                                      

(1)

                                             
(2)
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Figure 1. World Health Organization (WHO) rabies risk map (Source: World Health Organization, modified).
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where (Eq. 2) is the sample variance; n the number of spatial units
indexed by i and j; x the variable of interest; the mean of x; and
wij a matrix of spatial weights with zeroes on the diagonal.

The global Moran's I reflects the spatial correlation of the
whole research region. Local spatial autocorrelation analysis can
be done to determine whether there are any minor and possibly
undetected aggregations between sub-regions when no aggregation
occurs in the global autocorrelation analysis. The local index of
spatial association (LISA) by Anselin (1995), on the other hand, is
a widely used technique for local autocorrelation analysis, which
generates the cluster diagram and scatter diagram, with four spatial
patterns: high-high (HH) specifying high-density units surrounded
by high-density units, low-low (LL) specifying  low-density units
surrounded by low-density units; in addition there are two so
called outliers, i.e. low-high (LH) specifying low-density units sur-
rounded by high-density units and high-low (HL) specifying  high-
density units surrounded by low-density units.  

The nearest neighbour distance method, proposed by Skellam
(1952) and further developed by Clark and Evans (1954), is fre-
quently used to determine whether a cluster is present. The antici-
pated average distance is derived using a fictional random distribu-
tion of the same number of instances in the same area. The average
nearest neighbour ratio is calculated through dividing the observed
average distance by the predicted average distance; if the ratio is
<1, the case pattern is clustered. The Z-score is another factor indi-
cating the level of clustering, where a high absolute Z-score
denotes a high level of clustering (Guo et al., 2013). In addition,
the epizootic direction of spread can be detected by calculating the
standard deviational ellipse, showing the dispersion in two dimen-
sions of the mean centres; if two species are involved, the Watson-
Williams test (Zar, 1999) can be applied to determine whether the
mean centres of each species rotate at different angles. A 

Z-test may be assessed to check whether the epizootic direc-
tion of the spread is different between the species. The cumulative
mean direction and circular variance of the mean centres can also
be calculated (Guerra et al., 2003).

A spatial autocorrelation study on rabies case data can deter-
mine whether, and to what extent, the occurrence of rabies is spa-
tially correlated. The findings indicate that the geographical aggre-
gation studies should be considered a priority for rabies prevention
and management. Attention should also be concentrated on regions
with a high prevalence of rabies. In the Sultanate of Oman,
Moran’s I was applied from 2006 to 2010 to calculate the spatial
distribution of each species, with a Z-test used to determine the sta-
tistical significance. There was no discernible clustering of con-
firmed rabies cases across all species with Moran’s I at 0.0359 and
p=0.1189 and also no discernible clustering across different
species with I<0.0345 and p>0.1362 (Hussain et al., 2013). In sev-
eral districts of the Indonesian archipelago, human cases were
found to be highly clustered with Moran’s I at 0.47 and p=0.005
(Ward, 2014). A LISA test for bat-borne rabies cases, conducted
between 2003 and 2013 in two regions of Chile, Metropolitana and
Valparaiso, resulted in Moran’s I of 0.0857 and 0.0977, respec-
tively (Alegria-Moran et al., 2017). Although this demonstrated a
significant positive geographical association, none of the findings
were statistically significant. Ellipsoids for bat rabies spatial den-
sity in Chile demonstrated a particularly strong relationship with
metropolitan regions (Escobar et al., 2015). The geographic het-
erogeneity of rabies cases in the state of Ceará, Brazil are shown in
Figure 2, which illustrates the four spatial patterns HH, LL, HL and
LH (Cavalcante et al., 2019). 

Spatial regression analysis
Spatial regression analysis is the primary method for the study

and exploration of the geographical connection between estimated
values; standard regression techniques are inappropriate for spatial
analysis due to the spatial dependence and spatial variety of
objects (Kanankege et al., 2022). These methods include simulta-
neous autoregressive, conditional autoregressive and spatial mov-
ing-average models. Through the lens of geography or ecology,
these analytical approaches primarily allow the study of the rela-
tionship between the spatial distribution of incidence or death from
disease on the one hand, and various environmental/socioeconom-
ic factors on the other (Raghavan et al., 2016).

Temporal analysis 

Temporal aggregation analysis 
Temporal aggregation analysis includes two foci: the degree of

circular distribution and that of the concentration. The former is
generally used to analyse data with periodic changes testing
whether or not they show a tendency of cyclical, centralized distri-
bution. Each original piece of information is regarded as that of a
position on the circumference through angle conversion. The cir-
cular distribution method is suitable for diseases with unimodal or
slightly bimodal distribution and is often used in the study of infec-
tious diseases with seasonal trends (Polupan et al., 2019).
However, this approach cannot give reasonable results for diseases
with multiple peaks, which are similar in an observation period; in
this case, some studies propose splitting multiple peaks and ana-
lyzing them separately to obtain more accurate results.
Theoretically, the 95% reference value range calculated as mean
angle ± 1.96 standard deviation (SD) is more appropriate to repre-
sent the peak onset date. The concentration degree approach, on
the other hand, deals with the degree of aggregation of a disease in
one year using m as an indicator of the seasonal intensity at the
onset time. This indicator can be calculated from the ratio of the
monthly incidence to the annual incidence and takes a value
between 0 and 1. The higher the m, the stronger the seasonality of
the onset time, and the lower the m, the more distributed the onset
time. The disadvantage of the concentration degree method is that
it only shows the degree of the seasonality of the onset time of the
disease in question, while the specific aggregation time cannot be
estimated as this requires a combinatorial approach (Arias-Orozco
et al., 2018; Mogano et al., 2022).

Time series analysis 
A time series is constituted by trend, seasonality and error

components and can be statistically characterized as follows:

                                                     (3) 

where Zt is the observed data in period t; Tt the trend component;
St the seasonal component; and Et the part that the model did not
account for, also known as the error or random residual.

The time series decomposition of bat-borne rabies in Chile
from 2003 to 2013 revealed that the highest and lowest risk is in
March and in July, respectively, which suggests that the cases tend-
ed to occur more frequently during the hot season (from October
to March) and less frequently during the cold season (from April to
September) (Alegria-Moran et al., 2017). Regression analysis of

x
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monthly dog cases in India revealed seasonal volatility, with high
numbers of cases in March and August (Brookes et al., 2018). A
spatial and temporal analysis of dog rabies cases reported between
2015 and 2019 was conducted in a region in the Northeast of
Tunisia, where the infection displayed seasonal trends with a
robust spring peak followed by weaker summer and winter peaks
(Hassine et al., 2021). To evaluate the cyclical trend in the data, a
centred moving-average was used for seasonal numbers of the
cases, with variance and the F-test employed to determine the sea-
sonality of rabies incidence (Hassine et al., 2021). A veterinary
study in the State of Tocantins, Brazil, conducted from 2006 to
2019, broke down the cattle cases seasonal, and residual compo-
nents (Figure 3) and found that the average number of cases was
lower from April to June (Dos Santos et al., 2022); however statis-
tical significance was not reached (p>0.05).

The autoregressive integrated moving-average (ARIMA) sta-
tistical models (Brockwell and Davis, 2002) are used to examine
and predict time series data. They offer a simple yet efficient
method for creating precise time series forecasts since they directly
handle a variety of typical time series data. It is common to use the
notation ARIMA (p, d, q), where p represents the lag order, d the
degree of difference and q the order of moving average. The

parameters are replaced by integer values to readily identify the
particular ARIMA model being employed. A parameter can have a
value of 0, which denotes that the model should not use that spe-
cific component. This means that ARIMA models might be config-
ured to serve the same function as an autoregressive moving-aver-
age (ARMA) model or even a straightforward autoregressive
(AR), integrated (I) or moving average (MA) model. The long
short-term memory (LSTM) model has been tested for rabies out-
break prediction (Saleh et al., 2019), whose results indicate that the
LSTM model achieved a great result with higher accuracy and
lower root mean squared error (RMSE), compared with the stan-
dard ARIMA model.

To assess the temporal distribution properties of infectious dis-
ease cases and forecast their short-term trend, researchers may uti-
lize the ARIMA models, but the stationarity of the original
sequence must be assessed. If it is not stationary, the data should
first be checked for transformation and differentiation; second,
apply the autocorrelation diagram and partial autocorrelation dia-
gram to identify and select the model; third, carry out parameter
estimation and model diagnosis on the selected model; fourth,
chose the best model; and finally use the established time series
model to forecast the development trend of the infectious disease

                   Review

Figure 2. Spatial distribution and Moran map of rabies cases coefficients (per 100000 population of inadequate conducts of post-expo-
sure human anti-rabies services in Ceará, Brazil, (a) 2007-2010, (b) 2011-2013, (c) 2014-2015 and (d) 2007-2015 (adapted with per-
mission from Cavalcante et al., 2019).
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cases. For the rabies cases in the Sultanate of Oman from 2006 to
2010, a fitting of 16,384 candidate models was required to find the
optimal ARIMA model (identification). The best fitting model was
acquired and the statistics showed that each model coefficient was
significant at p <0.001 (Hussain et al., 2013). For the Tocantins
State study in Brazil, the ARIMA could forecast the rabies cattle
cases in 2022. All monthly records for this disease stayed within
the anticipated 95% confidence interval (CI) in 2020 and 2021
(Dos Santos et al., 2022).

Mathematical dynamics model
The susceptible-infected-recovered (SIR) model (Kermack

and Mckendrick, 1927) is the most widely used method for analyz-
ing the dynamic transmission features of infectious diseases. The
model simulates the movement of individuals between susceptibil-
ity, infection and recovery based on ordinary differential equations,
such as:

                                                               (4) 

                                                               (5) 

                                                               (6) 

                                                                 (7) 

where N defaults to a constant value; the natural parameter β indi-
cates the likelihood of being susceptible (S) compared to being
infected (I) and the parameter γ reflects the probability of being
infected (I) compared to recovered (R). These integers represent
the number of people in the relevant population. Zhang et al.
(2011) expanded the basic model by including the condition

“exposed (E)” creating the susceptible-exposed-infected-recovered
(SEIR) model.

Based on the seasonal and geographic variability of rabies inci-
dence in China, Zhang et al. (2011, 2012a, 2012b) investigated the
dynamics of rabies transmission and how rabies spreads between
dogs and from dogs to humans. They first constructed a database
of dogs with variables such as birth rate, immunization loss rate,
time of infection of an infected person, exposed individuals
(infected or susceptible), natural mortality, vaccination rates and
disease-related mortality using the human SEIR model (Zhang et
al., 2011). Then, a human-dog contact diffusion model was devel-
oped to analyze the effect of canine migration on the geographical
spread of rabies (Zhang et al., 2012b). Finally, a susceptible-
exposed-infected-recovered-susceptible (SEIRS) model with peri-
odic transmission rates was employed to examine seasonal rabies
outbreaks (Zhang et al., 2012a).

Methods combining genomic and epidemiological data

Whole-genome sequencing of viruses is a valuable method for
analysing viral evolution and tracking outbreaks (Brunker et al.,
2018b; Nahata et al., 2021). A systematic analysis of epidemiolog-
ical and pathogen genetic sequence data can describe the temporal
dynamics of canine rabies and reveal its spatial transmission mech-
anism (Biek et al., 2007; Bourhy et al., 2016; Real et al., 2005; Yu
et al., 2012). Gene sequencing was performed on rabies-positive
specimens and several strains were plotted using disease mapping
to analyze the transmission (Zhang et al., 2014). In addition, anal-
ysis and epidemiological modelling based on phylogenetic meth-
ods can define and anticipate the spatial spread of rabies, evaluate
possible influencing factors and assess the impact of rabies man-
agement (Talbi et al., 2010).
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Figure 3. Decomposition of the time series of cattle rabies cases in Tocantins state, Brazil, 2006–2019. (a) Original series, (b) trend com-
ponent, (c) seasonal component, and (d) residual component (adapted with permission from Dos Santos et al. 2022).
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Spatiotemporal analysis

Knox spatiotemporal interaction model
Spatiotemporal models deal with data collected across both

time and space generating dynamics that result in large-scale spa-
tiotemporal patterns including modes and transitions between the
modes. The Knox method (Knox and Bartlett, 1964) is a global
spatiotemporal aggregation detection method. It artificially sets
spatial thresholds  and time threshold that bridge all event points in
pairs calculating the spatial distance between point i and point j
and a corresponding temporal distance tij between two points.
When, sij? s, the event points are considered to be adjacent in space
and when tij? t, the event points are considered to be adjacent in
time. The logarithm of events of different categories is then count-
ed giving the logarithm of the adjacent events in space and time
giving the Knox index, which tells whether the events are adjacent
in time and space.

The setting of the spatiotemporal threshold plays a key role in
the results of the Knox test, which determines at which spatiotem-
poral scale the null hypothesis (Pearson’s chi-squared (χ2) test) will
be rejected or accepted. Spatial thresholds are usually determined
empirically or draw on research results from other fields, such as
incubation periods and transmission characteristics. There are also
other relevant threshold determination methods, such as the aver-
age nearest neighbour and the average critical value of Ripley’s K-
function. The greatest disadvantage of the Knox index is that its
results are affected by changes in the exposed population; however
this is not efficient for infectious diseases with long incubation
periods and high incidences.

Statistical analysis of spatiotemporal scanning 
Through disease mapping, it is intuitively possible to deter-

mine whether a disease is spatially grouped, while further cluster-
ing analysis is necessary to determine the precise clustering. The
commonly used analysis method for spatiotemporal aggregation is
the spatiotemporal rearrangement scan statistic using SaTScan
software (Kulldorff, 1997), which can pinpoint places and times of
spatiotemporal aggregation. It is assumed that case distributions
follow the Poisson distribution and that the defined scan window
is cylindrical (the approach relies on a cylinder with the bottom
corresponding to geographic space and the height to time). For
each scanning window, the expected number of cases is deter-
mined using the population and the actual number of cases. The
predicted and the actual number of cases arrive at the log likeli-
hood ratio and the relative risk. A disease can be scanned and tailed
through the movement and the modification of the scanning win-
dow to detect the time and geographical location of all cases
(Kulldorff et al., 2006). SaTScan can monitor diseases geographi-
cally and detect whether or not they are randomly dispersed in
time, space or spatiotemporally. This method can thus indicate if
the phenomena under study are clustered and assess the statistical
significance of risk. Other advantages include repeated time-peri-
odic disease monitoring and the ability to signal outbreaks at an
early stage.

The statistical approach of spatiotemporal scanning applies to
the study of almost all types of disease. In this way, Hikufe et al.
(2019) found a cluster of animal rabies epidemics centred in north-
western Namibia, while Olugasa et al. (2009) detected rabies-
infected cases due to dog bites in Ilorin, Nigeria within a 3-km
radius of the city’s central slaughterhouse and its nearby open-air
beef market. In addition, it is possible to observe the spatial and

temporal variations of rabies risk by comparing spatial scan statis-
tics results for two distinct periods at the same location. This was
the way it was found that the risk area of animal rabies in Minas
Gerais, Brazil was at a growing phase after the millennium shift
(Olugasa et al., 2009). In addition, county level clusters in the rac-
coon rabies enzootic zone in the United States was shown to have
a higher cross-species transmission rate when studied from 2007 to
2011 using a spatial-temporal scan statistics (Wallace et al., 2014).

Cluster detection based on spatiotemporal density 
Spatiotemporal scan statistics need to presuppose the probabil-

ity distribution model of the data, and the results are greatly affect-
ed by the scan window, which cannot describe the location and
shape information of the spatiotemporal clusters in detail. To over-
come these problems, additional methods for spatiotemporal den-
sity-based clustering have been proposed. Density is used as a
measure of similarity between entities, and spatiotemporal clusters
are regarded as a series of high-density connected regions divided
by low-density (noise) regions. A commonly used method is den-
sity-based spatial clustering of applications with noise
(DBSCAN), which also can become spatiotemporal DBSCAN
(ST-DBSCAN) by adding the time dimension. It assumes that i and
j are two core points that are directly density-reachable and if the
average distance of the non-spatial attributes of two neighbour-
hoods of these core points is less than a threshold, clustering is
revealed. ST-DBSCAN does not require a priori assumption about
the distribution model of the data and can detect clusters of arbi-
trary shapes. Detecting 480 clusters, Guo et al. (2013) were the
first to use ST-DBSCAN to analyze the distribution of rabies cases
in China from 2005 to 2011. The DBSCAN methodology is very
sensitive to user-defined parameters, whose selection thus is criti-
cal. The disadvantage is that this approach needs to set space, time,
non-spatial distance thresholds and density thresholds. At present,
DBSCAN is mostly used in the field of road traffic, and its appli-
cation in disease aggregation is still in its infancy.

Factors influencing the dynamics of rabies
It is believed that both environmental and anthropogenic fac-

tors contribute to rabies (Yu et al., 2020). Environmental factors
include elevation, temperature, land cover, etc (Guo et al., 2018a),
while anthropogenic factors include population density, economic
development level and so on (Wilson et al., 1997). The generalized
additive models may be used to forecast the geographic risk
regions for the spread of rabies to quantify the relationship
between monthly occurrences of rabies and explicable factors.
Estimating the temporal and spatial trends can help to predict the
future risk trend of rabies and implement efficient epidemic pre-
vention and control measures.

Environmental variables
The main steps for comparing the data of viral phylogenies and

environmental landscape are i) extracting spatiotemporal informa-
tion from phylogenies; ii) estimating dispersion and epidemiolog-
ical statistics; iii) computing environmental weights; iv) correla-
tion analysis; and v) significance testing based on randomization
(Dellicour et al., 2016). The temporal and spatial distribution of
human rabies has been found to be positively correlated with tem-
perature (Guo et al., 2018a) and negatively correlated with altitude
(Yao et al., 2015). Outbreaks starting during the dry season are
generally more severe than during the rainy season (Gabriele-Rivet
et al., 2021). The influence of landscape elements on disease
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dynamics lessens as population immunity rises (Rees et al., 2013).
Mountains and rivers function as barriers to the development

of rabies pandemics as such features can limit the transmission rate
of the virus by as much as seven times (Wheeler and Waller, 2008).
The transmission of raccoon rabies has been linked to wetlands
and forest cover, with rabies spreading more slowly in certain
places (Dhand and Ward, 2012; Smith et al., 2005). Plateaus and
rough rocky terrain have been identified as deterrents for animals,
such as stray dogs. Even in plain areas, rabies scarcely spread
through stray dogs if the distance between communities is greater
than their normal range. This implies that prevention and manage-
ment strategies in mountains, plateaus and plains are different.
Controlling stray dog migration and their reproduction is crucial
for mountainous areas, especially in those with rocky and wooded
terrain. While, on the plains, the goal is to manage the link between
the rabies-infected communities and those that are unaffected (Guo
et al., 2018a). Environmental factors can be integrated with genetic
data into phylogeographic frameworks to quantify how different
attributes influence the transmission processes (Nahata et al.,
2021).

Socioeconomic variables
The socioeconomic characteristics include the human popula-

tion density, annual gross domestic product, ratio of illiteracy, etc.
(Guo et al., 2018a). Economic growth is thought to be another
anthropogenic element that contributes to the spread of rabies (Yao
et al., 2015), which is more common in less developed areas
(Arias-Orozco et al., 2018; Hampson et al., 2015). Canine rabies
has been found to have a positive correlation with the human pop-
ulation density (Hikufe et al., 2019) but its local transmission is
also related to the canine population size and distribution (Brunker
et al., 2018a; Yin et al., 2012; Zhu and Liang, 2012). Rabies intro-
duction in areas close to communities results in larger epidemics
(Gabriele-Rivet et al., 2021). The effectiveness of vaccination
campaigns, status of vaccine supply and poor rabies awareness
should also be included in the list of socioeconomic variables
(Mulatti et al., 2011; Polupan et al., 2019). 

Transportation variables
Traffic may contribute to canine rabies transmission (Brunker

et al., 2018a). Distance to the nearest road has been linked to the
spread of the virus (De Andrade et al., 2016). The collection of
variables has expanded to include accessibility and transportation
parameters, such as the Euclidean distances from a hamlet to the
road network, the closest city centre and the closest hospital or
clinic. Public health initiatives, such as various programmes for
disease prevention and control, are in reality constrained by traffic
patterns and accessibility. In Tunisia, dogs who test positive for the
rabies virus have been observed to be spatially connected to roads
and irrigated areas (Hassine et al., 2021). Since residential rubbish
in Tunisia is commonly dumped along primary and minor roads, it
serves as the main source of food for stray dogs, as do also formal
waste disposal sites. Attraction of pack of canines to such places
supports the spread of the canine rabies virus. Conversely, high
road traffic volumes act as functional barriers to dog migration
(Hassine et al., 2021; Laager et al., 2018).

Epidemiologic variables
The epidemiologic characteristics include the least geographi-

cal distance to another case, the least temporal distance to the most
recent case, and the least spatiotemporal distance to the nearest

case. Correlations between infected areas may be discovered using
epidemiological variables. Furthermore, the separation from the
closest or most recent case reveals the amount of potential risk that
has been disclosed by previous cases. Two independent but related
approaches for recreating the dynamics of epidemics utilizing geo-
graphical, temporal and genetic data have been developed for spa-
tial epidemiological models of transmission and for basic genetic
drift models (Mollentze et al., 2014). The first approach uses coa-
lescent models, which include a diffusion model for the pathogen’s
spatial evolution and a population dynamic model to connect the
pathogen’s demography to its development, while the second
reconstructs the transmission tree directly reflecting “who-infect-
ed-whom”. It also recognizes the epidemiological processes that
control the interaction of host and disease and the host population
structure (Mollentze et al., 2014).

Data sources 
Information on human rabies cases in China can be collected

from the yearly reports of the Chinese Center for Disease Control
and Prevention (China CDC) as done by Yu et al. (2012) or the
China National Notifiable Disease Reporting System
(http://www.stats.gov.cn/).  In Chile, there is an electronic database
with rabies records from the Instituto de SaludPública de Chile
(Escobar et al., 2015). Rabies cases in the Democratic the Republic
of the Congo can only be collected from the veterinary clinic of
Ngaliema, the Office for Rabies Vaccination and Control (OVCR)
at the veterinary clinic of Gombe, the Institut National de
Recherche Biomédicale (INRB) and the Veterinary Laboratory of
Kinshasa (LaboVetKin)(Twabela et al., 2016).

In Tunisia, the National Laboratory of Rabies Diagnostic at
Institut Pasteur in Tunis (IPT) (http://www.pasteur.tn/) and the
Directorate-General of Veterinary Services (DGSV) publish annu-
al reports detailing animal rabies cases and dogs having been vac-
cinated. The Basic Health and Care Management division of the
Ministry of Public Health [Direction des Soins et de Santé de Base
(DSSB)] in Tunisia supplied statistics on Post Exposure
Prophylaxis (PEP) instances. Some influencing factors can be
acquired from the DIVA-GIS website (https://www.diva-gis.org/)
and the Tunisia Agriculture map (Kalthoum et al., 2021).

Dog population data in Thailand can be obtained from local
administration organizations (LAOs) at
http://www.thairabies.net/trn/, while the Land Development
Department (LDD) provides geographic information, including
administrative divisions and highways (http://www.
lddservice.org/lddapp/client/#/map) (Thanapongtharm et al.,
2021). The Worldpop project (https://www.worldpop.org/) is also
helpful as it provides raster maps of human population density
with a 100-m resolution (Thanapongtharm et al., 2021). Other fac-
tors and data sources are listed in Table 1 (modified from Guo et
al., 2018a), with China as an example.

Descriptive statistics of the distribution of rabies cases can be
performed by SPSS software (Twabela et al., 2016) and SaTScan
software (Kulldorff et al., 2005) provides  the discrete Poisson spa-
tial model for spatial analysis. It uses the space-time permutation
model to identify regions and times where there is a substantial
concentration of dog rabies cases (Bouslama et al., 2020). The R
software’s package “spdep” can be used for geographical analysis
(Kalthoum et al., 2021) and the average nearest neighbour
approach for determination of separations between canine rabies
cases. Using the spatial point pattern analysis (spatstat) tool in the
R and the open source geographic information systems (QGIS)
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software systems, it is possible to determine the typical shortest
Euclidian distance between the location of rabid dogs and the near-
est feature (Hassine et al., 2021). The R “secr” package has been
used to calculate the dingo density in Australia using the maximum
pseudo-likelihood spatially explicit mark-resight analysis
(Gabriele-Rivet et al., 2020). Furthermore, R software is useful for
mapping the geographic distribution of canine and human rabies
cases, while the Kruskal-Wallis (Breslow, 1970) and Chi-square
tests (Mchugh, 2013) can be employed for descriptive comparisons
between their frequencies; p values < 0.05 are regarded statistically
significant at the 95% confidence level. Associations between the
various factors can be evaluated using the correlation test and the
Joint point software for trend analysis (Kalthoum et al., 2021).

The geographical distribution of cases of rabies with laborato-
ry confirmation may be described using a semivariogram. A vari-
ety of spatial lag lengths have been used to generate directed semi-
variograms with the Variowin software (Hussain et al., 2013). The
geostatistical analyst tool from the ArcGIS software (ESRI,
Redlands, CA, USA) can be used to construct and display interpo-
lated surfaces of anticipated case occurrences (Hussain et al.,
2013). The Bayesian Markov chain Monte Carlo (MCMC)
approach, which is included in the BEAST software package
(Drummond and Rambaut, 2007; Bouckaert et al., 2019) that sup-
ports to estimate population evolutionary rates and population

growth models (Drummond and Rambaut, 2007; Yu et al., 2012;
Feng et al., 2020). An open spatial computing and data resource
(OSCAR) platform has been developed to offer a framework for
integrating spatial computing capability and data aggregation for
emergency public health management (Guo et al., 2018b).

Typical cases
Three representative case study areas, i.e. Tunisia in Africa,

China in Asia and Brazil in South Africa, were chosen to show the
application of the spatial, temporal and spatiotemporal analysis of
rabies. 

Cases in Africa: Tunisia as example
The progression of canine rabies cases from 2012 to 2018 in

Tunisia is depicted in Figure 4 (Bouslama et al., 2020; Kalthoum
et al., 2021). Here, the North and the Centre-east of the nation have
produced the majority, with four statistically significant clusters
found using spatial analysis. There was a noticeable shift in the
spatial patterns from year to year. When the north-eastern gover-
norates, which were rabies-free in 2011, became endemic even
though all of the spatiotemporal clusters found were in the North
and the Centre-east (Bouslama et al., 2020). A possible return of
rabies in some governorates or a viral transmission from nearby
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Figure 4. Spatial distribution of animal rabies cases in Tunisia from 2012 to 2018 (adapted with permission from Kalthoum et al.,
2021). 

Table 1. List of variables influencing rabies distribution.

Category                               Dataset                                                                   Data sources

Environmental                                Average temperature (and other natural variables,          United States Geological Survey (USGS)
variables                                          such as digital elevation, digital slope, etc.)                       The Moderate Resolution Imaging Spectroradiometer
                                                                                                                                                                  (MODIS) onboard the Terra/Aqua satellites
                                                                                                                                                                  The NASA/USGS Landsat Program
Socioeconomic variables             Human population density                                                       National Statistics Bureau
                                                           Ratio of illiteracy                                                                        
                                                           Annual Gross Domestic Product (GDP)                               
Transportation variables              Distance to the road network                                                 National Administration of Surveying, Mapping, and Geoinformation
                                                           Distance to the city centre                                                      
                                                           Distance to the nearest hospital                                            
Epidemiologic variables               Minimum spatial and temporal distance                             Rabies Surveillance data from the Chinese Center for Disease
                                                           to nearest cases                                                                         Control and Prevention (China CDC) 
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governorates might explain the spread of disease. Two geographi-
cally distinct phylogenetic forms of the canine rabies virus have
been identified in Tunisia, one in the north-western part of the
country and the other in the North-east, Centre and South. As a
result, non-overlapping clusters may represent either distinct phy-
logenetic variations or a modification of the geographic distribu-
tion of previously discovered phylogenetic variants. This idea
might be confirmed by a phylogeographical analysis of canine
rabies isolates from 2011–2016, especially in the North and
Centre-east (Bouslama et al., 2020).

Cases in Asia: China as example
In China, 30 of the 31 provinces (excluding Tibet) have report-

ed human rabies cases between 2004 and 2013 ( Guo et al., 2018a;
Yao et al., 2015). The high-incidence provinces were primarily in
the southern, eastern, and eastern parts of central China (Figure 5).
Overall, the annual incidence decreased in the provinces with high
incidence but increased over the 10 years in the provinces with low
incidence ( Guo et al., 2018a; Yao et al., 2015). During the tempo-
ral analysis, the monthly incidence revealed a distinct seasonal pat-
tern with peaks in the summer and fall, particularly in the months
of August through October every year. The annual incidence curve
demonstrate that human rabies had been increasing fast between
2004 and 2007 but dropped precipitously in 2008 and then been
steadily dropping (Yao et al., 2015).

Cases in South America: Brazil as example
Examination of the equine population’s distribution by state in

Brazil found greater relative frequencies in the Southeast (43.6%)
and the Midwest (26.7%), while the Northeast with 8.3% of cases
and the North with 9.4% of cases had the lowest relative frequen-
cies. The notification of rabies cases in horses in Brazil showed a
progressive increase between 2010 and 2013, with a dramatic
spike in 2012 and 2013. There was an apparent linear drop in the
following years, with decreasing values of notified instances up to
2015. The corresponding levels saw another rise between 2016 and

2017. The Midwest exhibited a tendency of declining instances of
rabies in horses in the examination of the temporal patterns of
Brazilian areas, whereas the North-east showed a trend of increas-
ing cases. Only two states indicated a decline in the trend of rabies
in horses and only one revealed a rise in instances; the others
showed stable patterns (Oliveira et al., 2022).

Discussion
Spatiotemporal aggregation analysis of diseases has become a

very popular field and the corresponding statistical methods are
constantly being improved. Most of those discussed in this paper
are widely used to explore the spatial and temporal distribution
patterns of infectious and chronic non-communicable diseases. For
example, Mshelbwala et al. (2020) produced a meta-analysis of the
methodological characteristics of geographical, epidemiological
studies of rabies in animals and humans reviewing a total of 81
publications from 27 nations. They noted that passive surveillance
data were employed in most investigations and just six publica-
tions analysed time series data to identify seasonal rabies incidence
or trends. To identify geographical clustering and hotspots, only
21% of research employed spatial analytical methods, with only
9% of the research papers producing predictive maps of the global
distribution of human and animal rabies, although 35% of the stud-
ies modelled spatial correlations between rabies and various risk
variables. Importantly, none of the spatial modelling studies
adjusted their findings using all clustering criteria (Mshelbwala et
al., 2020)

Descriptive analysis of rabies geographical distribution is
widely highlighted (Bouslama et al., 2020; Gabriele-Rivet et al.,
2020; Guerra et al., 2003;). On the other hand, with reference to
raccoon rabies epidemics, Smith et al. (2002) introduced a novel
method integrating huge datasets, GIS and stochastic simulations
to develop predictive, probabilistic models for geographical
dynamics and forecast of temporal evolution of the disease. To stop
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Figure 5. Spatiotemporal distribution of human rabies cases in China in (a) 2005 and (b) 2013 (adapted with permission from Guo
et al., 2018a, modified).
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the spread of rabies, monitoring effectiveness is just as crucial as
vaccine coverage (Bouslama et al., 2020). According to research
by Escobar et al. (2015), all reported instances of rabies in dogs
and cats are caused by bat-borne rabies, at least in Chile.
Regrettably, recent research from other countries in South America
reveals has not borne out these results as efforts to reduce bat pop-
ulations have not halted the spread of rabies. In this connection, it
should be borne in mind that bat eradication might result in ecolog-
ical imbalance, which could be detrimental to agriculture and pub-
lic health.

Competing species, host population redistribution due to habi-
tat change, host immunization and host population decrease due to
various control activities all impact transmission. Initiatives should
therefore place priority on education to control rabies through lim-
iting exposure and boosting immunization rates. The spatial and
temporal dynamics of isolates are also important for studying the
dynamics of case distribution, which could be implemented by
Bayesian analysis to estimate the origin and expansion of isolates
and to determine whether or not some isolates have derived from a
common ancestor (Gong et al., 2010). Indeed, the Bayesian phylo-
geographic inference framework can incorporate the spatial and
temporal dynamics of gene flow. 

Several issues should be noted when selecting and applying
spatiotemporal or spatial statistical methods. First, the methods
introduced in this paper are all applicable to the analysis of point
data, i.e. specific case data with locations (for example the data
shown in Figure 5); in practice, it is often easy to obtain surface
data after regional cases are summarized (for example the data
shown in Figure 4). Spatial autocorrelation methods and the spa-
tiotemporal scanning statistics are also suitable for cluster analysis
of surface data. Provided that the surface data need to be processed
by points, the centroid of the area can be used for calculation.
However, when the spatial resolution of the surface data is lower
than the point data, the ability of spatiotemporal aggregation detec-
tion weakens. Second, the statistical methods discussed in this
paper are still under development. When conducting an explorato-
ry analysis of disease clustering, it is recommended to use a com-
bination of methods to improve the accuracy of identification as
much as possible to avoid missed and false positives in clustered
areas.

Conclusions
With the continuous accumulation of spatiotemporal data,

improvement of spatiotemporal statistical methods and upgrading
of statistical software, the application of spatiotemporal aggrega-
tion analysis of disease distributions has continued to develop. In
the future, efforts should be continued to strengthen the acquisition
of data from the spatiotemporal disease dimensions, continuously
improve the refinement of data collection and conduct in-depth
research in this area, so that it can play a greater role in public
health monitoring and decision-making.

The ultimate purpose of the analysis for rabies cases is to deter-
mine the spatial heterogeneity characteristics of epidemics to be
able to generate early warnings for future high-risk locations.
Dynamical models and phylogenetic analysis can be employed as
key tools to explore the transmission mechanisms and how various
variables affect rabies. Geographical analysis is of key importance,
including mapping and analysis by aggregation and regression
techniques. The factors that may influence the dynamics of rabies

are both environmental and socioeconomic, with transportation
and epidemiological variables playing key roles. The spatial and
temporal distribution, spatial aggregation, spatial autocorrelation
and mathematical models can simulate the dynamic transmission
of rabies, support the formulation of public health measures and
strategies and protect health and safety of exposed populations.
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