
Abstract
The global percentage of people over 60 is strongly increasing

and estimated to exceed 20% by 20,150, which means that there
will be an increase in many pathological conditions related to
aging. Mapping of the location of aging people and identification
of their needs can be extremely valuable from a social-economic
point of view. Participants in this study were 148 randomly select-
ed adults from Talca City, Chile aged 60-74 at baseline.
Geographic information systems (GIS) analyses were performed
using ArcGIS software through its module Spatial
Autocorrelation. In this study, we demonstrated that elderly peo-
ple show geographic clustering according to above-norm results
of anthropometric measurements and blood chemistry. The spatial
identifications found would facilitate exploring the impact of
treatment programmes in communities where many aging people
live, thereby improving their quality of life as well as reducing
overall costs.

Introduction
The global percentage of people over 60 is currently 11% with

an estimated climb to 21% by 2050 (Bloom et al., 2011). This
means an increase in many pathological conditions related to
aging (Vermeulen et al., 1998; Fjell and Walhovd, 2010; Bueno et
al., 2014) and may partly explain the higher incidence of cardio-
vascular disease (CVD) in older adults (Kovacic et al., 2011;
Raskob et al., 2014; Sarink et al., 2014). While aging is consid-
ered an independent risk factor for the development of CVD, older
adults are also at high risk for developing other chronic diseases
(Lopes et al., 2012). Mena et al. (2015, 2016) showed the impor-
tance of the role of environmental factors such as parks and mar-
kets in the development of cardiovascular risk. Mapping of the
location of aging people and identification of their needs can
therefore be of high value from the social-economic point of view. 

Geographic Information Systems (GIS) are part of the more
general and modern concept denominated geo-information, or
geomatics, that integrates GIS with disciplines, such as global
positioning system (GPS), remote sensing (RS), cartography,
geodesy and similar approaches (Gonzalez, 2013). The applica-
tion of GIS technology includes fields like forestry, agriculture,
mining, urban planning, network management, geo-marketing,
ecology, transportation, geology, land planning, public health, etc.
(Tanser, 2002). In the field of public health, GIS have multiple
potential applications in areas such a disease surveillance, risk
analysis, health access and planning, community health profiling,
which takes into account various settings like countryside, city,
built environment and other neighbourhoods (Shaw, 2012). In
addition, the GIS potential has been identified by experts in rela-
tion to improved understanding of complex health issues and to
support the design and evaluation of effective programmes and
strategies based on population data (Carroll et al., 2014). The pur-
pose of this study was to examine a cohort of elderly people, con-
trolling their body measurements and general blood chemistry val-
ues, and collate this information to find out if there is any degree
of geographic clustering that could be useful from the point of
view of health provision.

Materials and Methods

Study site and participants
The study took place in the city of Talca, which is located

about 250 km south of Santiago and is the capital of both Talca
Province and Maule Region. Considering a significance level of
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5% and a power of 80%, a representative sample of 148
participants aged 60–74 years at baseline (98 women and 50 men)
were randomly selected from elderly people in Talca City, Chile.
The sample selected represented close to 1% of Talca’s population.
Only persons free of clinical cardiovascular disease at baseline
were enrolled. The variables included postal address, weight,
height, waist circumference, body mass index (BMI), blood pres-
sure and blood chemistry with special reference to total lipopro-
teins, total cholesterol, low-density lipoprotein cholesterol (LDL-
C), high-density lipoprotein cholesterol (HDL-C), triglycerides,
glycaemia and uric acid. Additional details on the design of study
are provided elsewhere (Palomo et al., 2007). 

Geographic information system application
A geo-referenced database was built in ArcGIS software ver-

sion 10 (ESRI, Redlands, CA, USA). This database provided all
relevant geo-information stored as digital layers representing
roads, urban blocks, green areas (squares, avenues, parks, etc.). We
also used SPOTMaps satellite-generated images (http://www.intel-
ligence-airbusds.com/spotmaps/). All this information was organ-
ised as independent information layers and conformed a base map
where every single participant was geo-located according to the
home address given during the medical evaluation. GIS coverage
was created using georeferenced points as participant-representa-
tive elements. This coverage was the main input data for the spatial
autocorrelation analysis (Mena et al., 2015, 2016). Moran’s I was
calculated by means of ArcGIS’s module Analyzing Patterns.

Spatial correlation statistics

Moran’s I
Global statistics can help identify spatial association in a large

group of values registered for the spatial location of individuals
(Fotheringham and Brunsdon, 1999). We used Moran’s I to analyse
the correlation among observations of neighbouring participants in
order to detect whether the spatial distribution was clustered, dis-
persed or random. Moran’s I was calculated according to Chen et
al. (2015): 

   Eq 1.

where n is the number of participants, x the average value for some
medical measurement, xi and xj the medical measurement for partici-
pant i and j, respectively, and wij the spatial weight between partici-
pants i and j (Ferguson and Korfmacher, 1997). The analyses were
performed using ArcGIS software through its module Analyzing
Patterns according to Ferguson and Korfmacher (1997). The tool
calculates the value of Moran’s I and also a z-score and P value,
which are both useful to evaluate the significance of the index. Z
test (z-score) is usually used as a hypothesis test to determine whether
a spatial clustering exists and its calculation is made by the formula:
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Figure 1. Getis-Ord Gi* statistic result for weight values. The figure clearly shows a hotspot for the weight variable located in the south-
western part of the city centre, an area associated with medium-low income level, where the mean registered weight is 76.65 kg. A small
coldspot is also seen to the northeast (the old city), where the mean weight value is 56.75 kg. 
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           Eq 2.

E[I] = -1/(n-1) and V[I] = E[I2]-E[I]2. The null hypothesis con-
firms that measure values are randomly distributed in the study area.
For a 95% of confidence level (CL), the critical z-score values should
be between -1.96 and +1.96 standard deviations (SD) with an associ-
ated P value of 0.05. Thus, a value outside this range rejects the null
hypothesis and proves that a significant spatial autocorrelation among
the measurement values for the study area exists. We used a threshold
distance of 700 m search radio for the analyses. Finally, Moran’s I
range between −1 to +1 where a value near 0 indicates lack of spatial
clustering, so values registered for medical measurement of patients
at one location do not depend on neighbourhood or local conditions;
meanwhile, values near +1 indicate that measurement values tend to
cluster, while values near -1 imply that higher and lower measure-
ment values are interspersed in the analysed area (Zhao et al., 2013).

Local indicators of spatial association statistics
Local indicators of spatial association (LISA) statistics can

help to identify the local spatial association between a value regis-
tered for a participant spatially located and its neighbours, given a
specified distance from the observation (Roger et al., 2012). We
used the Gi* local statistic (Ord and Getis, 1995) to analyse the
spatial correlation among observations of neighbouring partici-
pants in order to identify statistically significant spatial clusters of
high values (hotspots) and low values (coldspots). Getis-Ord Gi*
statistic was calculated by formula:

         
Eq 3.

where xj is the attribute value for participant j, wi,j the spatial weight
between participant i and j, while n corresponds to the total number
of participants. and S were calculated by equations 4 and 5 below:

Eq 4.

Eq 5.

The analyses were applied using ArcGIS software through its
module Mapping Cluster to those medical measurements that

show clustered condition by Moran’s I. The Gi
* statistic is a z-score

so no further calculations were needed. Then z-score and p-value
were used to evaluate where participants with either high or low
values clustered spatially. A statistically significant hotspot or
coldspot is identified when a participant has a high (or low) value
and is surrounded by other participants with similar (high or low)
values as well. A participant with a positive z-score corresponds to
a spatial clustering of high values and participant with negative z-

X
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Table 1. Characteristics of the study population (n=148).

Variable                                    Mean           SD               Norm

Age* (years)                                            66                     4                            
Height (cm)                                            160                   20                           
Weight (kg)                                             72.6                 13.6                          
BMI (kg/m2)                                            29.1                  5.5                      ≤25°
Waist circumference (cm)                 94.6                 11.8                          
Blood pressure# (mm Hg)                 144.6                22.4                     <120
Uric acid (mg/mL)                                  5.2                   1.6                     3.5-7.0
Glycaemia (mg/dL)                              105.6                27.1                     <100
Total cholesterol (mg/dL)                  208.9                38.4                     >200
LDL-C (mg/dL)                                      121.7                39.7                     <100
HDL-C (mg/dL)                                      52.6                 14.8                      >60
Triglycerides (mg/dL)                         161.1                87.1                     ≤150
SD, standard deviation; BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-
density lipoprotein cholesterol. *Age range of the study subjects=60-70 years; °between >25 and
<30=overweight, ≥30=obesity; #systolic pressure.

Table 2. Results of statistical analysis (n=148).

Variable                                Moran's I            P             Z-score

Age* (years)                                          0.082                  0.145                 1.456
Height (cm)                                           0.026                  0.479                 0.724
Weight (kg)                                            0.118                  0.040                 2.051
BMI (kg/m2)                                           0.197                  0.001                 3.396
Waist circumference (cm)                0.163                  0.005                 2.800
Blood pressure° (mm Hg)                 0.043                  0.405                 0.832
Uric acid (mg/mL)                               -0.036                 0.620                 -0.495
Glycaemia (mg/dL)                              -0.005                 0.974                 0.031
Total cholesterol (mg/dL)                 -0.035                 0.638                 -0.470
LDL-C (mg/dL)                                     -0.092                 0.159                 -1.405
HDL-C (mg/dL)                                    -0.018                 0.849                 -0.190
Triglycerides (mg/dL)                         0.038                  0.451                 0.754
BMI, body mass index; LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cho-
lesterol. *Age range of the study subjects=60-70 years; °systolic pressure.

Table 3. Spatial autocorrelation (cluster) values.

Variable                                  Low cluster          High cluster

Weight (kg)                                             53.4±4.1                      101.9±13.4
BMI (kg/m2)                                            16.7±9.4                       38.37±3.2
BMI, body mass index. Values are expressed as mean±standard deviation. 

[page 92]                                                             [Geospatial Health 2017; 12:523]                                                                             

Non
 co

mmerc
ial

 us
e o

nly



                                                                                                                                Article

                                                                              [Geospatial Health 2017; 12:523]                                                            [page 93]

Figure 2. Getis-Ord Gi* statistic result for waist values. Two hotspots referring to the waist circumference variable are located in the
southwestern part of the city centre (same area as that with weight hotspot) but also to the northwest (both areas are characterised by
medium-low income levels). Mean value for these places is 99.34 cm. A small coldspot is also seen in the northeast (the old city), where
the mean value is 88.25 cm.

Figure 3. Getis-Ord Gi* statistic result for body mass index (BMI) values. A BMI hotspot is located southwest of the city centre in the
same area of hotspots registered for the weight and waist circumference variables. The BMI mean value for this area is 254.65 kg/m2.
Coldspots are located in the north and eastern part of the city, spatially coincident with an area of high-income where the mean value
of BMI is 178.68 kg/m2.
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score corresponds to a spatial clustering of low values. The higher
(or lower) the z-score, the more intense the clustering, while z-
scores near zero show no apparent spatial clustering (Getis and
Aldstadt, 2004). 

Statistical analysis
Mean±SDs were determined using SPSS version 17.0 (SPSS

inc., Chicago, IL, USA). The GIS analyses were performed using
ArcGIS software through its module Spatial Autocorrelation.
P<0.05 were considered significant. 

Results 

Characterisation of the study population 
Table 1 shows the individual characteristics together with nor-

mal values seen in the population at large. As can be seen, the
majority of the study subjects, showed above normal results of
body measurements and blood chemistry as follows: BMI (79%),
blood pressure (86%), glycaemia (50%), total cholesterol (62%)
and triglycerides (45%). 

Geographic information system and spatial autocorre-
lation analysis

Moran’s I was calculated based on the geo-referenced ArcGIS
database. The results of this statistical analysis are shown on Table
2. A significant positive spatial autocorrelation (cluster: P<0.05)
was reported for weight, waist circumference and BMI, the latter
being the most clustered variable. The spatial autocorrelation
(clustering tendency) according to weight and BMI stood out. As
shown in Table 3, people were broadly grouped around low and
high values with each of the two variables clustering at low and
high levels. Getis-Ord Gi* statistic was calculated in order to iden-
tify statistically significant spatial clusters of high values
(hotspots) and low values (coldspots) among neighbouring partic-
ipants. The calculated variables were weight, waist circumference
and BMI. The results of this local statistic are shown in Figures 1-
3.

Discussion 
In this study, we have demonstrated for the first time that elder-

ly people have a tendency to cluster according to some anthropo-
metric measurements and blood chemistry levels that are above the
norm. Thus, clustering as shown by GIS could help improving the
quality of life by highlighting the need for exploration of the
impact of treatment programmes in communities where aging peo-
ple congregate. GIS is a relatively new concept in the geo-oriented
sciences arising from the integration of cartography and informa-
tion technologies (Bergquist and Tanner, 2012). The relational
database model offered allows the linking of disparate types of
geo-data by means of GIS software facilitating data management
in this area of research (Wieczorek and Delmerico, 2009).

The future challenges of health-GIS integration mainly con-
cern understanding and treatment of health problems that arise in
different geographical areas (Fradelos et al., 2014). In this article,
the integration of health-related data across different georefer-
enced areas in a city brought out novel insights how the health care

system could be more involved by considering the residential dis-
tribution of the mainly aging population stratum with above-norm
anthropometric measurements and blood chemistry. However, it is
necessary to resolve methodological issues related to the number
of cases of various ailments occurring in a geographic area as the
numbers can be small and the people with health needs can be
unevenly distributed. However, a better picture of this can be
accomplished with efficient training in GIS concepts, practices and
application besides a development focus on geomatics and health
care integration.

In this study, we observed that when there was an increase or
decrease in such body measurements as weight, BMI and waist cir-
cumference, elderly people were spatially autocorrelated (clus-
tered) within limited areas, such as areas of 700-m radius. Spatial
autocorrelation calculation is considered a useful technique for cluster
mapping of regional health care problems, since it helps to analyse the
geospatial correlation between aspects concerned with health care
events (Tsai et al., 2009; Varga et al., 2013). The theory of spatial
autocorrelation is an important part of geographical analysis and
among the various approaches, Moran’s I is one of the most common-
ly used statistics due to its ability to explicitly identify spatial out-
liers (Sugumaran et al., 2009; Chen et al., 2015). Moran’s I is a gen-
eralisation of Pearson’s correlation coefficient, where an assessment
of the correlation of a variable and its spatial location (cross-product
between location similarity and attribute similarity) is performed
(Zhao et al., 2013). The integration of spatial autocorrelation analy-
ses, GIS and existing health data has provided public health officials
with an efficient informatics tool that can be used to detect and study
the prevalence of statistically significant hotspots with respect to
many different medical issues (Toan et al., 2013), such as infectious
disease (Bhunia et al., 2013), cancer incidence (Bhunia et al., 2013),
intellectual disability (Goli et al., 2014), cardiac disease (Loughnan et
al., 2008) and BMI (Duncan et al., 2012). In addition, results of Getis-
Ord Gi* statistic show spatial clustering of medical measurement reg-
istered for elderly people, specifically weight, waist circumference
and BMI, where hotspots and coldspots were shown to be related to
areas characterised by different income levels. 

Conclusions
The results presented here support the potential for developing

a GIS-related health care approach in tasks where the impact of
cluster evaluation of human health issues can be enabled when
map analysis is included. In this context, it is very important to cre-
ate geo-databases associated with health care providers at the local,
even micro level. 
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