
Abstract
Longevity is a near-universal human aspiration that can affect

moral progress and economic development at the social level. In
rapidly developing China, questions about the geographical distri-
bution and environmental factors of longevity phenomenon need
to be answered more clearly. This study calculated the longevity
index (LI), longevity index for females (LIF) and longevity index
for males (LIM) based on the percentage of the long-lived popu-
lation among the total number of elderly people to investigate
regional and gender characteristics at the county level in China. A
new multi-scale geographically weighted regression (MGWR)
model and four possible geographical environmental factors were
applied to explore environmental effects. The results indicate that
the LIs of 2838 counties ranged from 1.3% to 16.3%, and the dis-
tribution showed obvious regional and gender differences. In gen-

eral, the LI was high in the East and low in the West, and the LIF
was higher than the LIM in 2614 counties (92.1%). The MGWR
model performed well explaining that geographical environmental
factors, including topographic features, vegetation conditions,
human social activity and air pollution factors have a variable
influence on longevity at different spatial scales and in different
regions. These findings enrich our understanding of the spatial
distribution, gender differences and geographical environmental
effects on longevity in China, which provides an important refer-
ence for people interested in the variations in the associations
between different geographical factors.

Introduction
Although longevity occurs in individuals, some geographic

patterns have been observed in the distribution of long-lived indi-
viduals (Romanski et al., 2015; Montesanto et al., 2017).
Investigating modifiable factors underlying those patterns has
drawn much attention from a broad array of research areas (Wang
et al., 2016; Jia et al., 2019; Jia et al., 2020; Vierboom and
Preston, 2020). Approximately two decades ago, a geographic
area with high longevity rates was defined for the first time as a
Blue Zone in a study conducted in Sardinia, Italy (Poulain et al.,
2004). Since then, this concept has been applied by scholars
across the world and Okinawa in Japan, Loma Linda in California,
USA, and Nicoya in Costa Rica have also participated in the Blue
Zones Project (Chrysohoou et al., 2011; Poulain et al., 2013). In
the 21st century, when the number of people living longer was
expected to increase greatly (Robine and Cubaynes, 2017), Blue
Zones have become an important indicator of geographical envi-
ronmental characteristics that may contribute to longevity. This
could provide evidence also for other regions to optimize their
environmental conditions for improving the overall health and
well-being of their residents.

In China, the ageing problem has become increasingly serious
(Wang et al., 2016). Similar to the Blue Zone, the concept of
longevity area was proposed by the China Association of
Gerontology and Geriatrics (CAGG), which established a set of
evaluation indicators and measured the counties applying for
recognition through expert scores (CAGG, 2019). As of January
2021, 87 counties have been recognized as longevity areas in
China, and industries related to longevity, such as tourism, health
care, recuperation and finance are expected to develop in these
counties (CAGG, 2021). The accreditation process combines
quantitative evaluation indicators with expert experience to
answer the question of where to live longer, but it still fails to
identify longevity areas that have not applied for recognition. In a
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study evaluating the ageing process of the Italian population, a
longevity index (LI) was defined as the proportion of the long-
lived population to the elderly population (Magnolfi et al., 2007).
With its simplicity and effectiveness, this index has been used to
analyse the patterns and influential factors of the longevity phe-
nomenon in China (Lv et al., 2011; Liu et al., 2014; Song et al.,
2016). Unfortunately, limited by the complexity of census data
processing, these studies used provinces or other typical regions as
basis. Because China’s provincial regions are so large, the answer
to where to live longer is too vague in studies based on them. In
contrast, resources and environmental conditions are more homo-
geneous at the county level, which is the basic administrative divi-
sion in China and more suitable to identify longevity areas at the
national scale. In addition, there has been a lack of research on
gender differences and potential geographical environmental influ-
ences of the Chinese longevity areas. In terms of the demographic
characteristics of longevity, females generally tend to live longer
than males, even if they live in the same geographical environ-
ment. This is seen in many places, e.g., Greece and England
(Johnson et al., 2020; Zafeiris, 2020) and may also be true for
China. Previous studies have shown that the life expectancy of
Chinese men in 2010 was 73 years, while that of women was 78
years (Zhang and Wei, 2016). However, until now, there have been
few discussions of the spatial distribution of longevity from the
perspective of gender.

The longevity phenomenon has been generally influenced by
geographical environmental factors, but these factors are complex
and varied. Taking topography as an example, Lv et al. (2011)
found that elevation is positively correlated with longevity due to
increased sun exposure, and Pes et al. (2013) found that slope is
advantageous by promoting increased physical activity. Both veg-
etation cover and gross domestic product (GDP) were found to be
associated with increased longevity (Wang et al., 2015; Wang et
al., 2016; Browning et al., 2019), while air pollution was consid-
ered a major threat to the health of the elderly (Wang et al., 2014;
Hu et al., 2020). However, these studies of the geographical envi-
ronmental factors affecting longevity were only from a self-per-
spective, and the spatial variability was not fully considered in the
correlation analysis model. The former is due to the great differ-
ence between geographical environmental factors, so it is difficult
for traditional statistical data to achieve county level comparative
analysis on a national scale. Fortunately, the increasing develop-
ment of remote sensing and on-the-ground monitoring networks
provide the ability to construct potentially relevant variables,
which are more objective and real than traditional statistical data
(Mei et al., 2011; Li et al., 2017b). Part of the explanation is that
the regression analysis model is out of date, and the common anal-
ysis method is to add geographical weight to the traditional ordi-
nary least squares (OLS) model, namely, the geographically
weighted regression (GWR) model (Brunsdon et al., 1996;
Fotheringham et al., 2002). The GWR model assumes that all fac-
tors affect longevity on a fixed spatial scale, while multi-scale geo-
graphically weighted regression (MGWR) model has been pro-
posed to set variable influence scales for each factor
(Fotheringham et al., 2017). The MGWR model has been applied
in exploratory analysis of subjects with spatial characteristics, such
as epidemics and air quality (Fotheringham et al., 2019; Mansour
et al., 2021), and has shown stronger fitting ability leading this
approach to become an effective tool for these kinds of study as it
better explains the geographical environmental factors affecting
the longevity phenomenon.

To answer questions about longevity in China, this study
attempts to explore the spatial distribution, gender differences and
influencing factors of longevity from a geographical perspective.
This study extends the existing literatures by: i) calculating the LIs
at the county level across China; ii) using multisource, satellite-
based remotely sensed data and on-the-ground air-monitoring data
to construct independent variables of geographical environmental
factors potentially affecting longevity; and iii) constructing and
screening a new MGWR model for the explanation of the influ-
ence of geographical environmental factors. This paper thus aimed
to uncover a more detailed characteristics of the longevity phe-
nomenon in China, including the regional and gender differences
in longevity and the geographical environmental factors that influ-
ence longevity, which could provide a scientific reference for
health promotion environmental protection, and policy-making
promoting longevity through economic development.

Materials and methods

Study area
Mainland China, which includes 31 provinces, excluding Hong

Kong, Macao and Taiwan, as shown in Figure 1, was selected as
the study area. Within this vast territory there are large natural
environmental and socioeconomic differences; thus, it is often
divided into four parts: eastern China, central China, western
China and north-eastern China. We downloaded administrative
area data from the National Geomatics Centre of China
(http://ngcc.sbsm.gov.cn/), and 2838 county-level polygons were
generated. These polygons represented the county level adminis-
trative units in China’s administrative system, such as counties,
county level cities and autonomous counties. All variables were
assessed using these polygon units.

Data sources
The data used in this study included three major categories:

statistical data, multisource satellite-based remotely sensed data
and terrestrial air-monitored data. Statistical data included the age
structure of the population derived from the Sixth Population
Census of China, available from the Population Census Office of
the State Council (PCOSC) and the National Bureau of Statistics
of China (NBSC), which is the most systematic and informative
large-scale population dataset currently available in China
(PCOSC/NBSC, 2012). The multisource satellite-based remotely
sensed data include digital elevation model (DEM) data, normal-
ized difference vegetation index (NDVI) data, and night-time light
data. The DEM data were obtained from the shuttle radar topogra-
phy mission (STRM) dataset (https://www2.jpl.nasa.gov/srtm/).
The NDVI data were downloaded from the National Aeronautics
and Space Administration (NASA) in USA (https://ladsweb.
modaps.eosdis.nasa.gov) and batch processed with the moderate
resolution imaging spectroradiometer (MODIS) reprojection tool
(MRT) (Salleh et al., 2012). The night-time light data (version 4)
from the DMSP/OLS sensor were obtained from the Oceanic and
Atmospheric Administration (NOAA)’s National Centres for
Environmental Information (https://www.ngdc. noaa.gov). We also
utilized the terrestrial air-monitored data from the daily air pollu-
tion index (API) dataset for 86 key cities as published by the China
Environmental Protection Ministry. All data were from 2012.
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Dependent variables
The LI was calculated based on the census data as the percent-

age of the population aged >85 to all aged >65, reflecting the per-
centage of the longevity population among the elderly population
(Magnolfi et al., 2007; Wang et al., 2016). To explore the gender
differences, we also calculated the LI for men and women and thus
ending up with three dependent variables, i.e., the LI, the longevity
index for males (LIM) and longevity index for females (LIF).

Independent variables
To explore the geographical environmental factors that influ-

ence longevity, four general geographical indexes were construct-
ed as independent variables: the relief degree of the land surface
(RDLS), NDVI, total night-time light (TNL) and API as in the fol-
lowing paragraphs.

The relief degree of the land surface
The RDLS index combining elevation and slope was proposed

to reflect the topographical features. Based on the STRM DEM
data, which were resampled to a spatial 1-km resolution, the RDLS
of each pixel was calculated as the difference between the maxi-
mum and minimum elevations in a fixed square window. Previous
studies showed that a 5×5 km convolution kernel was suitable for
the Chinese topographic environment (Liu et al., 2001) and was
therefore adopted. Finally, we calculated the average RDLS for
each county according to the administrative unit data.

The normalized difference vegetation index
The NDVI data were derived from the MOD13A3 product

with a 1-km spatial resolution, which is a common geographical
variable that reflects the vegetational status. It was found to be sig-
nificantly correlated with the biomass and other ecological envi-
ronmental indicators (Carlson and Ripley, 1997). Because the tem-
poral resolution of the NDVI data is one month, the annual NDVI
data were generated by the maximum synthesis method (Wang et
al., 2018). Similar to the RDLS, the average NDVI values in each
county were calculated.

The total night-time light
The TNL was defined as the number of lit pixels in each coun-

ty and was calculated from the DMSP/OLS stable night-time light
data with a 1-km spatial resolution. Night-time light reflects the
intensity of human social activities (Elvidge et al., 2001) and
recent studies indicated that there is a strong correlation between
TNL and gross domestic product (GDP) (Elvidge et al., 1997; Zhu
et al., 2017). Compared with the statistical GDP method, the acqui-
sition method of TNL is more efficient and effective and the data
consistency is also better (Ebener et al., 2005; Zhu et al., 2017),
which is conducive to the cross-sectional comparison of counties
nationwide.

The air pollution index
The API was regarded as an important geographical variable

affecting longevity in this study and was processed through the fol-
lowing three steps: i) in the interpolation step, the ordinary Kriging
spatial interpolation method was used to convert statistical data
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Figure 1. Study area and zones in China.
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into raster images (Li et al., 2017d; Xu et al., 2019); ii) in the syn-
thesis step, annual average data were synthesized from the daily
data; and iii) in the zonal statistics step, the average API of each
county was calculated in the same way as that used for the RDLS
and NDVI.

Regression model
All variables were imported into regression models to deter-

mine the influences of geographical environmental factors on
longevity. To eliminate the magnitude differences and facilitate the
regression calculation, four independent variables were normal-
ized using the z-score method according to general practice
(Brown et al., 2012; Fei et al., 2018; Gao et al., 2019) and then
imported into the following three regression models to fit and com-
pare.

The ordinary least squares model
This is a general global regression model that considers that

the relationship between independent variables and dependent
variables is stationary and constant and can be expressed as:

    
(1)

Where yi is the value of LI in the i-th county; xij the indepen-
dent variable j of the i-th county; b0 an unknown intercept; bj an
unknown regression coefficient for independent variable j; and ei
the random error term.

The geographically weighted regression model
The GWR model is a spatial extension of the OLS model

(Brunsdon et al., 1996), which has been widely employed in
research on geography and related disciplines involving spatial
pattern analysis (Li et al., 2014; Li et al., 2017b). When the cen-
troid coordinates of each county were embedded in the regression
parameters, the OLS model was extended as follows:

                                                                                                  
(2)

Where (ui, vi) denotes the coordinates of the centroid of county
j, with b0 (ui, vi) and bj (ui, vi) denoting the intercept and local esti-
mated coefficient of county , respectively. To simulate the interac-
tion between neighbouring observations, a bi-square adaptive kernel
function was used to calculate the spatial weight matrix between
counties. This method applies a finite Gaussian regression function
to assign influence values to neighbouring counties within a fixed
bandwidth (Fotheringham et al., 2002). As a distance threshold, the
bandwidth determines the observation objects included in the
matrix, with the bandwidth usually optimized by the corrected
Akaike information criterion (AICc) score (Akaike, 1981).

The multi-scale geographically weighted regression model
Recently, an MGWR was further extended on the basis of the

GWR model, which allows multiple bandwidths to be generated for
each independent variable (Fotheringham et al., 2017) as follows:

                                                                                                  
(3)

Where bwj denotes the bandwidth used to calibrate the jth con-
ditional relationship. MGWR uses a back-fitting algorithm for

model calibration (Fotheringham et al., 2019) which is initialized
with GWR parameter estimates and evaluates optimal bandwidths
and locally estimated coefficients in an iterative manner (Oshan et
al., 2019; Yu et al., 2019; Oshan et al., 2020). The bandwidth cal-
ibrated by the back-fitting algorithm varies with the independent
variables indicating how different geographical factors affect
longevity at different spatial scales and providing intuitive inter-
pretations in terms of the affected area (Cupido et al., 2020; Harris
et al., 2020). The bandwidth represents the number of counties
affected by the variable, and the larger the number, the wider the
influence scale of the geographical factor (Fan et al., 2020).
Finally, these algorithms were initialized through the Python-based
implementation of GWR and MGWR (Oshan et al., 2019).

Results

Spatial distribution of the longevity index
Using population structure data from census data, the LIs of

2838 county level polygons were calculated and a longevity map
drawn as shown in Figure 2A. The LIs of all counties in China
ranged from 1.3% to 16.3%, and there were great regional differ-
ences. The counties with higher LI values were mainly distributed
in Liaoning, Anhui, Henan, Guangxi, Sichuan, and other eastern
provinces, while the counties with lower LI, such as Gansu, Inner
Mongolia, and the area adjacent to the Qinghai-Tibet-Xinjiang
region, were mostly distributed in western China. The spatial dis-
tribution of longevity areas in China identified by the CAGG
(Figure 2B) was consistent with the LI, which verified the reliabil-
ity of the LI calculated.

The Hu line, a famous demarcation of population density
formed under resource and environmental constraints, reflects the
main characteristics of population distribution in China: the east-
ern region is densely populated, while the western region is sparse-
ly populated (Li et al., 2017c). As shown in Figure 2A, LIs to the
east of the Hu line were generally higher than those west of it,
which indicates that longevity is influenced by resource and envi-
ronmental conditions. However, the Hu line does not match the
spatial distribution of LIs well since many counties, e.g., the coun-
ties in north-western Sichuan, eastern Tibet and southern Xinjiang,
broke the trend formed by this line by having relatively poor natu-
ral and socioeconomic conditions but still exhibit a high LI. In gen-
eral, compared with the population density distribution, the spatial
distribution of LIs is more irregular, and the influencing factors
may be more complex than what can be shown a simple line.

Spatial distribution of the longevity index by gender
Based on Figure 2C and D, we found that the longevity phe-

nomenon showed significant gender differences by location; the
LIM ranged from 0 to 13.9%, and the LIF from 0 to 24.6%. We
compared the LIM and LIF values. Figure 3A illustrates that the
percentage of females that exhibit longevity was generally higher
than that of males, and counties with higher LIFs than LIMs were
concentrated in eastern and central China. In contrast, some coun-
ties south of Xinjiang had higher LIMs than LIFs. Previous studies
suggest that this phenomenon may be related to the local charac-
teristics of Uyghur social life. Males are more likely to maintain a
normal family status and sexual life and maintain higher levels of
testosterone and oestradiol, which contribute to longevity (Zhao et
al., 2003; Xu et al., 2009). The red solid line in Figure 3B shows
the linear relationship between LIFs and LIMs, and the coefficient
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of determination was 0.54 indicating a significant positive correla-
tion between them (P<0.01); furthermore, the intercept of 0.86
confirms that females are generally more likely to achieve longevi-
ty. The statistical results show that the LIFs were greater than the
LIMs in 2614 counties (92.1%), while the opposite situation was
observed in only 224 counties (7.9%).

Performance of three regression models
First, we calculated basic statistics and performed a multi-

collinearity analysis for the four variables (Table 1). The variance
inflation factors (VIFs) of each variable were far below 10, indi-
cating that multicollinearity did not pose a problem. Next, two
commonly used statistical parameters were used for evaluating
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Figure 2. The spatial distributions of the three indices and recognized longevity areas in China. LI, longevity index; LIM, longevity
index for males; LIF, longevity index for females.

Table 1. Descriptive statistics of independent variables.

Variable                        Mean                            SD                                     Minimum                             Maximum                            VIF

RDLS                                       258.36                                   250.88                                                     4.37                                                 1543.02                                         1.22
NDVI                                         0.68                                       0.17                                                       0.07                                                    0.90                                            1.04
TNL                                        9024.85                                 8688.49                                                    0.00                                                  137143                                          1.13
API                                            68.71                                      8.49                                                      40.95                                                  95.99                                           1.05
RDLS, relief degree of land surface; NDVI, normalized difference vegetation index; TNL, total night-time light; API, air pollution index; SD, standard deviation; VIF, variance inflation factor.
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regression models, including the AICc and the adjusted R2 value
(Li et al., 2017a; Fotheringham et al., 2019). When AICc is small
and the adjusted R2 large, the goodness of fit of a regression model
is good (Fotheringham et al., 1996). As shown in Table 2, com-
pared with the OLS models, the performance of the GWR models
was greatly improved for the three indexes. Compared with the
GWR models, the MGWR models improved the overall perfor-
mance with smaller AICcs. Finally, the results were statistically
significant, as all values of the F-tests were much higher than the
F-criterion (2.38) at a confidence level of 95%.

In addition, the residuals between the observed and predicted
values are also important indicators for evaluating the models (Su
et al., 2012). We counted all the local residuals and drew box and
whisker plots (Figure 4); the residuals of OLS models showed the
most discrete distribution ranges, while the distributions of residu-
als in the GWR models and MGWR models were more centred at
approximately 0, with only slight differences between the two.
Furthermore, the excellent performance of the regression model
weakens the spatial autocorrelation of the residuals, as typically
evaluated by Moran’s I and the Monte Carlo method
(Fotheringham et al., 2019). For the three indexes, the residuals of
OLS, GWR and MGWR showed consistent effects for the spatial
autocorrelation: the residuals of the OLS models showed signifi-
cant positive spatial autocorrelations and the GWR models had
markedly reduced, yet still significant spatial autocorrelations of
the residuals. Only the residuals of the MGWR models exhibited a
few spatial autocorrelations indicating that the regression model of
the MGWR was the best (Table 3).

Influence of geographical environmental factors on
longevity

According to the model outcomes and residual analysis, the
performance of MGWR was better than that of GWR, while that of
GWR was significantly better than that of OLS. Due to the perfor-
mance results, we used only the results of MGWR models to inves-
tigate the influences of geographical environmental factors on
longevity; all the local coefficients and their significance results (t-
test; P<0.05) are displayed in Figure 5, and the numbers of coun-
ties with significant positive and negative relations between LI and
geographical variables are shown in Figure 6.

Figure 5A illustrates the spatial distribution of local parameter
estimates associated with RDLS, which varies from north to south.
RDLS was significantly positively correlated with LI in 295 coun-
ties (10.4%) but significantly negatively correlated with LI in 1708
counties (60.2%) (Figure 6). The positive correlations were mainly

                   Article

Figure 3. Comparison between different genders. A) The spatial
distribution of the longevity index for males (LIM) and longevity
index for females (LIF) areas; B) scatter plot and probability dis-
tribution histograms of LIM and LIF. RMSE, root mean squared
error.

Table 2. Performance of the three models with respect to different indexes.

Model                   Index                                                                                         Model performance
                                                                                       AICc                                       Adjusted R2                               F-test

OLS                                  LI                                                                10566.36                                                         0.23                                                 206.54
GWR                                 LI                                                                  7979.36                                                          0.76                                                2615.00
MGWR                             LI                                                                  7778.13                                                          0.76                                                2464.03
OLS                                LIM                                                                9251.17                                                          0.15                                                 125.49
GWR                               LIM                                                                7313.70                                                          0.67                                                1641.97
MGWR                            LIM                                                                7158.21                                                          0.66                                                1462.64
OLS                                 LIF                                                               12152.05                                                         0.24                                                 223.61
GWR                                LIF                                                                9310.74                                                          0.77                                                2704.36
MGWR                            LIF                                                                9060.65                                                          0.79                                                2967.18
OLS, ordinary least squares; GWR, geographically weighted regression; MGWR, multi-scale geographically weighted regression; LI, longevity index; LIM, longevity index for males; LIF, longevity index for females; F-
criterion, 2.38 at the 5% significance level.
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distributed in north-eastern China, while the negative correlations
were mainly distributed in the South. These distributions may be
related to the physical activities of the local people. In north-east-
ern China, which is a low-lying and cold region, where more activ-
ity is needed to remain healthy, while in the humid, mountainous
area of the Southwest, the complex terrain is a threat to the health
of the local people. Additionally, the optimized bandwidth of
RDLS includes 148 nearest neighbours, indicating that RDLS
affected LI at the regional scale.

Figure 5B shows the spatial distribution of local parameter
estimates associated with NDVI. The optimized bandwidth of
NDVI included 195 nearest neighbours, which is a wide measure
indicating a broad influence. NDVI was significantly positively
associated with LI in 888 counties (37.3%), while the opposite was
true in 490 counties (17.3%) (Figure 6). In Xinjiang, Tibet,
Qinghai, and Henan, the local coefficients of NDVI were found to
be positive indicating that the improvement of the ecological envi-
ronment in these counties helps to improve the LI, while they were
negative in Guizhou and Beijing. This result may be related to the
stronger ecological carrying capacity of these counties (Xu et al.,
2010), for which a higher NDVI also represents lower economic
and medical standards.

Figure 5C presents the spatial distribution of the local parame-
ter estimates associated with TNL, which was found to vary from
west to east. The optimized bandwidth of TNL included 324 near-
est neighbours, which was the widest measure found, indicating
that TNL affected the LI at very wide range. TNL positively and
significantly affected the LI in 991 counties (34.9%) (Figure 6),
and these counties were mainly located in Hainan, Zhejiang, with
also some provinces in eastern China. In contrast, TNL negatively
and significantly affected the LI in 456 counties (16.1%) (Figure
6), with the countries mainly distributed in Xinjiang, Qinghai and
some provinces in western China. In general, except for western
China, which has poor ecological productivity (Yang et al., 2018),
the economic development represented by TNL could help people
achieve longevity.

Figure 5D illustrates the spatial distribution of local parameter
estimates associated with the API. The optimized bandwidth of the
API included only 20 nearest neighbours, which indicates that API
generation and diffusion are complex and affect the LI at the local
scale (Xu et al., 2019). As a result, counties whose LI was signifi-
cantly related to API were scattered. The numbers (proportions) of
counties with significant positive and negative correlations
between the API and the LI were 875 (30.8%) and 668 (23.5%),
respectively (Figure 6). In the initial stage of regional economic
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Table 3. Spatial autocorrelation analysis of the residuals of the three models.

Model                   Index                                                                        Residual autocorrelation of the models
                                                                                   Moran’s I                                      Z-score                                 P-value

OLS                                  LI                                                                   0.67*                                                          49.45                                                   0.01
GWR                                 LI                                                                   0.06*                                                            5.07                                                    0.01
MGWR                             LI                                                                     0.01                                                             0.35                                                    0.35
OLS                                LIM                                                                 0.58*                                                           50.71                                                   0.01
GWR                               LIM                                                                 0.03*                                                            2.65                                                    0.01
MGWR                            LIM                                                                 –0.01                                                          –1.08                                                   0.14
OLS                                 LIF                                                                  0.69*                                                          52.07                                                   0.01
GWR                                LIF                                                                  0.09*                                                            7.81                                                    0.01
MGWR                            LIF                                                                  –0.01                                                          –0.96                                                   0.17
OLS, ordinary least squares; GWR, geographically weighted regression; MGWR, multi-scale geographically weighted regression; LI, longevity index; LIM, longevity index for males; LIF, longevity index for females.
*Correlation significant at the 5% level.

Figure 4. Box and whisker plots of the residual distribution out-
put from the three models for the three indices: A) longevity
index (LI); B) longevity index for males (LIM); C) and longevity
index for females (LIF). The boxes show the interquartile range
(25%-75%), with the medians and means marked by green hori-
zontal lines and small triangles in each box. The whiskers illus-
trate the range of three indices. OLS, ordinary least squares;
GWR, geographically weighted regression; MGWR, multi-scale
geographically weighted regression.
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development, air pollution is almost inevitable; thus, the API may
show a positive correlation with the LI (Wang et al., 2014), but this
does not mean that air pollution is conducive to longevity.

Gender differences in geographical environmental
influence

The regression results of the MGWR models for LIM and LIF
are shown in Figures 7 and 8, respectively. To facilitate the com-
parison of the influence of geographical environmental factors by
gender, we divided the positive and negative influences to count
the number of counties with significant correlations between the
two indices and geographical variables (Figure 9). On this basis,
we summarized three types of attributes: male-friendly factors,
female-friendly factors, and non-gender-biased factors.

Both RDLS and API are male-friendly factors. In terms of the
positive influences of RDLS and API, there were more counties for
which the LIM was significantly affected (635 and 917, respective-

ly) than there were counties for which the LIF was significantly
affected (153 and 782, respectively) (Figure 9). However, regard-
ing the negative influence of RDLS and API, there were fewer
counties in which the LIM was significantly affected (0 and 413,
respectively) than there were counties in which the LIF was signif-
icantly affected (1478 and 712, respectively) (Figure 9). In terms
of spatial distribution, the positive influence of RDLS on males
was mainly manifested in south-eastern China (Figure 7A), while
the negative influence of RDLS on females was mainly manifested
in the south-western part of the country (Figure 8A). Furthermore,
the gender differences in the API were relatively small, and the dis-
tribution was scattered.

NDVI is a female-friendly factor. NDVI was significantly pos-
itively correlated with the LIF in 888 counties, while the LIM was
significantly positively correlated in only 317 counties (Figure
9A). However, NDVI was significantly negatively correlated with
the LIM in 1127 counties, while only 24 counties were significant-

                   Article

Figure 5. The spatial distribution and significance of local multi-scale geographically weighted regression model coefficients between
longevity index and geographical variables: A) relief degree of the land surface (RDLS); B) normalized difference vegetation index
(NDVI); C) total night-time light (TNL); D) air pollution index (API).
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ly negatively correlated with the LIF (Figure 9B). In terms of spa-
tial distribution, a female-friendly influence of NDVI was mainly
manifested in Guangdong, Hainan, and Qinghai (Figure 8B), and
the negative influence of NDVI on males was mainly manifested
in south-western China (Figure 7B).

TNL is the only non-gender-biased factor for longevity. TNL
had a significant positive correlation with LIF in many counties
(Figure 9A) and a significant negative correlation with LIF in
many counties (Figure 9B). Regardless of whether it was positive
or negative, the influence of TNL on the longevity of females was
always stronger than that on males and it did not show a gender
bias. In terms of spatial distribution, compared to the LIM, there
were more counties with significant positive and negative influ-
ences of TNL on the LIF. The spatial patterns included the negative
influences in western China and the positive influences in some
counties in Zhejiang, Henan, and so on (Figure 8C).

                                                                                                                                Article

Figure 6. Counties with significant local parameter estimates.
RDLS, relief degree of the land surface; NDVI, normalized differ-
ence vegetation index; TNL, total night-time light; API, air pollu-
tion index. 

Figure 7. The spatial distribution and significance of local multi-scale geographically weighted regression model coefficients between
longevity index for males and geographical variables: A) relief degree of the land surface (RDLS); B) normalized difference vegetation
index (NDVI); C) total night-time light (TNL); D) air pollution index (API).
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Discussion
Most studies have explained the longevity phenomenon at the

individual level and the influencing factors found include heredity
(Ljungquist et al., 1998; Vaupel et al., 1998), disease (Candore et
al., 2010; Spann and Ottinger, 2018), psychology (Giorgio et al.,
2016), etc. However, these findings are inadequate to explain the
public health implications of longevity at the regional level.
Especially in the large territory of China as a whole, the longevity
of individuals varies greatly from region to region, and the few
studies that have been conducted at the provincial level or in typi-
cal cities are generally too vague due to the use of traditional sta-
tistical data and analytical methods. To fill this gap, we investigat-
ed the spatial distribution and gender differences in longevity at the
county level, as well as the impacts of topographic features, vege-
tation conditions, human social activity and air pollution factors
from a geographical perspective with the support of new data and
regression models.

In China, the spatial distribution and gender characteristics of
longevity show regional differences. The results showed that the
LIs of all counties in China ranged between 1.3% and 16.3% and
presented an overall spatial pattern that was high in the East and
low in the West. Where census data were available, the LIs of this
study were calculated based on the percentage of the elderly pop-
ulation that was over 85 years old rather than the usual percentage
of nonagenarians. The calculation results were similar to those of
recognized longevity areas and previous studies (Lv et al., 2011;
Song et al., 2016). Expanding on previous studies, more detailed
county level LIs were obtained and mapped, which provide the
possibility to further explore the geographical factors and gender
differences with respect to longevity. In addition, differences in life
expectancy by gender occur in many areas, and it is known that
females tend to live longer (Zhang and Wei, 2016; Liu et al., 2019;
Zafeiris, 2020). Differences in longevity by gender were found in
this study and they were similar to those shown by life expectancy.
Females had an advantage over males, as the LIF was greater than

                   Article

Figure 8. The spatial distribution and significance of local multi-scale geographically weighted regression model coefficients between
longevity index for females and geographical variables: A) relief degree of the land surface (RDLS); B) normalized difference vegetation
index (NDVI); C) total night-time light (TNL); D) air pollution index (API).
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the LIM in 2614 counties (92.1%); however, the LIM was higher
in the other 224 counties (7.9%).

Furthermore, spatial variation in the geographical environmen-
tal factors affecting longevity was found. Using multisource, satel-
lite-generated, remotely sensed data and terrestrial air-monitored
data, four indices related to general geographical factors were
innovatively constructed as independent variables and imported
into the traditional OLS model, the common GWR model and the
new MGWR model. Once again, this study proved that the GWR
model is better than the traditional OLS model for the regression
of spatial data (Su et al., 2012; Li et al., 2017a), but it is impracti-
cal to set a fixed bandwidth for all independent variables in GWR.
In general, variables have different influence ranges; that is, they
affected the dependent variable at different spatial scales, and the
MGWR model was proposed to account for this (Fotheringham et
al., 2017). According to statistical results, including AICc, adjusted
R2, and the F-test, the three models can be ranked in terms of per-
formance from OLS via GWR to MGWR on a good to better scale.
From the analysis of the ability of the models to alleviate the resid-
uals, Moran’s I was innovatively used to evaluate the spatial auto-
correlation of residuals, and the performance on a scale from good
to better was again OLS via GWR to MGWR. In particular, the
low spatial autocorrelation (the absolute value of Moran’s I<0.02)
and non-significance (P>0.1) residuals validated the superiority of
MGWR by setting the multi-scale bandwidth for different indepen-
dent variables. Therefore, the MGWR results were analysed, and it
was revealed that there was variability in the influential factors.
One is the scale variability: different geographical environmental
factors affected longevity at variable spatial scales, so their band-
widths in the MGWR models were different (Fotheringham et al.,
2017). The spatial scale rankings of the four geographical factors
on longevity were as follows: TNL>NDVI>RDLS>API. Another
is the spatial variability: the influence of geographical environ-
mental factors on longevity was not fixed and demonstrated vari-
able effects in different regions. For example, increasing the TNL
in eastern China means economic growth, which can help develop
medical care and improve the LI, but doing so in western China
could backfire because economic development may damage the
environment in the ecologically fragile western part of the country
and produce the opposite result. In the process of affecting
longevity, the scale variability and spatial variability shown by the
factors conform to geographical patterns, which are widely found
in the formation of subjects with spatial attributes, such as air pol-
lutants and epidemic diseases (Xu et al., 2019; Ballard and Bone,
2021). However, it is worth noting that the factors affecting the
longevity differently in the two genders also varied. On the one
hand, the bandwidths acting on them were not fixed illustrating
that the influence of geographical environmental factors on the
longevity of females and males occurs at different spatial scales.
For females, the smaller bandwidth produced by RDLS and TNL
means that these factors influenced the longevity probability over
a smaller spatial range, while the larger bandwidth produced by
NDVI means that ecological quality impacted the longevity prob-
ability over a larger spatial range. On the other hand, similar to the
effects on the LI, the influence of geographical environmental fac-
tors on the LIM and the LIF also exhibited spatial variability.
Based on the statistical results of counties, whose longevity was
significantly affected by geographical environmental factors, this
study described RDLS and API as female-friendly, NDVI as male-
friendly and TNL as non-biased by gender.

The findings discussed above are important for those con-
cerned about the variable relationship between longevity and geo-
graphical environmental factors as they provide scientific refer-

ences for health promotion, environmental protection and econom-
ic development policy-making regarding longevity. For example,
regarding the criteria and methods for recognizing longevity areas,
the following three suggestions were put forward to the CAGG: i)
more geographical data and analysis models should be considered
in the recognition methods. Large-scale, multisource, satellite-gen-
erated, remotely sensed data and terrestrial air-monitored data are
more realistic and easier to organize than the traditional statistical
data, and the geographical model represented by MGWR is able to
meet the needs of exploratory analysis; ii) more attention should be
given to the geographical environment, and the weight of geo-
graphical environmental factors should be increased in the recog-
nition criteria of longevity areas. In the current indicator system,
the three core indices on population structure account for 60% of
the weight, while geographically related indicators such as forest
coverage, air quality and economic income do not exceed 5%
(CAGG, 2019). People’s attention to longevity areas involves pur-
suing an environment that produces natural longevity phenomena
rather than being curious about the proportion of the long-lived
population. This is why urban centres where many elderly people
gather have maintained a high longevity ratio, but they still cannot
be called longevity areas; iii) attention should be paid to the vari-
ability in longevity, including the variability in geographic factors

                                                                                                                                Article

Figure 9. Statistics of counties with significant positive and nega-
tive local parameter estimates. A) Significant positive influence;
B) significant negative influence. RDLS, relief degree of the land
surface; NDVI, normalized difference vegetation index; TNL,
total night-time light; API, air pollution index; LIM, longevity
index for males; LIF, longevity index for females.
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and gender differences and adaptive evaluation standards should
be implemented in different types of areas. All counties west of the
Hu line in China have not been recognized, including counties in
southern Xinjiang that have been recognized by the International
Natural Medicine Society (INMS) as the world’s fourth longevity
region (Liu et al., 2014) because static indices such as forest cov-
erage and economic level in the current indicator system were
unfavourable to them.

There are several limitations in this study and the main chal-
lenge is to make a general conclusion without individual data. The
effects and mechanisms of geographical environmental factors act-
ing on long-lived individuals need to be further verified. In the
future, the experimental data of this study should be enriched and
integrated with individual data from Guangxi, Xinjiang and other
recognized longevity areas based on the seventh census data (State
Council of China, 2019) and various remotely sensed data to
improve fitting performance and persuasion. Additionally,
although remotely sensed data since the 1990s are easy to obtain
and organize allowing multiple geographic factor variables to be
constructed on a large scale (Xie et al., 2019; Li et al., 2021), their
uncertainty is also a focus worthy of further research (Wu et al.,
2019).

Conclusions
The main contribution of this study is the finding that the spa-

tial distribution, gender differences and influencing factors of the
longevity phenomenon all exhibit obvious spatial heterogeneity.
By constructing three longevity indices, the longevity phe-
nomenon and its gender differences at the county level can be visu-
alized on a map, which enriches our knowledge of where people
tend to live longer. Supported by multisource, satellite-based
remotely sensed data, terrestrial air-monitored data and the
MGWR model, this study explored the relationship between
longevity and topographic features, vegetation conditions, human
social activity and air pollution from a geographical perspective.
The superiority of the MGWR model was proven, and the effects
of geographical environmental factors on longevity were found to
vary. These findings enrich our understanding of the geographical
environment of longevity in China. It will serve as an important
reference regarding the variation in longevity and environmental
factors for decision-makers during the formulation of suitable poli-
cies for simultaneously facilitating human health, environmental
protection, and economic development.
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