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Abstract

Malaria is an environmentally driven disease. In order to quantify
the spatial variability of malaria transmission, it is imperative to
understand the interactions between environmental variables and
malaria epidemiology at a micro-geographic level using a novel statis-
tical approach. The random forest (RF) statistical learning method, a
relatively new variable-importance ranking method, measures the
variable importance of potentially influential parameters through the
percent increase of the mean squared error. As this value increases, so
does the relative importance of the associated variable. The principal
aim of this study was to create predictive malaria maps generated
using the selected variables based on the RF algorithm in the
Ehlanzeni District of Mpumalanga Province, South Africa. From the
seven environmental variables used [temperature, lag temperature,
rainfall, lag rainfall, humidity, altitude, and the normalized difference
vegetation index (NDVI)], altitude was identified as the most influen-
tial predictor variable due its high selection frequency. It was selected
as the top predictor for 4 out of 12 months of the year, followed by
NDVI, temperature and lag rainfall, which were each selected twice.
The combination of climatic variables that produced the highest pre-
diction accuracy was altitude, NDVI, and temperature. This suggests
that these three variables have high predictive capabilities in relation
to malaria transmission. Furthermore, it is anticipated that the predic-
tive maps generated from predictions made by the RF algorithm could
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be used to monitor the progression of malaria and assist in interven-
tion and prevention efforts with respect to malaria.

Introduction

Malaria transmission in South Africa has been decreasing over the
past years and is now limited to the low-lying north-eastern parts of
Limpopo, Mpumalanga and KwaZulu-Natal Provinces (Gerritsen et al.,
2008). Mpumalanga Province has maintained a successful control pro-
gramme encompassing rapid detection and treatment of confirmed
malaria cases at primary health care facilities and vector control
through indoor residual spraying with insecticides and focal larvicid-
ing (Govere et al., 2000). However, the province still contributes to 44%
of the country’s notified malaria cases (Silal e al., 2013).

Climate has a great impact on the life cycle of the mosquito vector
and malaria parasite (Craig et al., 1999) and studies have shown that
malaria risk and transmission intensity exhibit significant spatial and
temporal variability related to variations in climate, altitude, topogra-
phy and socio-economic activities (Brooker et al., 2004; Gosoniu et al.,
2006; Castillo Riquelme et al., 2008; Karthe, 2010). Therefore, there is
an urgent need to be able to identify which climatic variables have the
greatest influence on malaria transmission as this allows the model-
ling, both spatially and temporally, of malaria transmission under var-
ious climatic conditions. An interpretation of the relationship and
interactions among the most significant environmental variables and
malaria at a more detailed level is also an important part in developing
malaria early warning systems (EWS), identifying potential outbreaks,
and targeting vector control strategies (Ngomane and De Jager, 2012).

Statistical methods add an important dimension to prediction mod-
els. However, for statistical methods to be applicable for selecting sig-
nificant variables to model malaria transmission patterns in space and
time, thus resulting in efficient targeting of interventions against the
disease, accurate disease and climatic data are required (Ostfeld et al.,
2005). Variable selection is a procedure that is important in the
process of creating such prediction models, therefore parsimony
(selecting few strong predictors that are easily interpretable from
many potential candidates) and plausibility (association with malaria
being etiologically explainable) are key.

Different analytical approaches towards variable selection of vary-
ing sophistication have been employed, but these approaches are com-
plex and require a detailed knowledge of statistical methods.
Kleinshmidt et al. (2000), Craig et al. (2007) and Mabaso et al. (2007)
employed an automated stepwise procedure of variable selection.
Testing and rejecting many variables, using stepwise regression,
increase the probability of finding a significant predictor by chance,
since this sifting remains undeclared (Craig et al., 2007). The over-fit-
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ting problem/shortfall of stepwise regression methods has also been
highlighted by Babyak (2004). Furthermore, variable selection has
received little attention within a geostatistical modelling framework
and is usually performed as part of an explanatory analysis but carried
out separately to the geostatistical model fit (Chammartin et al., 2013).
Also, testing and rejection of many variables increase the probability of
finding a significant predictor purely by chance, while standard errors
in predictive models are underestimated because this sifting process
remains undeclared (Babyak, 2004; Harrell, 2001).

Taking the above into consideration, we proposed the use of the ran-
dom forest (RF) algorithm, a powerful new approach developed by Leo
Breiman at the University of California at Berkeley, CA, USA (Breiman,
2001) and applied for data exploration, data analysis and predictive
modelling. It is a non-parametric modelling technique, which is widely
used in prediction and classification problems (Garge et al., 2013).
Importantly, it has shown capability to deal with a large number of pre-
dictor variables and in the presence of complex interactions and highly
correlated variables (Shih, 2011). In addition, RF allows predictor vari-
ables that could have been outplayed by a strong competitor to enter the
ensemble. Therefore, interaction effects that would otherwise have
been unnoticed are revealed (Strobl et al., 2009). Finally, RF can iden-
tify relevant predictor variables by means of variable importance (VI)
measures (Strobl et al., 2009).

This study investigates the use of the RF algorithm to identify the
most relevant and informative predictor variables from a set of candi-
dates and provide a measure of VI within the predictive model. RF is
user-friendly and the results are easy to interpret (Zhang and Bonney,
2000; Lunetta et al., 2004; Goldstein et al., 2010; Moore et al., 2010;
Hastie et al., 2011). It has also been shown capable to deal with a large
number of predictor variables even in the presence of complex interac-
tions and highly correlated variables (Shih, 2011). The aim was to
assess the relationship between climatic variables and malaria trans-
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mission by determining the VI of each climatic variable, as well as to
evaluate what combination of climatic factors is the most associated
with malaria. RF regression provides two measures of VI, the percent
increase of the mean squared error (%IncMSE) and the cumulative
increase in node purity (IncNodePurity) (Gromping, 2012). The
%IncMSE is derived for each predictor variable from the MSE differ-
ence between the predictive measure based on the original dataset and
based on a permuted dataset, where the predictor in question was ran-
domized (Nicodemus et al., 2010). This study used %IncMSE to evalu-
ate the importance of predictor variables and ranked them in order of
importance with the intention to develop predictive models of malaria
transmission based on the climatic variables found to have significant
measures of VI.

Materials and Methods

Malaria case data

The malaria case data used for this study were provided by the Office
of Malaria Research of the South African Medical Research Council
(SAMRC) from the provincial integrated malaria information system
(IMIS), which is regulated by the Mpumalanga Malaria Control
Program of the Department of Health. This system was developed by
the SAMRC, a national research organisation in South Africa, using
Microsoft Access for data entry and validation. Malaria morbidity and
mortality data, consisting of both passive and active cases based on
definitive diagnosis reported from December 2005 to December 2006,
were provided from the IMIS for the purposes of this study. This period
was chosen because it was the only one without missing data that we
could be granted access to. Only malaria cases that were reported in the
Ehlanzeni District were selected for analysis, as it is a malaria-prone
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Figure 1. Map showing the location of Ehlanzeni District within Mpumalanga Province, South Africa.
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District in Mpumalanga, South Africa (Figure 1). However, the district
has borders both with Swaziland and Mozambique and the records
therefore include many imported cases. We therefore extracted the
local cases (people who could be supposed to have contracted malaria
in South Africa) from the database. The data consisted of the following
variables: date of diagnosis, gender, age, type of mosquito species that
infected the individual, residential locality, health facility name (where
the individual was screened), municipality, province and source coun-
try. Individual malaria case data were aggregated to make up a total of
396 sub-places within the study area of the Ehlanzeni District in
Mpumalanga Province. South Africa is demarcated into a hierarchy of
administrative boundaries, such as province, district municipality, local
municipality, ward, sub-place and enumerator area. A sub-place, as
defined by Statistics South Africa (Stats SA, 2011), is the second lowest
level of the place name category and the smallest administrative bound-
ary assigned a community name and thus represents a local social
boundary.

Environmental data

The land surface temperature (LST) was obtained from the moderate
resolution imaging spectroradiometer (MODIS)/Aqua LST and emissiv-
ity product (httpsz//modis.gsfc.nasa.gov/), while the daily normalised
difference vegetation index (NDVI) data were obtained from NASA’s
EOSDIS Reverb tool (http//reverb.echo.nasa.gov/reverb/) at a resolu-
tion of 1x1 km in hierarchal data format — earth observation system
(HDF-EOS). The HDF images were then converted to GeoTIFF using
the MODIS reprojection tool, v. 4.1. The raster calculator tool in ArcGIS,
v. 10 (ESRI, Redlands, CA, USA) was used to apply conversion factors to
LST and NDVI values as well as to convert temperature from Kelvin (K)
into degrees Celsius (°C). The MODIS sensor is an instrument that
records information from two satellites, one in the morning (Terra)
and one in the afternoon (Aqua).

Rainfall

The monthly rainfall estimate (RFE) data was acquired from the
National Oceanic and Atmospheric Administration’s (NOAA) website
(http//www.esrl.noaa.gov/). These data were obtained from RFE v. 2.0
implemented by the NOAA Climate Prediction Center, College Park,
MD, USA. The daily data were summed up to produce 10-day totals in
mm precipitation for each month at a resolution of §x8 km in the band
interleaved by line image file format (http:/www.digitalpre-
servation.gov/formats/fdd/fdd000283.shtml). The images obtained were
projected into a geographic projection and converted into GeoTIFF
using ArcGIS, v.10 (ESRI).

Humidity

The monthly humidity was obtained from the NOAA website
(http//www.esrl.noaa.gov/) in network common data form (netCDF)
(http//www.esrl.noaa.gov/psd/data/gridded/whatsnetCDFEhtml) at a res-
olution of 0.25°x0.25°. The ArcGIS (ESRI) tool Make NetCDF Raster
Layer was used to convert the images into GeoTIFF format.

Altitude

The altitude was obtained by creating a triangulated irregular net-
work (TIN) in ArcGIS, v.10 (ESRI) using contour lines at 5-m intervals
(http//www.planetgis.co.za). TIN is a digital data structure used in geo-
graphic information systems (GIS) for the representation of the physi-
cal land surface made up of irregularly distributed nodes with three-
dimensional coordinates that are arranged in a network of non-overlap-
ping triangles.

[Geospatial Health 2016; 11:434]

Lag rainfall and lag temperature

A lag time is a period between two related events; effects with a lag
of 1 month for LST and rainfall were added to the climatic variables to
account for possible delay of the effect of these predictor environmental
variables on the number of malaria cases.

Extraction of climatic data

The ArcGIS zonal statistics tool (ESRI) was used to extract monthly
averages of the climatic variables for each sub-place in the study area.
The output was a comma-separated values file (http:/www.computer-
hope.com/issues/ch001356.htm) that was imported into RStudio
(https//www.rstudio.com/), which is an integrated development envi-
ronment for R, a programming language and software environment for
statistical computing and graphics.

Statistical methods

Random forest for regression

A regression tree is a non-parametric, statistical learning technique
that is often referred to as a tree-structured algorithm (Faraway, 2005).
It represents a collection of individual decision tree classifiers. The RF
algorithm has become popular due to its efficiency. Moreover, it has
been used in a wide variety of research studies thanks to its ability to
identify important variables as well as its high accuracy of predictive
models (Zhang and Bonney, 2000; Khoshgoftaar et al., 2007; Strobl et
al., 2009; Goldstein et al., 2010; Moore et al., 2010). The relationship
between climatic variables and malaria cases was analysed using the
RF algorithm for regression based on model aggregation ideas for
regression and classification problems that was developed by Breiman
(2001). The RF package (http:/cran.r-project.org/web/packages/
randomForest/index.html) was downloaded into RStudio.

According to Breiman (2001), each individual tree in the forest rep-
resents results from one of a set of regression trees, each constructed
based on a bootstrap sample of a dataset and a random subset of pre-
dictors. The final classification decision is the outcome of a majority
vote or the weighted average of all individual trees. The importance of
each predictor can also be quantified by assessing averaged prediction
error across all random trees. RF is capable to deal with a large number
of predictor variables even in the presence of complex interactions and
highly correlated variables, and it decreases prediction errors com-
pared to traditional regression tree methods because results are aver-
aged among all trees (Breiman, 2001).

The RF algorithm in line with Liaw and Wiener (2002) is carried out
as follows. First, draw number of trees to grow (n,.) and bootstrap
samples from the original data (at random with replacement) to form a
training dataset. Second, for each of the bootstrap samples (training
dataset), grow an non-pruned classification (or regression tree) with
the following modification: at each node, instead of choosing the best
split among all predictors, randomly sample the number of variables to
select per node (myy) of the predictors and choose the best split from
those variables. Third, predict new data by aggregating the predictions
of the majority votes for classification, average for regression, ie. the
N trees. The random selection of records with replacement leaves
about a third of the total number of records that are not used in the
building of this tree. These records can be used to estimate the error
rate of each tree, even as it is being built.

The RF algorithm not only produces predicted values but it also pro-
duces an important piece of information known as VI, which is a meas-
ure of the importance of the predictor variables. VI is a measure of the
mean increase of the error of a tree, i.e. the MSE for regression and
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misclassification rate for classification in the forest, when the
observed values of this variable are randomly permuted into the so
called out-of-bag (OOB) samples (Genuer et al., 2010). For this study,
several environmental variables — temperature, lag temperature, rain-
fall, lag rainfall, humidity, altitude and NDVI — were assessed in pre-
dicting malaria. The most important variables were determined by the
importance scores derived from RE

For each tree (¢) the RF VI can be defined by first considering the
associated OOB; sample, then denote the error of a single tree (f) on
this OOB; sample by errOOB; followed by a random permutation of the
values of X in QOB to get a perturbed sample denoted by OOB/ and
compute errOOBY, the error of predictor (¢£) on the perturbed sample:

When a bootstrap sample was used to construct a regression tree
using environmental variables and malaria for the study period, we
randomly shuffled (permuted) the values of altitude, while keeping all
other variables unchanged, thus creating another regression tree using
the shuffled values. Larger differences in importance scores between
the models before and after permutation signified a greater importance
of altitude in predicting malaria.

Averages over 50 iterations of the RF algorithm were used for each
dataset because many studies (Geurts et al., 2006; Genuer et al., 2010;
Abdulsalam et al., 2011) show that this number of simulations provide
stable, accurate and reliable results.

A default value for myy, randomly chosen at each spilt, was used
because it resulted in the lowest error estimate. The ny.. was set at
2000 because training runs showed it to produce a low error rate and
also ensured that each and every input had to be predicted a number of
times to produce reliable results. We thus used a regression RF
approach based on 2000 trees and the number of variables tried at each
split=1, with the call to function signified by randomForest (x=x, y=y,
Nyee=2000, importance=TRUE).

Model validation

Unlike some machine-learning methods, RF does not require valida-
tion on a test dataset because they construct VI measures and model
performances (MSE) using OOB samples, which is almost equivalent
to cross-validation (Hastie et al., 2001). The principle behind this
cross-validation is that the dataset is split into a larger training and a
smaller dataset when applied. The model is created based on the train-
ing dataset and applied to the dataset, which is also used to evaluate
model performance (Walz, 2014). Therefore, when performing the RF
algorithm, there is no need for cross-validation or a separate test sets
to get an unbiased estimate of the test set error because it is estimated
internally. However, the assessment of model fit is an important step in
data analysis and the co-efficient of determination (RZ) is used to
assess the quality of the fit of a linear regression model by proving an
indication of the suitability of the chosen explanatory variables in pre-
dicting the response. Values for R? range between 0 to 1, the higher the
value is, the more variability is explained by the linear regression
model. Therefore model validation was performed by calculating the co-
efficient of determination for each monthly predictive model generated
by the RF algorithm.

Diaz-Uriarte and De Andres (2006) proposed a two-step procedure
for VI selection, the first to sort variables in decreasing order of RF
scores of importance and the second to cancel the variables of small
importance and then perform the algorithm again for better prediction
accuracy. The higher the value for %IncMSE of a predictor is, the high-
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er the importance of that predictor in predicting the outcome (in our
case, the number of malaria cases). A low importance value indicates a
poor relationship between the predictor variable and the outcome
because that means that permuting the attributes of that variable does
not affect the predictive ability of trees on OBB samples (Bureau et al.,
2003).

Results

Figure 2 displays the ranking of the VI measures of the seven climat-
ic variables in order of decreasing importance after 50 iterations of the
RF algorithm.

Results averaged from 50 simulations of the RF algorithm with
importance quantified as %IncMSE.

Variables with values for VI measures that are negative or close to
zero are considered to be of little or no importance to the response vari-
able (Genuer et al., 2010). However, the %IncMSE values for all the cli-
matic variables in Figure 2 were well above 0, which shows that they
were significant. However, because one of the main objectives of RF
variable selection is to find a small number of variables that is suffi-
cient to allow a good prediction of the response variable, the RF algo-
rithm was then performed on the data for each month of the year using
only the 3 variables that scored the highest %IncMSE in the previous
step (Figure 3).

Altitude, NDVI and temperature were the most frequently selected
climatic variables for predicting malaria cases each month; these three
were selected 8 times. Lag temperature and lag rainfall appeared 5 and
3 times, respectively, and humidity and rainfall both appeared twice.

Altitude was repeatedly identified as the most influential variable in
predicting malaria. It was selected as the top predictor variable for four
months (February, March, April and May). Lag rainfall was the top pre-
dictor for January and December, NDVI for August and September, tem-
perature for June and November, while rainfall and lag temperature
were the top predictors for only one month, July and October, respec-
tively. Figure 4 illustrates the relationship between altitude and the
occurrence of malaria cases. Altitude increased from East to West and
this coincided with a decrease in the number of malaria cases in the
same direction. The highest number of cases occurred at altitudes less
than 600 m and decreased as the altitude increased further.

As previously stated, in addition to providing measures of VI, the RF
algorithm also produces a predictive model in the form of an output of
the implementation of the algorithm. Figure 5 shows the prediction
performance of the top 3 statistically significant variables that were
identified in the variable selection procedure. R2, also known as the co-
efficient of determination, was used to indicate the correlation
between predicted malaria cases and actual malaria cases. R? (with a
range of 0-1) is the fraction of the variability in Y that can be explained
by the variability in X through their relationship.

Figures 6 and 7 illustrate the monthly spatial distribution of the
observed and predicted cases of malaria in the Ehlanzeni District
obtained from the predictive models. It is evident that predictions of
the RF models are more accurate for sub-places with 10 or less total
malaria cases. The model for October had an usually low R2 in compar-
ison with the other months, which is an indication of a very poor model
and is likely due to the true random behaviour of the algorithm.

The RF algorithm provides an OOB error estimate, which is an inter-
nal error estimate of a random forest as it is being constructed (provid-
ed in Appendix 1). When performing the RF algorithm, after each tree
of the random forest is built, the forest makes predictions on each indi-
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Figure 2. The variable importance measure of predictor variables for malaria.
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vidual raw training dataset observation relying on the previously
described technique of bagging. Once the algorithm builds the first tree
in the forest it does not predict for all observations; this is because a
bootstrapped observation, which was not used in the prediction, is used
for those observations (Brence and Brown, 2004). The general trend
observed in the graphs showing error rate is that the error rate of the
predictive models starts off relatively high then drops sharply as the
number of observations increases and later stabilizes as more trees are
grown until the specified number of trees is grown.

P
=}

Discussion

A common question that needs to be addressed in modelling is which
predictor variables have the greatest influence in a predictive model
and to what degree. This is the crucial issue that the RF algorithm
addresses by providing individual measures of VI for several predictor
variables. This study showed that altitude was the most robust predic-
tor variable because it was selected as the single top predictor variable

Figure 3. Variable importance measure plots generated by the random forest algorithm for the three most statistically significant vari-

ables.
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for more months of the year than the other climatic variables with the
%IncMSE values ranging from 16 to 26%. Ngomane ef a/. (2012) found
that malaria incidence was more pronounced in the low altitude region
of Ehlanzeni District in comparison to the high altitude regions of
Nkangala and Gert Sibande Districts. This result suggests that altitude
has an effect on malaria transmission and it echoes an investigation by
Kazembe (2007) that documented a higher rate of malaria incidence at
elevations below 1500 m when compared to higher altitudes. Further
studies show that altitude is a key determinant of malaria risk because
it restricts mosquito habitats. This is due to the findings that with
every 1000 m increase in elevation, temperature decreased by 6°C.
(Patz et al., 2008). Craig et al. (2007) also found a strong positive asso-
ciation with malaria prevalence, they report an increase in logit(p) of
1 every 160 m. A drop in temperature results in a decline in the risk of
infection because parasite development is restricted; the minimum
temperature for Plasmodium falciparum development is said to be
between 16 and 18°C (Lindsay and Martens, 1998).

Lag rainfall (16 to 26%), NDVI (26 to 28%) and temperature (21 to
26%) were the second most common predictors, each having been
selected as a top predictor for 2 months. Rainfall and lag temperature
were both variables that were least likely to be selected because they
were the top predictors for only one month each. The results from the
model validation show that the predictive models for March, April and
May had the highest R? values (0.9023, 0.8901 and 0.8875, respective-
ly). This indicates that the combination of climatic variables for the
models for each of these 3 months (altitude, NDVI, and temperature)
yielded the highest R* compared with other combinations and they
were able to explain a high percentage of the total variation in observed

malaria cases resulting in high model accuracy.

Our observations are similar to research conducted by Craig et al.
(2007), who developed a malaria risk map using a systematic variable
selection process. They found that out of 50 potential explanatory vari-
ables, rainfall, temperature and altitude were the most plausible pre-
dictors of historical malaria risk in Botswana. The only difference is
that our study found NDVI to be significant in place of rainfall. Qur
results are also in accordance with a study by Sinka et al. (2010) who
used RF for classification to map the prediction of dominant vectors of
human malaria. They found that in the ranking of various climatic vari-
ables, altitude and temperature were the most influential in predicting
malaria due to their high %IncMSE values.

Rainfall had the highest measure of importance because it had the
highest %IncMSE (about 34%); therefore it was the climatic variable
that made the greatest contribution to the prediction of malaria in the
monthly models. This is an important finding because rainfall and tem-
perature have proved to be two of the major environmental variables
triggering malaria epidemics in warm semi-arid and high altitude
areas because epidemics occur in these regions after excessive rain or
increases in temperature (Ceccato et al., 2012). Rainfall was followed
by NDVI and lag rainfall with %IncMSE values of 28 and 26%, respec-
tively.

Multiple iterations of the RF algorithm (50 for each month) were
implemented because the reliability and stability of VI measures are
greatly increased when multiple simulations are executed (Goldstein ef
al., 2010). Apart from determining VI measures, the RF algorithm pro-
duced models that allowed for the production of predictive maps. The
second aim of this study was to produce predictive maps from the pre-

Mocambique

Figure 4. Association between altitude and number of malaria cases.
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dicted cases output that could be used to monitor the progression of
malaria and assist in targeted intervention and prevention efforts.
Maps showing the distribution of the predicted number of malaria
cases against the actual observed numbers also serve as a tool for dis-
ease surveillance because areas at risk of potential outbreaks can be
easily identified (Hay et al., 2013).

We also showed that the models generated by the RF algorithm pre-
dicted low numbers of malaria more accurately than higher numbers.

S

Appendix 2 shows that the majority of the observed numbers of total
malaria cases per sub-place were 10 and below, and the predictive maps
show that the models were able to predict fairly accurately within the
range of 0-10 observed cases as seen on the maps for the months of
June, July, August, September and December. However, the RF algo-
rithm does not predict extreme values accurately (Horning, 2013) and
it usually considers values greater than 10 as outliers (Breiman, 2002).
Therefore, as shown in the maps, the predictive capabilities of the
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models are less accurate for high-observed numbers as seen for the
months of January, February and March and May.

Correlation was not addressed separately outside the RF algorithm
in this study because instead of searching over all the variables at each
node for the optimal split, the RF algorithm reduces correlation among
trees by performing a search over a random subset of data at each node.
It continues to split the data until no further splits possible, RF leaves
the tree non-pruned because bagging is used to decrease variance

resulting from the lack of pruning (Goldstein et al., 2010). Also, a study
by Genuer et al. (2010) showed that even in the presence of highly cor-
related variables, the fine tuning parameter my and selecting of a suf-
ficient number of trees ensured that VI measures produced with differ-
ent iterations of the algorithm do not vary systematically and RF is able
to select significant variables by allocating them high measures of
importance and allocating variables of low importance with low meas-
ures of importance.
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Figure 6. Maps showing observed and predicted cases of malaria by sub-place as obtained by the application of the random forest mod-

els (January to June).
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One of the limitations we encountered is that the RF algorithm can-
not predict beyond the range of data in the training data; thus, the more
data is available, the greater and more reliable the prediction ability of
predictive models will become. In light of this, a follow up to this study
would be able to obtain malaria case data and climatic data over a
longer period of time, such as the past decade, and obtain measures of
VI for all the climatic variables for each month over each of the years to
evaluate the pattern of statistically significant climatic variables most

2

% S - e

associated with cases of malaria. Also, there is a presence of a high
number of zeroes in the data; however, these zeroes are true because
they represent the absence of malaria cases in those sub-places. For
this reason, they cannot be excluded from the RF algorithm. Cameron
and Trivedi (2013) state that real-life data frequently display over dis-
persion through excess zeroes and a zero value has special appeal in
many situations because it divides the population into subpopulations
in a meaningful way. If we apply this statement to this study, zeroes in
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Figure 7. Maps showing observed and predicted cases of malaria by sub-place as obtained by the application of the random forest mod-

els (July to December).
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the dataset of malaria cases are important because they separate sub
places that have actual observed malaria cases and those that do not
have any cases.

Conclusions

The RF algorithm can be used as a tool to filter out irrelevant predic-
tor variables and focus on those that have the greatest impact on malar-
ia. This can be viewed as a time saving exercise for data collection and
experimental run time because for future studies, efforts can be con-
centrated towards only collecting data for significant climatic variables.

Altitude was the most robust climatic predictor influencing malaria
and the most frequently selected variable followed by lag rainfall, NDVI
and temperature (each selected as the dominant variable for 2
months). Rainfall and lag temperature were each selected as dominant
predictor variables, but only for one month each.

Predictive models for the months of March, April and May had the
highest model accuracy due to the fact that the combination of climatic
factors produced the highest R? values. All three months had the same
top three statistically significant climatic variables that were ranked in
the same order of importance: altitude was first followed by NDVI and
temperature was last.

There is potential for the predictive maps generated from the predic-
tion capability of the RF algorithm to be used in improving public
health as an operational malaria EWS by determining areas that are at
risk of high numbers of malaria cases in the future as well as by aiding
the efficient targeting of intervention and prevention measures
through focusing on areas that are at risk of outbreaks.
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